
Simulink®

Simulation and Model-Based Design

Modeling

Simulation

Implementation

Simulink® Reference
Version 6

How to Contact The MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

Simulink Reference

© COPYRIGHT 2002–2006 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined
in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of
this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and Documentation
by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government’s
needs or is inconsistent in any respect with federal procurement law, the government agrees to return the
Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB, Simulink, Stateflow, Handle Graphics, Real-Time Workshop, and xPC TargetBox
are registered trademarks, and SimBiology, SimEvents, and SimHydraulics are trademarks of
The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective
holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

Revision History
July 2002 Online only Revised for Simulink 5 (Release 13)
April 2003 Online only Revised for Simulink 5.1 (Release 13SP1)
April 2004 Online only Revised for Simulink 5.1.1 (Release 13SP1+)
June 2004 Online only Revised for Simulink 6 (Release 14)
October 2004 Online only Revised for Simulink 6.1 (Release 14SP1)
March 2005 Online only Revised for Simulink 6.2 (Release 14SP2)
September 2005 Online only Revised for Simulink 6.3 (Release 14SP3)
March 2006 Online only Revised for Simulink 6.4 (Release 2006a)
September 2006 Online only Revised for Simulink 6.5 (Release 2006b)

Contents

Blocks — By Category

1
Commonly Used . 1-2

Continuous . 1-3

Discontinuities . 1-3

Discrete . 1-4

Logic and Bit Operations . 1-5

Lookup Tables . 1-7

Math Operations . 1-8

Model Verification . 1-9

Model-Wide Utilities . 1-10

Ports & Subsystems . 1-11

Signal Attributes . 1-12

Signal Routing . 1-13

Sinks . 1-14

Sources . 1-15

User-Defined Functions . 1-16

v

Additional Math & Discrete . 1-17
Additional Discrete . 1-17
Additional Math: Increment — Decrement 1-18

Blocks — Alphabetical List

2

Linearization and Trimming Commands

3
Linearization and Trimming Commands — Alphabetical

List . 3-2

Model Construction Commands

4
Task-Oriented Command List . 4-2

Model Construction Commands — Alphabetical List . . 4-5

Simulation Commands

5
Task-Oriented Command List . 5-2

Simulation Commands — Alphabetical List 5-4

vi Contents

Mask Icon Drawing Commands

6
Command Summary . 6-2

Mask Icon Drawing Commands — Alphabetical List . . 6-3

Simulink Debugger Commands

7
Command Summary . 7-2

Simulink Debugger Commands — Alphabetical List . . 7-5

Data Type Functions

8
Data Type Functions — Alphabetical List 8-2

Data Object Classes

9
Class Summary . 9-2

Classes — Alphabetical List . 9-5

vii

Model and Block Parameters

10
Model Parameters . 10-2

Examples of Setting Model Parameters 10-55

Common Block Parameters . 10-56
Examples of Setting Block Parameters 10-67

Block-Specific Parameters . 10-68

Mask Parameters . 10-168
Setting Mask Parameters . 10-172
How Masked Parameters are Stored 10-173

Model File Format

11
Model File Contents . 11-2

Model Section . 11-4
Simulink.ConfigSet Section . 11-5
BlockDefaults Section . 11-5
BlockParameterDefaults Section . 11-6
AnnotationDefaults Section . 11-7
LineDefaults Section . 11-7
System Section . 11-7

Embedded MATLAB Basics

12
Supported Variable Types in Embedded MATLAB

Functions . 12-3

Operators in Embedded MATLAB Functions 12-4

viii Contents

Control Flow Statements in Embedded MATLAB
Functions . 12-4

Arithmetic Operators in Embedded MATLAB Functions . . 12-5
Relational Operators in Embedded MATLAB Functions . . 12-6
Logical Operators in Embedded MATLAB Functions 12-6

Embedded MATLAB Run-Time Function Library 12-8
Embedded MATLAB Run-Time Function Library —

Alphabetical List . 12-8
Embedded MATLAB Run-Time Library — Categorical

List . 12-26

Calling Functions in Embedded MATLAB 12-43
How Embedded MATLAB Resolves Function Calls 12-43
Calling Subfunctions . 12-45
Calling Embedded MATLAB Runtime Library

Functions . 12-45
Calling MATLAB Functions . 12-46

Local Variables in Embedded MATLAB Functions 12-55
Creating Local Variables Implicitly 12-55
Creating Local Complex Variables Implicitly 12-56
Declaring Persistent Variables . 12-58

Using Structures in Embedded MATLAB 12-59
About Embedded MATLAB Structures 12-59
Creating Structures in Embedded MATLAB 12-63
Defining Structure Inputs and Outputs 12-65
Defining Structure Variables Implicitly in Embedded

MATLAB Functions . 12-66
Making Structures Persistent . 12-69
Indexing Sub-Structures and Fields 12-69
Assigning Values to Structures and Fields 12-70
Limitations with Structures . 12-71

Using M-Lint with Embedded MATLAB 12-75

Unsupported MATLAB Features and Limitations 12-76
List of Unsupported Features . 12-76
Limitations on Indexing Operations 12-77
Limitations with Complex Numbers 12-78

ix

Index

x Contents

1

Blocks — By Category

Commonly Used (p. 1-2) Commonly used blocks

Continuous (p. 1-3) Define continuous states

Discontinuities (p. 1-3) Define discontinuous states

Discrete (p. 1-4) Define discrete states

Logic and Bit Operations (p. 1-5) Perform logic and bit operations

Lookup Tables (p. 1-7) Support lookup tables

Math Operations (p. 1-8) Perform math operations

Model Verification (p. 1-9) Perform model verification

Model-Wide Utilities (p. 1-10) Support model-wide operations

Ports & Subsystems (p. 1-11) Support ports and subsystems

Signal Attributes (p. 1-12) Support signal attributes

Signal Routing (p. 1-13) Support signal routing

Sinks (p. 1-14) Receive output from other blocks

Sources (p. 1-15) Input to other blocks

User-Defined Functions (p. 1-16) Support custom functions

Additional Math & Discrete (p. 1-17) Provide additional math and discrete
support

1 Blocks — By Category

Commonly Used

Bus Creator Create signal bus

Bus Selector Select signals from incoming bus

Constant Generate constant value

Data Type Conversion Convert input signal to specified
data type

Demux Extract and output elements of bus
or vector signal

Discrete-Time Integrator Perform discrete-time integration or
accumulation of signal

Gain Multiply input by constant

Ground Ground unconnected input port

Inport Create input port for subsystem or
external input

Integrator Integrate signal

Logical Operator Perform specified logical operation
on input

Mux Combine several input signals into
vector

Outport Create output port for subsystem or
external output

Product Multiply or divide inputs

Relational Operator Perform specified relational
operation on inputs

Saturation Limit range of signal

Scope, Floating Scope, Signal Viewer
Scope

Display signals generated during
simulation

Subsystem, Atomic Subsystem,
CodeReuse Subsystem

Represent system within another
system

1-2

Continuous

Sum, Add, Subtract, Sum of
Elements

Add or subtract inputs

Switch Switch output between first input
and third input based on value of
second input

Terminator Terminate unconnected output port

Unit Delay Delay signal one sample period

Continuous
Derivative Output time derivative of input

Integrator Integrate signal

State-Space Implement linear state-space system

Transfer Fcn Model linear system by transfer
function

Transport Delay Delay input by given amount of time

Variable Time Delay, Variable
Transport Delay

Delay input by variable amount of
time

Zero-Pole Model system by zero-pole-gain
transfer function

Discontinuities

Backlash Model behavior of system with play

Coulomb and Viscous Friction Model discontinuity at zero, with
linear gain elsewhere

Dead Zone Provide region of zero output

Dead Zone Dynamic Set inputs within bounds to zero

1-3

1 Blocks — By Category

Hit Crossing Detect crossing point

Quantizer Discretize input at specified interval

Rate Limiter Limit rate of change of signal

Rate Limiter Dynamic Limit rising and falling rates of
signal

Relay Switch output between two constants

Saturation Limit range of signal

Saturation Dynamic Bound range of input

Wrap To Zero Set output to zero if input is above
threshold

Discrete

Difference Calculate change in signal over one
time step

Discrete Derivative Compute discrete time derivative

Discrete Filter Model IIR and FIR filters

Discrete State-Space Implement discrete state-space
system

Discrete Transfer Fcn Implement discrete transfer function

Discrete Zero-Pole Model system defined by zeros and
poles of discrete transfer function

Discrete-Time Integrator Perform discrete-time integration or
accumulation of signal

First-Order Hold Implement first-order
sample-and-hold

Integer Delay Delay signal N sample periods

Memory Output input from previous time
step

1-4

Logic and Bit Operations

Tapped Delay Delay scalar signal multiple sample
periods and output all delayed
versions

Transfer Fcn First Order Implement discrete-time first order
transfer function

Transfer Fcn Lead or Lag Implement discrete-time lead or lag
compensator

Transfer Fcn Real Zero Implement discrete-time transfer
function that has real zero and no
pole

Unit Delay Delay signal one sample period

Weighted Moving Average Implement weighted moving average

Zero-Order Hold Implement zero-order hold of one
sample period

Logic and Bit Operations

Bit Clear Set specified bit of stored integer to
zero

Bit Set Set specified bit of stored integer to
one

Bitwise Operator Perform specified bitwise operation
on inputs

Combinatorial Logic Implement truth table

Compare To Constant Determine how signal compares to
specified constant

Compare To Zero Determine how signal compares to
zero

Detect Change Detect change in signal’s value

Detect Decrease Detect decrease in signal’s value

1-5

1 Blocks — By Category

Detect Fall Negative Detect falling edge when signal’s
value decreases to strictly negative
value, and its previous value was
nonnegative

Detect Fall Nonpositive Detect falling edge when signal’s
value decreases to nonpositive value,
and its previous value was strictly
positive

Detect Increase Detect increase in signal’s value

Detect Rise Nonnegative Detect rising edge when signal’s
value increases to nonnegative
value, and its previous value was
strictly negative

Detect Rise Positive Detect rising edge when signal’s
value increases to strictly positive
value, and its previous value was
nonpositive

Extract Bits Output selection of contiguous bits
from input signal

Interval Test Determine if signal is in specified
interval

Interval Test Dynamic Determine if signal is in specified
interval

Logical Operator Perform specified logical operation
on input

Relational Operator Perform specified relational
operation on inputs

Shift Arithmetic Shift bits and/or binary point of
signal

1-6

Lookup Tables

Lookup Tables

Cosine Implement cosine function in
fixed-point using lookup table
approach that exploits quarter wave
symmetry

Direct Lookup Table (n-D) Index into N-dimensional table to
retrieve element, column, or 2-D
matrix

Interpolation (n-D) Using PreLookup
(Obsolete)

Perform high-performance constant
or linear interpolation, mapping
N input values to sampled
representation of function in N
variables via output from PreLookup
Index Search block

Interpolation Using Prelookup Use output of Prelookup block
to accelerate approximation of
N-dimensional function

Lookup Table Approximate one-dimensional
function

Lookup Table (2-D) Approximate two-dimensional
function

Lookup Table (n-D) Approximate N-dimensional function

Lookup Table Dynamic Approximate one-dimensional
function using dynamically specified
table

Prelookup Compute index and fraction for
Interpolation Using Prelookup block

1-7

1 Blocks — By Category

PreLookup Index Search (Obsolete) First stage of high-performance
constant or linear interpolation that
performs index search and interval
fraction calculation for input on
breakpoint set

Sine Implement sine wave in fixed-point
using lookup table approach that
exploits quarter wave symmetry

Math Operations

Abs Output absolute value of input

Algebraic Constraint Constrain input signal to zero

Assignment Assign values to specified elements
of signal

Bias Add bias to input

Complex to Magnitude-Angle Compute magnitude and/or phase
angle of complex signal

Complex to Real-Imag Output real and imaginary parts of
complex input signal

Concatenate Concatenate input signals of same
data type to create contiguous output
signal

Divide Multiply or divide inputs

Dot Product Generate dot product of two vectors

Gain Multiply input by constant

Magnitude-Angle to Complex Convert magnitude and/or a phase
angle signal to complex signal

Math Function Perform mathematical function

MinMax Output minimum or maximum input
value

1-8

Model Verification

MinMax Running Resettable Determine minimum or maximum of
signal over time

Polynomial Perform evaluation of polynomial
coefficients on input values

Product Multiply or divide inputs

Product of Elements Multiply or divide inputs

Real-Imag to Complex Convert real and/or imaginary
inputs to complex signal

Reshape Change dimensionality of signal

Rounding Function Apply rounding function to signal

Sign Indicate sign of input

Sine Wave Function Generate sine wave, using external
signal as time source

Slider Gain Vary scalar gain using slider

Sum, Add, Subtract, Sum of
Elements

Add or subtract inputs

Trigonometric Function Perform trigonometric function

Unary Minus Negate input

Weighted Sample Time Math Support calculations involving
sample time

Model Verification

Assertion Check whether signal is nonzero

Check Discrete Gradient Check that absolute value of
difference between successive
samples of discrete signal is less
than upper bound

1-9

1 Blocks — By Category

Check Dynamic Gap Check that gap of possibly varying
width occurs in range of signal’s
amplitudes

Check Dynamic Lower Bound Check that one signal is always less
than another signal

Check Dynamic Range Check that signal falls inside range
of amplitudes that varies from time
step to time step

Check Dynamic Upper Bound Check that one signal is always
greater than another signal

Check Input Resolution Check that input signal has specified
resolution

Check Static Gap Check that gap exists in signal’s
range of amplitudes

Check Static Lower Bound Check that signal is greater than
(or optionally equal to) static lower
bound

Check Static Range Check that signal falls inside fixed
range of amplitudes

Check Static Upper Bound Check that signal is less than (or
optionally equal to) static upper
bound

Model-Wide Utilities

DocBlock Create text that documents model
and save text with model

Model Info Display revision control information
in model

1-10

Ports & Subsystems

Time-Based Linearization Generate linear models in base
workspace at specific times

Trigger-Based Linearization Generate linear models in base
workspace when triggered

Ports & Subsystems

Action Port Implement Action subsystems used
by if and switch control flow
statements in Simulink

Configurable Subsystem Represent any block selected from
user-specified library of blocks

Enable Add enabling port to subsystem

Enabled and Triggered Subsystem Represent subsystem whose
execution is enabled and triggered
by external input

Enabled Subsystem Represent subsystem whose
execution is enabled by external
input

For Iterator Subsystem Represent subsystem that executes
repeatedly during simulation time
step

Function-Call Generator Execute function-call subsystem
specified number of times at specified
rate

Function-Call Subsystem Represent subsystem that can be
invoked as function by another block

If Model if-else control flow

If Action Subsystem Represent subsystem whose
execution is triggered by If block

1-11

1 Blocks — By Category

Inport Create input port for subsystem or
external input

Model Include model as block in another
model

Outport Create output port for subsystem or
external output

Subsystem, Atomic Subsystem,
CodeReuse Subsystem

Represent system within another
system

Switch Case Implement C-like switch control
flow statement

Switch Case Action Subsystem Represent subsystem whose
execution is triggered by Switch
Case block

Trigger Add trigger port to subsystem or
function-call model

Triggered Subsystem Represent subsystem whose
execution is triggered by external
input

While Iterator Subsystem Represent subsystem that executes
repeatedly while condition is
satisfied during simulation time step

Signal Attributes

Data Type Conversion Convert input signal to specified
data type

Data Type Conversion Inherited Convert from one data type to
another using inherited data type
and scaling

Data Type Duplicate Force all inputs to same data type

1-12

Signal Routing

Data Type Propagation Set data type and scaling of
propagated signal based on
information from reference signals

Data Type Scaling Strip Remove scaling and map to built in
integer

IC Set initial value of signal

Probe Output signal’s attributes, including
width, dimensionality, sample time,
and/or complex signal flag

Rate Transition Handle transfer of data between
blocks operating at different rates

Signal Conversion Convert signal to new type without
altering signal values

Signal Specification Specify desired dimensions, sample
time, data type, numeric type, and
other attributes of signal

Weighted Sample Time Support calculations involving
sample time

Width Output width of input vector

Signal Routing

Bus Assignment Assign values to specified elements
of bus

Bus Creator Create signal bus

Bus Selector Select signals from incoming bus

Data Store Memory Define data store

Data Store Read Read data from data store

Data Store Write Write data to data store

1-13

1 Blocks — By Category

Demux Extract and output elements of bus
or vector signal

Environment Controller Create branches of block diagram
that apply only to simulation or only
to code generation

From Accept input from Goto block

Goto Pass block input to From blocks

Goto Tag Visibility Define scope of Goto block tag

Index Vector Switch output between different
inputs based on value of first input

Manual Switch Switch between two inputs

Merge Combine multiple signals into single
signal

Multiport Switch Choose between multiple block
inputs

Mux Combine several input signals into
vector

Selector Select input elements from vector or
matrix signal

Switch Switch output between first input
and third input based on value of
second input

Sinks

Display Show value of input

Outport Create output port for subsystem or
external output

Scope, Floating Scope, Signal Viewer
Scope

Display signals generated during
simulation

1-14

Sources

Stop Simulation Stop simulation when input is
nonzero

Terminator Terminate unconnected output port

To File Write data to file

To Workspace Write data to workspace

XY Graph Display X-Y plot of signals using
MATLAB figure window

Sources

Band-Limited White Noise Introduce white noise into
continuous system

Chirp Signal Generate sine wave with increasing
frequency

Clock Display and provide simulation time

Constant Generate constant value

Counter Free-Running Count up and overflow back to zero
after maximum value possible is
reached for specified number of bits

Counter Limited Count up and wrap back to zero after
outputting specified upper limit

Digital Clock Output simulation time at specified
sampling interval

From File Read data from MAT file

From Workspace Read data from workspace

Ground Ground unconnected input port

Inport Create input port for subsystem or
external input

Pulse Generator Generate square wave pulses at
regular intervals

1-15

1 Blocks — By Category

Ramp Generate constantly increasing or
decreasing signal

Random Number Generate normally distributed
random numbers

Repeating Sequence Generate arbitrarily shaped periodic
signal

Repeating Sequence Interpolated Output discrete-time sequence and
repeat, interpolating between data
points

Repeating Sequence Stair Output and repeat discrete time
sequence

Signal Builder Create and generate interchangeable
groups of signals whose waveforms
are piecewise linear

Signal Generator Generate various waveforms

Sine Wave Generate sine wave

Step Generate step function

Uniform Random Number Generate uniformly distributed
random numbers

User-Defined Functions

Embedded MATLAB Function Include MATLAB code in models
that generate embeddable C code

Fcn Apply specified expression to input

Level-2 M-File S-Function Use Level-2 M-file S-function in
model

MATLAB Fcn Apply MATLAB function or
expression to input

1-16

Additional Math & Discrete

S-Function Include S-function in model

S-Function Builder Create S-function from C code that
you provide

Additional Math & Discrete

Additional Discrete (p. 1-17) Provide additional discrete math
support

Additional Math: Increment —
Decrement (p. 1-18)

Increment or decrement value of
signal by one

Additional Discrete

Fixed-Point State-Space Implement discrete-time state space

Transfer Fcn Direct Form II Implement Direct Form II realization
of transfer function

Transfer Fcn Direct Form II Time
Varying

Implement time varying Direct Form
II realization of transfer function

Unit Delay Enabled Delay signal one sample period, if
external enable signal is on

Unit Delay Enabled External IC Delay signal one sample period, if
external enable signal is on, with
external initial condition

Unit Delay Enabled Resettable Delay signal one sample period, if
external enable signal is on, with
external Boolean reset

Unit Delay Enabled Resettable
External IC

Delay signal one sample period, if
external enable signal is on, with
external Boolean reset and initial
condition

1-17

1 Blocks — By Category

Unit Delay External IC Delay signal one sample period, with
external initial condition

Unit Delay Resettable Delay signal one sample period, with
external Boolean reset

Unit Delay Resettable External IC Delay signal one sample period, with
external Boolean reset and initial
condition

Unit Delay With Preview Enabled Output signal and signal delayed by
one sample period, if external enable
signal is on

Unit Delay With Preview Enabled
Resettable

Output signal and signal delayed by
one sample period, if external enable
signal is on, with external Boolean
reset

Unit Delay With Preview Enabled
Resettable External RV

Output signal and signal delayed by
one sample period, if external enable
signal is on, with external RV reset

Unit Delay With Preview Resettable Output signal and signal delayed
by one sample period, with external
Boolean reset

Unit Delay With Preview Resettable
External RV

Output signal and signal delayed by
one sample period, with external RV
reset

Additional Math: Increment — Decrement

Decrement Real World Decrease real world value of signal
by one

Decrement Stored Integer Decrease stored integer value of
signal by one

Decrement Time To Zero Decrease real-world value of signal
by sample time, but only to zero

Decrement To Zero Decrease real-world value of signal
by one, but only to zero

1-18

Additional Math & Discrete

Increment Real World Increase real world value of signal
by one

Increment Stored Integer Increase stored integer value of
signal by one

1-19

1 Blocks — By Category

1-20

2

Blocks — Alphabetical List

Abs

Purpose Output absolute value of input

Library Math Operations

Description The Abs block outputs the absolute value of the input.

For signed data types, the absolute value of the most negative value is
problematic since it is not representable by the data type. In this case,
the behavior of the block is controlled by the Saturate on integer
overflow check box. If checked, the absolute value of the data type
saturates to the most positive representable value. If not checked, the
absolute value of the most negative value represented by the data type
has no effect.

For example, suppose the block input is an 8-bit signed integer. The
range of this data type is from -128 to 127, and the absolute value
of -128 is not representable. If you select the Saturate on integer
overflow check box, then the absolute value of -128 is 127. If it is not
selected, then the absolute value of -128 remains at -128.

Data Type
Support

The Abs block accepts real signals of any data type supported by
Simulink®, except Boolean. The Abs block supports real fixed-point
data types. The block also accepts complex single and double inputs.
Outputs are a real value of the same data type as the input.

For a discussion on the data types supported by Simulink, see “Data
Types Supported by Simulink” in the “Working with Data” chapter of
the Using Simulink documentation.

2-2

Abs

Parameters
and
Dialog
Box

Saturate on integer overflow
When selected, the block maps signed integer input elements
corresponding to the most negative value of that data type to the
most positive value of that data type:

• For 8-bit integers, -128 maps to to 127.

• For 16-bit integers, -32768 maps to 32767.

• For 32-bit integers, -2147483648 maps to 2147483647.

When not selected, the block does not act on signed integer
input elements corresponding to the most negative value of
that data type.

• For 8-bit integers, -128 remains -128.

• For 16-bit integers, -32768 remains -32768.

• For 32-bit integers, -2147483648 remains -2147483648.

Enable zero crossing detection
Select to enable zero crossing detection. For more information, see
“Zero-Crossing Detection” in the “How Simulink Works” chapter
of the Using Simulink documentation.

2-3

Abs

Sample time (-1 for inherited)
Specify the time interval between samples. To inherit the sample
time, set this parameter to -1. See “Specifying Sample Time”
in the “How Simulink Works” chapter of the Using Simulink
documentation.

Characteristics Direct Feedthrough Yes

Sample Time Specified in the Sample time parameter

Dimensionalized Yes

Zero Crossing Yes, if enabled

2-4

Action Port

Purpose Implement Action subsystems used by if and switch control flow
statements in Simulink

Library Ports & Subsystems

Description Action Port blocks implement Action subsystems used in if and switch
control flow statements. The Action Port block is available in the If
Action Subsystem and the Switch Case Action Subsystem. See the
references for the If and Switch Case blocks for examples using Action
Port blocks.

Use Action Port blocks to create Action subsystems as follows:

1 Place a subsystem in the system containing the If or Switch Case
block.

You can use an ordinary subsystem or an atomic subsystem. In either
case, the resulting Action subsystem is atomic.

2 Add an Action Port to the new subsystem.

This adds an input port named Action to the subsystem, which is
now an Action subsystem.

Action subsystems execute their programming in response to the
conditional outputs of an If or Switch Case block. Use Action subsystems
as follows:

1 Create an Action subsystem for each output port configured for an
If or Switch Case block.

2 Connect each output port (if, else, or elseif ports for the If block; case
or default ports for the Switch Case block) to the Action port on an
Action subsystem.

When the connection is made, the icon for the subsystem and the
Action Port block it contains are changed to the name of the output

2-5

Action Port

port for the If or Switch Case block (i.e., if{ }, else{ }, elseif{ },
case{ }, or default{ }).

3 Open the new subsystem and add the diagram that you want to
execute in response to the condition this subsystem covers.

The Action Port block has only the States when execution is
resumed parameter in its parameters dialog. If you set this field to
held (the default value) for an Action Port block, the states of its Action
subsystem are retained between calls even if other member Action
subsystems of an if-else or switch control flow statement are called.
If you set the States when execution is resumed field to reset, the
states of a member Action subsystem are reset to initial values when
it is reenabled.

Note All blocks in an Action subsystem driven by an If or Switch Case
block must run at the same rate as the driving block.

Data Type
Support

There are no data inputs or outputs for Action Port blocks.

Parameters
and
Dialog
Box

2-6

Action Port

States when execution is resumed
Specifies how to handle internal states when the subsystem of
this Action Port block is reenabled.

Set this field to held (the default value) to make sure that the
Action subsystem states retain their previous values when the
subsystem is reenabled. Otherwise, set this field to reset if you
want the states of the Action subsystem to be reinitialized when
the subsystem is reenabled.

Reenablement of a subsystem occurs when it is called and the
condition of the call is true after having been previously false.
In the following example, the Action Port blocks for both Action
subsystems A and B have the States when execution is
resumed parameter set to reset.

If case[1] is true, Action subsystem A is called. This implies
that the default condition is false. When B is later called for the
default condition, its states are reset. In the same way, Action
subsystem A’s states are reset when it is called right after Action
subsystem B is called.

Repeated calls to a case’s Action subsystem do not reset its states.
If A is called again right after a previous call to A, this does not

2-7

Action Port

reset A’s states because its condition, case[1], was not previously
false. The same applies to B.

Characteristics Sample Time Inherited from driving If or Switch Case
block

2-8

Algebraic Constraint

Purpose Constrain input signal to zero

Library Math Operations

Description The Algebraic Constraint block constrains the input signal f(z) to zero
and outputs an algebraic state z. The block outputs the value necessary
to produce a zero at the input. The output must affect the input through
some direct feedback path, i.e., the feedback path solely contains blocks
with direct feedthrough. This enables you to specify algebraic equations
for index 1 differential/algebraic systems (DAEs).

By default, the Initial guess parameter is zero. You can improve the
efficiency of the algebraic loop solver by providing an Initial guess for
the algebraic state z that is close to the solution value.

For example, the following model solves these equations.

z2 + z1 = 1
z2 - z1 = 1

The solution is z2 = 1, z1 = 0, as the Display blocks show.

2-9

Algebraic Constraint

Data Type
Support

The Algebraic Constraint block accepts and outputs real values of type
double.

Parameters
and
Dialog
Box

Initial guess
An initial guess for the solution value. The default is 0.

Characteristics Direct Feedthrough Yes

Sample Time Inherited from driving block

Scalar Expansion No

Dimensionalized Yes

Zero-Crossing No

2-10

Assertion

Purpose Check whether signal is nonzero

Library Model Verification

Description The Assertion block checks whether any of the elements of the signal at
its input is nonzero. If all elements are nonzero, the block does nothing.
If any element is zero, the block halts the simulation, by default, and
displays an error message. The block’s parameter dialog box allows
you to

• Specify that the block should display an error message when the
assertion fails but allow the simulation to continue.

• Specify an M-expression to be evaluated when the assertion fails.

• Enable or disable the assertion.

You can also use the Model Verification block enabling setting on
the Data Validity diagnostics pane of the Configuration Parameters
dialog box to enable or disable all Assertion blocks in a model.

The Assertion block and its companion blocks in the Model Verification
library are intended to facilitate creation of self-validating models. For
example, you can use model verification blocks to test that signals do
not exceed specified limits during simulation. When you are satisfied
that a model is correct, you can turn error checking off by disabling the
verification blocks. You do not have to physically remove them from the
model. If you need to modify a model, you can temporarily turn the
verification blocks back on to ensure that your changes do not break
the model.

Creating Pause Blocks

You can use the Simulation callback when assertion fails field to
create an Assertion block that pauses the simulation when the block’s
input signal is zero. To create a pause block:

1 Connect the Assertion block to a signal whose value becomes zero at
the point in time when the simulation should be paused.

2-11

Assertion

2 Open the Assertion block’s Block Parameters dialog box.

• Enter the following commands into the Simulation callback
when assertion fails field:

set_param(bdroot,'SimulationCommand','pause'),
disp(sprintf('\nSimulation paused.'))

• Uncheck the Stop simulation when assertion fails option.

3 Click OK to apply the changes and close this dialog box.

The following model shows how to use an Assertion block configured as
described above, in conjunction with the Relational Operator block, to
control when the simulation pauses. This model pauses the simulation
when the simulation time is equal to 5.

When the simulation pauses, the following message displays at the
MATLAB command line.

Simulation paused
Warning: Assertion detected in 'assertion_as_pause/

Assertion Used to Pause Simulation' at time 5.000000.

Data Type
Support

The Assertion block accepts input signals of any dimensions and any
data type supported by Simulink, including fixed-point data types.

For a discussion on the data types supported by Simulink, see “Data
Types Supported by Simulink” in the “Working with Data” chapter of
the Using Simulink documentation.

2-12

Assertion

Parameters
and
Dialog
Box

Enable Assertion
Unchecking this option disables the Assertion block, that is,
causes the model to behave as if the Assertion block did not exist.
The Model Verification block enabling setting on the Data
Validity diagnostics pane of the Configuration Parameters
dialog box allows you to enable or disable all Assertion blocks in a
model regardless of the setting of this option.

Simulation callback when assertion fails
An M-expression to be evaluated when the assertion fails.

Stop simulation when assertion fails
If checked, this option causes the Assertion block to halt the
simulation when the block’s input is zero and display an error
message in the Simulation Diagnostics viewer. Otherwise, the
block displays a warning message in the MATLAB® Command
Window and continues the simulation.

2-13

Assertion

Sample time (-1 for inherited)
Specify the time interval between samples. To inherit the sample
time, set this parameter to -1. See “Specifying Sample Time”
in the “How Simulink Works” chapter of the Using Simulink
documentation.

Characteristics Direct Feedthrough No

Sample Time Inherited from driving block

Scalar Expansion No

Dimensionalized Yes

Zero Crossing No

2-14

Assignment

Purpose Assign values to specified elements of signal

Library Math Operations

Description The Assignment block assigns values to specified elements of the signal.
You can specify the indices of the elements to be assigned values either
by entering the indices in the block’s dialog box or by connecting an
external indices source or sources to the block. The signal at the block’s
data port, labeled U2 in most modes, specifies values to be assigned to
Y. The block replaces the specified elements of Y with elements from the
data signal, leaving unassigned elements unchanged from their initial
values. If the assignment indices source is internal or is external and
the Initialize using input option is selected, the Assignment block
uses the signal at the block’s initialization port, labeled U1, to initialize
the elements of the output signal before assigning them values from U2.

Note The Assignment block’s data port is labeled U2 in all modes except
external mode with no initialization, in which case the port is labeled
U1 as there is no initialization port. The rest of this section refers to
the data port as U2 in order to avoid unnecessarily complicating the
explanation of the block’s usage.

You can use the block to assign values to vector, or matrix signals.

Assigning Values to a Vector Signal

To assign values to a scalar or vector signal, set the block’s Input
Type parameter to Vector. The block’s dialog box displays a Source
of element indices parameter. You can specify the indices source as
Internal or External. If you select Internal, the block dialog box
displays an Elements field. Use this field to enter the element indices.
If you specify External as the source of element indices, the block
displays an input port named E. Connect an external index source to
this port. Use Index mode to specify whether 0 or 1 indicates the first
element of Y.

2-15

Assignment

The index source can specify any of the following values as indices:

• -1 (internal source only)

Assigns every element of U2 to the corresponding element of Y.

• Index of a single element specified as a nonnegative integer

If Use index as starting value option is not selected, the block
assigns U2, which must be a scalar, to the specified element of Y.

If Use index as starting value is selected, the block assigns U2 to a
range of elements of Y, starting at the specified index. For example,
suppose that U1 is a 5-element vector, U2 is a 3-element vector, the
index mode is one-based, and the starting index is 3. In this case, the
Assignment block assigns U2(1:3) to Y(3:5).

• A set of indices specified as a vector

Assigns U2 to a specified set of elements of Y.

The width of the values signal connected to U2 must be the same as
the width of the indices vector. For example, if the indices vector
contains two indices, U2 must be a two-element vector of values. The
block assigns the first element of U2 to the element of Y specified by
the first index, the second element of U2 to the Y element specified
by the second index, and so on.

If U2 is a scalar, it is assigned to the specified elements of the output
vector.

Assigning Values to a Matrix Signal

To assign values to a matrix signal, set the Input Type parameter
to Matrix. If you specify the Input Type of the Assignment block
as Matrix, the block’s dialog box displays a Source of row indices
parameter and a Source of column indices parameter. You can
specify either or both of these parameters as Internal or External. If
you specify the row and/or column index source as internal, the block
displays a Rows and/or Columns field. Enter the row or column
indices of the elements of Y to be assigned values into the corresponding

2-16

Assignment

field. If you specify the row and/or column index source as External, the
block displays an input port labeled R and/or an input port labeled C.
Connect an external source of indices to each indices port.

A row or column indices source can have any of the following values:

• -1 (internal source only)

Specifies all rows or columns of Y.

• Single row or column index value

If Use index as starting value option is not selected, the block
assigns values to the specified row or column. If Use index as
starting value is selected, the block assigns values from U2 to a
range of rows or columns of Y, starting at the specified row or column
index. For example, suppose that U1 is a 5 x 5 matrix, U2 is a 3 x
3 matrix, the indexing mode is one-based, and the starting row and
column indices are both 3. In this case, the Assignment block assigns
U2(1:3, 1:3) to Y(3:5,3:5).

• Vector of row or column indices

Specifies a set of rows or columns of Y.

The block assigns values from U2 to the specified elements of Y in
column-major order. In particular, the block assigns the first element
of the first row of U2 to the first specified element in the first specified
row in Y. It assigns the second element of the first row of U2 to the
second specified element of the first specified row of Y, and so on.

To enable all specified elements to be assigned values, U2 must be an
N-by-M matrix where N is the width of the row indices vector and M
is the width of the column indices vector. For example, suppose that
you specify a vector of row indices of size 2 and a vector of column
indices of size 4. Then U2 must be a 2-by-4 matrix signal.

When determining the dimensions of U2, count a scalar index as a
vector of size 1 and -1 as equivalent to a vector of indices of the same
width as the row or dimension size of Y. For example, suppose your

2-17

Assignment

row and column index sources are a scalar and a two-element vector,
respectively. Then U2 must by a 1-by-2 matrix.

If U2 is a scalar, the Assignment block assigns the scalar to the
specified elements of the output signal.

Note An Assignment block whose Input type is Matrix accepts
only matrix signals at its U1 port and only a matrix signal or a
one-element vector signal at its U2 port. Simulink displays an
error dialog box if you update or simulate a model that violates this
constraint.

Iterated Assignment

You can use the Assignment block to assign values computed in a For or
While Iterator loop to successive elements of a vector or matrix signal in
a single time step. For example, the following model uses a For Iterator
block to create a vector signal each of whose elements equals 3*i where i
is the index of the element.

Iterated assignment uses an iterator (For or While) block to generate
the indices required by the Assignment block. On the first iteration of
an iterated assignment, the Assignment block copies the first input
(U1) to the output (Y) and assigns the second input (U2) to the output

2-18

Assignment

Y(E0). On successive iterations, the Assignment block simply assigns
the current value of U2 to Y(Ei), i.e., without first copying U1 to Y. All of
this occurs in a single time step.

Data Type
Support

The data and initialization ports of the Assignment block accept signals
of any data type supported by Simulink, including fixed-point data
types. The external indices port accepts any data type, except boolean
and fixed-point data types.

For a discussion on the data types supported by Simulink, see “Data
Types Supported by Simulink” in the “Working with Data” chapter of
the Using Simulink documentation.

2-19

Assignment

Parameters
and
Dialog
Box

2-20

Assignment

Input Type
You can select either Vector or Matrix input. If you select Vector,
the Source of element indices field appears. If you select
Matrix, the Source of row indices and Source of column
indices fields appear.

Index mode
Specifies whether the index corresponding to the first element of
a vector or the first row or column of a matrix is 0 or 1.

Use index as starting value
Specifies that the value in the Elements (or Row or Column) field
is the starting index of a range of elements (or rows or columns).

Source of element indices
You can specify either Internal (the default) or External as the
source for the indices of the elements to be assigned values. If
you select Internal, the block dialog box displays an Elements
field (see following). Use this field to enter the element indices. If
you select External, the block displays an input port labeled E.
Connect the external index source to this port.

Elements
This field appears only if you selected Internal for the Source
of element indices field. It specifies the indices of elements in
Y to be assigned values from elements in U2. The value of this
parameter can be -1, a nonnegative integer specifying a single
index, or a vector of nonnegative integers specifying a set of
indices (e.g., [1,3,5,6]).

Source of row indices
Either Internal (the default) or External. If you select Internal,
the Rows field appears. Enter the indices of the rows to be
assigned values in this field. If you select External, the block
displays an input port labeled R. Connect an external source of
row indices to this port.

2-21

Assignment

Rows
This field appears only if you select Internal for the Source of
row indices field. Valid values are -1 (all rows), a single row
index, or a vector of row indices (e.g., [1,3,5,6]).

Source of column indices
Either Internal (the default) or External. If you select Internal,
the Columns field appears. Enter the indices of the columns to
be assigned values in this field. If you select External, the block
displays an input port labeled C. Connect an external source of
column indices to this port.

Columns
This field appears only if you selected internal for the Source of
column indices field. Valid values are -1 (all columns), a single
column index, or a vector of column indices (e.g., [1,3,5,6]).

Output (Y)
This control appears only if the source of assignment indices
is external or, in the case of matrix assignment, the source of
either the row or column indices, or both, is external. The options
are Initialize using input (U1) (the default) or Specify
required dimensions. The first option causes the Assignment
block to display an initialization port labeled U1 and to use
the signal at this port to initialize the output signal (Y) before
assigning it values from the data port (U2) as specified by the
external indices signal (E). The second option does not initialize Y
before assigning values from the block’s data input port (labeled
U1 in this case) to it. This option requires that the block’s U1 and
E inputs assign values to every element of Y. Further, it requires
that you specify the dimensions of the output signal (see next
control).

Output dimensions
This control appears only if you specify the Specify required
dimensions option of the Output (Y) control. It specifies the
dimensions of the Assignment block’s output signal.

2-22

Assignment

Diagnostic if not all required dimensions are populated
This control appears only if you specify the Specify required
dimensions option of the Output (Y) control. It specifies the
diagnostic action that Simulink should take if the block’s data
(U1) and external indices (E) inputs do not assign a value to every
element of the block’s output (Y). The options are to display an
error message and halt the simulation (Error), display a warning
message (Warning) and continue the simulation, or continue the
simulation (None). If you choose Warning or None, the values of
the unassigned elements of the output are undefined.

Sample time (-1 for inherited)
Specify the time interval between samples. To inherit the sample
time, set this parameter to -1. See "Specifying Sample Time"
in the “How Simulink Works” chapter of the Using Simulink
documentation.

Characteristics Direct Feedthrough Yes

Sample Time Inherited from driving block

Scalar Expansion Yes

Dimensionalized Yes

Zero Crossing No

2-23

Backlash

Purpose Model behavior of system with play

Library Discontinuities

Description The Backlash block implements a system in which a change in input
causes an equal change in output. However, when the input changes
direction, an initial change in input has no effect on the output. The
amount of side-to-side play in the system is referred to as the deadband.
The deadband is centered about the output. This figure shows the
block’s initial state, with the default deadband width of 1 and initial
output of 0.

A system with play can be in one of three modes:

• Disengaged - In this mode, the input does not drive the output and
the output remains constant.

• Engaged in a positive direction - In this mode, the input is increasing
(has a positive slope) and the output is equal to the input minus half
the deadband width.

• Engaged in a negative direction - In this mode, the input is decreasing
(has a negative slope) and the output is equal to the input plus half
the deadband width.

If the initial input is outside the deadband, the Initial output
parameter value determines whether the block is engaged in a positive
or negative direction, and the output at the start of the simulation is
the input plus or minus half the deadband width.

For example, the Backlash block can be used to model the meshing of
two gears. The input and output are both shafts with a gear on one
end, and the output shaft is driven by the input shaft. Extra space

2-24

Backlash

between the gear teeth introduces play. The width of this spacing is the
Deadband width parameter. If the system is disengaged initially,
the output (the position of the driven gear) is defined by the Initial
output parameter.

The following figures illustrate the block’s operation when the initial
input is within the deadband. The first figure shows the relationship
between the input and the output while the system is in disengaged
mode (and the default parameter values are not changed).

The next figure shows the state of the block when the input has reached
the end of the deadband and engaged the output. The output remains
at its previous value.

The final figure shows how a change in input affects the output while
they are engaged.

If the input reverses its direction, it disengages from the output. The
output remains constant until the input either reaches the opposite end
of the deadband or reverses its direction again and engages at the same
end of the deadband. Now, as before, movement in the input causes
equal movement in the output.

2-25

Backlash

For example, if the deadband width is 2 and the initial output is 5, the
output, y, at the start of the simulation is as follows:

• 5 if the input, u, is between 4 and 6

• u + 1 if u < 4

• u - 1 if u > 6

This sample model and the plot that follows it show the effect of a sine
wave passing through a Backlash block.

The Backlash block parameters are unchanged from their default
values (the deadband width is 1 and the initial output is 0). Notice in
the plotted output following that the Backlash block output is zero until
the input reaches the end of the deadband (at 0.5). Now the input and
output are engaged and the output moves as the input does until the
input changes direction (at 1.0). When the input reaches 0, it again
engages the output at the opposite end of the deadband.

2-26

Backlash

Data Type
Support

The Backlash block accepts and outputs real values of single, double,
and built-in integer data types.

2-27

Backlash

Parameters
and
Dialog
Box

Deadband width
Specify the width of the deadband. The default is 1.

Initial output
Specify the initial output value. The default value is 0. This
parameter is tunable. Simulink does not allow the initial output
of this block to be inf or NaN.

Enable zero-crossing detection
Select to enable use of zero-crossing detection to detect
engagement with lower and upper thresholds. For more
information, see “Zero-Crossing Detection” in the “How Simulink
Works” chapter of the Using Simulink documentation.

Sample time (-1 for inherited)
Specify the time interval between samples. To inherit the sample
time, set this parameter to -1. See “Specifying Sample Time”

2-28

Backlash

in the “How Simulink Works” chapter of the Using Simulink
documentation.

Characteristics Direct Feedthrough Yes

Sample Time Specified in the Sample time parameter

Scalar Expansion Yes

Dimensionalized Yes

Zero Crossing Yes, if you select Enable zero crossing
detection

2-29

Bad Link

Purpose Indicate unresolved reference to library block

Description This block indicates an unresolved reference to a library block (see
“Creating a Library Link”). You can use this block’s parameter dialog
box to fix the reference to point to the actual location of the library block.

Parameters
and
Dialog
Box

Source block
Path of the library block that this link represents. To fix a bad
link, edit this field to reflect the actual path of the library block.
Then select Apply or OK to apply the fix and close the dialog box.

Source type
Type of library block that this link represents.

2-30

Band-Limited White Noise

Purpose Introduce white noise into continuous system

Library Sources

Description The Band-Limited White Noise block generates normally distributed
random numbers that are suitable for use in continuous or hybrid
systems.

The primary difference between this block and the Random Number
block is that the Band-Limited White Noise block produces output at a
specific sample rate, which is related to the correlation time of the noise.

Theoretically, continuous white noise has a correlation time of 0, a flat
power spectral density (PSD), and a covariance of infinity. In practice,
physical systems are never disturbed by white noise, although white
noise is a useful theoretical approximation when the noise disturbance
has a correlation time that is very small relative to the natural
bandwidth of the system.

In Simulink, you can simulate the effect of white noise by using a
random sequence with a correlation time much smaller than the
shortest time constant of the system. The Band-Limited White Noise
block produces such a sequence. The correlation time of the noise is the
sample rate of the block. For accurate simulations, use a correlation
time much smaller than the fastest dynamics of the system. You can get
good results by specifying

where fmax is the bandwidth of the system in rad/sec.

The Algorithm Used in the Block Implementation

To produce the correct intensity of this noise, the covariance of the noise
is scaled to reflect the implicit conversion from a continuous PSD to a
discrete noise covariance. The appropriate scale factor is 1/tc, where
tc is the correlation time of the noise. This scaling ensures that the
response of a continuous system to the approximate white noise has the
same covariance as the system would have to true white noise. Because

2-31

Band-Limited White Noise

of this scaling, the covariance of the signal from the Band-Limited
White Noise block is not the same as the Noise power (intensity)
dialog box parameter. This parameter is actually the height of the
PSD of the white noise. While the covariance of true white noise is
infinite, the approximation used in this block has the property that the
covariance of the block output is the Noise Power divided by tc.

Data Type
Support

The Band-Limited White Noise block outputs real values of type double.

Parameters
and
Dialog
Box

Opening this dialog box causes a running simulation to pause. See
“Changing Source Block Parameters During Simulation” in the
“Working with Blocks” chapter of the Using Simulink documentation.

2-32

Band-Limited White Noise

Noise power
The height of the PSD of the white noise. The default value is 0.1.

Sample time
The correlation time of the noise. The default value is 0.1. See
“Specifying Sample Time” in the “How Simulink Works” chapter
of the Using Simulink documentation.

Seed
The starting seed for the random number generator. The default
value is 23341.

Interpret vector parameters as 1-D
Output a 1-D array if the block’s parameters are vectors.
Otherwise, output a 2-D array one of whose dimensions is 1.
See “Determining the Output Dimensions of Source Blocks”
in the “Working with Signals” chapter of the Using Simulink
documentation.

Characteristics Sample Time Specified in the Sample time parameter

Scalar Expansion Yes, of Noise power and Seed
parameters and output

Dimensionalized Yes

Zero Crossing No

2-33

Bias

Purpose Add bias to input

Library Math Operations

Description The Bias block adds a bias, or offset, to the input signal according to

where U is the block input and Y is the output.

Data Type
Support

The Bias block accepts and outputs real or complex values of any data
type supported by Simulink, except Boolean. The Bias block supports
fixed-point data types.

For a discussion on the data types supported by Simulink, see “Data
Types Supported by Simulink” in the “Working with Data” chapter of
the Using Simulink documentation.

Parameters
and
Dialog
Box

Bias
Specify the value of the offset to add to the input signal.

2-34

Bias

Saturate on integer overflow
If the input (and hence the output) is an integer data type (for
example, int8) and the data type cannot accommodate the
output signal, selecting this option causes the block to output the
maximum value allowed by the data type. Otherwise, in this case,
the block outputs the result of using twos-complement arithmetic
to add the input to the output, i.e., the value is the result of
adding the bias to the input modulo the maximum representable
value of the data type.

Characteristics Direct Feedthrough Yes

Sample Time Inherited from the driving block

Scalar Expansion Yes

States 0

Dimensionalized Yes

Zero Crossing No

2-35

Bit Clear

Purpose Set specified bit of stored integer to zero

Library Logic and Bit Operations

Description The Bit Clear block sets the specified bit, given by its index, of the
stored integer to zero. Scaling is ignored.

You can specify the bit to be set to zero with the Index of bit parameter,
where bit zero is the least significant bit.

Data Type
Support

The Bit Clear block supports Simulink integer, fixed-point, and Boolean
data types. True floating-point data types are not supported.

Parameters
and
Dialog
Box

Index of bit
Index of bit where bit 0 is the least significant bit.

Examples If the Bit Clear block is turned on for bit 2, bit 2 is set to 0. A vector of
constants 2.^[0 1 2 3 4] is represented in binary as [00001 00010
00100 01000 10000]. With bit 2 set to 0, the result is [00001 00010
00000 01000 10000], which is represented in decimal as [1 2 0 8 16].

2-36

Bit Clear

Characteristics Direct Feedthrough Yes

Scalar Expansion Yes

See Also Bit Set

2-37

Bit Set

Purpose Set specified bit of stored integer to one

Library Logic and Bit Operations

Description The Bit Set block sets the specified bit of the stored integer to one.
Scaling is ignored.

You can specify the bit to be set to one with the Index of bit parameter,
where bit zero is the least significant bit.

Data Type
Support

The Bit Set block supports Simulink integer, fixed-point, and Boolean
data types. True floating-point data types are not supported.

Parameters
and
Dialog
Box

Index of bit
Index of bit where bit 0 is the least significant bit.

Examples If the Bit Set block is turned on for bit 2, bit 2 is set to 1. A vector of
constants 2.^[0 1 2 3 4] is represented in binary as [00001 00010
00100 01000 10000]. With bit 2 set to 1, the result is [00101 00110
00100 01100 10100], which is represented in decimal as [5 6 4 12 20].

2-38

Bit Set

Characteristics Direct Feedthrough Yes

Scalar Expansion Yes

See Also Bit Clear

2-39

Bitwise Operator

Purpose Perform specified bitwise operation on inputs

Library Logic and Bit Operations

Description The Bitwise Operator block performs the specified bitwise operation
on its operands.

Unlike the logic operations performed by the Logical Operator block,
bitwise operations treat the operands as a vector of bits rather than
a single number. You select the bitwise Boolean operation from
theOperator parameter list. The supported operations are given below.

Operation Description

AND TRUE if the corresponding bits are all TRUE

OR TRUE if at least one of the corresponding bits is
TRUE

NAND TRUE if at least one of the corresponding bits is
FALSE

NOR TRUE if no corresponding bits are TRUE

XOR TRUE if an odd number of corresponding bits are
TRUE

NOT TRUE if the input is FALSE (available only for
single input)

The Bitwise Operator block does not support shift operations. For shift
operations, see the Shift Arithmetic block.

The size of the output of the Bitwise Operator block depends on the
number of inputs, their vector size, and the selected operator:

• The NOT operator accepts only one input, which can be a scalar or
a vector. If the input is a vector, the output is a vector of the same
size containing the bitwise logical complements of the input vector
elements.

2-40

Bitwise Operator

• For a single vector input, the block applies the operation (except the
NOT operator) to all elements of the vector. If a bit mask is not
specified, then the output is a scalar. If a bit mask is specified, then
the output is a vector.

• For two or more inputs, the block performs the operation between all
of the inputs. If the inputs are vectors, the operation is performed
between corresponding elements of the vectors to produce a vector
output.

When configured as a multi-input XOR gate, this block performs an
addition- modulo-two operation as mandated by the IEEE Standard
for Logic Elements.

If you do not select the Use bit mask check box, then the block can
accept multiple inputs. You select the number of input ports from the
Number of input ports parameter. The input data types must be
identical.

If you select the Use bit mask check box, then a single input is
associated with the bit mask you specify from the Bit Mask parameter.
You specify the bit mask using any valid MATLAB expression. For
example, you can specify the bit mask 00100101 as 2^5+2^2+2^0.
Alternatively, you can use strings to specify a hexadecimal bit mask
such as {'FE73','12AC'}. If the bit mask is larger than the input
signal data type, then it is ignored.

Note The output data type, which is inherited from the driving block,
should represent zero exactly. Data types that satisfy this condition
include signed and unsigned integers and any floating-point data type.

The Treat mask as parameter list controls how the mask is treated.
The possible values are Real World Value and Stored Integer. In
terms of the general encoding scheme described in the “Scaling” section
of the Simulink Fixed Point documentation, Real World Value treats

2-41

Bitwise Operator

the mask as V = SQ + B where S is the slope and B is the bias. Stored
Integer treats the mask as a stored integer, Q.

You can use the bit mask to perform a bit set or a bit clear on the input.
To perform a bit set, set the Operator parameter list to OR and create
a bit mask with a 1 for each corresponding input bit that you want to
set to 1. To perform a bit clear, set the Operator parameter list to
AND and create a bit mask with a 0 for each corresponding input bit
that you want to set to 0.

For example, suppose you want to perform a bit set on the fourth
bit of an 8-bit input vector. The bit mask would be 00010000, which
you can specify as 2^4 in the Bit mask parameter. To perform a
bit clear, the bit mask would be 11101111, which you can specify as
2^7+2^6+2^5+2^3+2^2+2^1+2^0 in the Bit mask parameter.

Data Type
Support

The Bitwise Operator block supports Simulink integer, fixed-point, and
Boolean data types. The block does not support true floating-point
data types.

2-42

Bitwise Operator

Parameters
and
Dialog
Box

Operator
The bitwise logical operator associated with the specified
operands.

Use bit mask
Specify if the bit mask is used (single input only).

Number of input ports
The number of inputs.

Bit Mask
The bit mask to associate with a single input. The Bit Mask
parameter is converted from a double to the input data type
offline using round-to-nearest and saturation.

Treat mask as
Treat the mask as a real-world value or as a stored integer.

2-43

Bitwise Operator

Examples To help you understand the Bitwise Operator block logic operations,
consider the fixed-point model shown below.

The Constant blocks are configured to output an 8-bit unsigned integer
(uint(8)). The results for all logic operations are shown below.

Operation Binary Value Decimal Value

AND 00101000 40

OR 11111101 253

NAND 11010111 215

NOR 00000010 2

XOR 11111000 248

NOT N/A N/A

Characteristics Direct Feedthrough No

Scalar Expansion Yes, of inputs

2-44

Bus Assignment

Purpose Assign values to specified elements of bus

Library Signal Routing

Description The Bus Assignment block assigns values, specified by signals
connected to its assignment (:=) input ports, to specified elements of
the bus connected to its Bus input port. Use the block’s dialog box to
specify the bus elements to be assigned values. The block displays an
assignment input port for each bus element to be assigned a signal. The
signal connected to the assignment port must have the same structure
(i.e., vector, matrix, bus), data type, and numeric (i.e., real or complex)
type as the bus element to which it corresponds.

Note If an associated bus object (see Bus Creator and Simulink.Bus)
defines the bus to be assigned values, all of the assignment signals
must have the same sample time, even if the elements of the bus object
associated with the bus specify inherited sample times.

Data Type
Support

The bus input port of the Bus Assignment block accepts and outputs real
or complex values of any data type supported by Simulink, including
fixed-point data types. The assignment input ports accept the same
data and numeric types as the bus elements to which they correspond.

For a discussion on the data types supported by Simulink, see “Data
Types Supported by Simulink” in the “Working with Data” chapter of
the Using Simulink documentation.

2-45

Bus Assignment

Parameters
and
Dialog
Box

Signals in the bus
Displays the names of the signals contained by the bus at the
block’s Bus input port. Click any item in the list to select it. To
find the source of the selected signal, click the adjacent Find
button. Simulink opens the subsystem containing the signal
source, if necessary, and highlights the source’s icon. Use the
Select>> button to move the currently selected signal into the
adjacent list of signals to be assigned values (see Signals that
are being assigned below). To refresh the display (e.g., to reflect
modifications to the bus connected to the block), click the adjacent
Refresh button.

Signals that are being assigned
Lists the names of bus elements to be assigned values. This block
displays an assignment input port for each bus element in this
list. The label of the corresponding input port contains the name
of the element. You can order the signals by using the Up, Down,

2-46

Bus Assignment

and Remove buttons. Port connectivity is maintained when the
signal order is changed.

Three question marks (???) before the name of a bus element
indicate that the input bus no longer contains an element of
that name, for example, because the bus has changed since the
last time you refreshed the Bus Assignment block’s input and
bus element assignment lists. You can fix the problem either by
modifying the bus to include a signal of the specified name or by
removing the name from the list of bus elements to be assigned
values.

2-47

Bus Creator

Purpose Create signal bus

Library Signal Routing

Description The Bus Creator block combines a set of signals into a bus, i.e., a group
of signals represented by a single line in a block diagram. The Bus
Creator block, when used in conjunction with the Bus Selector block,
allows you to reduce the number of lines required to route signals from
one part of a diagram to another. This makes your diagram easier to
understand.

To bundle a group of signals with a Bus Creator block, set the block’s
Number of inputs parameter to the number of signals in the group.
The block displays the number of ports that you specify. Connect the
signals to be grouped to the resulting input ports. The signals in the
bus will be order from the top (or left) input port to the bottom (or right)
input port. You can connect any type of signal to the inputs, including
other bus signals. To ungroup the signals, connect the block’s output
port to a Bus Selector port.

Note Simulink hides the name of a Bus Creator block when you copy it
from the Simulink library to a model.

Naming Signals

The Bus Creator block assigns a name to each signal on the bus that
it creates. This allows you to refer to signals by name when searching
for their sources (see “Browsing Bus Signals” on page 2-50) or selecting
signals for connection to other blocks. The block offers two bus signal
naming options. You can specify that each signal on the bus inherit the
name of the signal connected to the bus (the default) or that each input
signal must have a specific name.

To specify that bus signals inherit their names from input ports, select
Inherit bus signal names from input ports from the list box on

2-48

Bus Creator

the block’s parameter dialog box. The names of the inherited bus
signals appear in the Signals in bus list box.

The Bus Creator block generates names for bus signals whose
corresponding inputs do not have names. The names are of the form
signaln where n is the number of the port to which the input signal is
connected.

You can change the name of any signal by editing its name on the block
diagram or in the Signal Properties dialog box. If you change a name
in this way while the Bus Creator block’s dialog box is open, you must
close and reopen the dialog box or click the Refresh button next to the
Signals in bus list to update the name in the dialog box.

To specify that the bus inputs must have specific names, select Require
input signal names to match signals below from the list box on
the block’s parameter dialog box. The block’s parameter dialog box
displays the names of the signals currently connected to its inputs or
a generated name (for example, signal2) for an anonymous input. You
can now use the parameter dialog box to change the required names of
the block’s inputs. To change the required signal name, select the signal
in the Signals in bus list. The selected signal’s name appears in the
Rename selected signal field. Edit the name in the field and click the
parameter dialog box’s Apply button to apply your edits or the OK
button to apply the edits and close the dialog box.

2-49

Bus Creator

Browsing Bus Signals

The Signals in bus list on a Bus Creator block’s parameter dialog
displays a list of the signals entering the block. A plus sign (+) next to
a signal indicates that the signal is itself a bus. You can display its
contents by clicking the plus sign. If the expanded input includes bus
signals, plus signs appear next to the names of those bus signals. You
can expand them as well. In this way, you can view all signals entering
the block, including those entering via buses. To find the source of any
signal entering the block, select the signal in the Signals in bus list
and click the adjacent Find button. Simulink opens the subsystem
containing the signal source, if necessary, and highlights the source’s
icon.

Data Type
Support

The Bus Creator block accepts and outputs real or complex values of
any data type supported by Simulink, including fixed-point data types.

For a discussion on the data types supported by Simulink, refer to “Data
Types Supported by Simulink” in the “Working with Data” chapter of
the Using Simulink documentation.

2-50

Bus Creator

Parameters
and
Dialog
Box

Signal naming options
Select Inherit bus signal names from input ports to assign
input signal names to the corresponding bus signals. Select
Require input signal names to match signals below to
specify that inputs must have the names listed in the Signals in

2-51

Bus Creator

bus list. Selecting this option enables the Rename selected
signal field.

Number of inputs
Specifies the number of input ports on this block.

Signals in bus
The Signals in bus list box shows the signals in the output bus.
A plus sign (+) next to a signal name indicates that the signal
is itself a bus. Click the plus sign to display the subsidiary bus
signals. Click the Refresh button to update the list after editing
the name of an input signal. Click the Find button to highlight
the source of the currently selected signal.

Rename selected signal
Lists the name of the signal currently selected in the Signals in
bus list when you select the Require input signal names to
match signals below option. Edit this field to change the name
of the currently selected signal.

Specify properties via bus object
Select this option to use a bus object to define the structure of
the bus created by this block (see “Working with Data Objects”
in the “Working with Data” chapter of the Using Simulink
documentation and the Simulink.Bus class in the online Simulink
reference to learn how to create bus objects).

Bus object
This option is enabled only if you select the Specify properties
via bus object option. It specifies the name of bus object used
to define the structure of the bus created by this block. At
the beginning of a simulation or when you update the model’s
diagram, Simulink checks whether the signals connected to this
Bus Creator block have the specified structure. If not, Simulink
displays an error message.

2-52

Bus Creator

Note If you select this option, all of the signals entering the
Bus Creator block must have the same sample time, even if the
elements of the associated bus object specify inherited sample
times.

Output as nonvirtual bus
This option is enabled only if you select the Specify properties
via bus object option. If this option is selected, this block outputs
a nonvirtual bus; otherwise, it outputs a virtual bus (see “Virtual
Versus Nonvirtual Buses” in the “Working with Signals” chapter
of the Using Simulink documentation). Select this option if you
want code generated from this model to use a C structure to define
the structure of the bus signal output by this block.

2-53

Bus Selector

Purpose Select signals from incoming bus

Library Signal Routing

Description The Bus Selector block outputs a specified subset of the elements of
the bus at its input. The block can output the selected elements as
multiple standalone signals or as elements of a new bus. When selecting
elements from the bus, each element is output from a separate port
from top to bottom, or left to right, on the block.

Note Simulink hides the name of a Bus Selector block when you copy it
from the Simulink library to a model.

Data Type
Support

A Bus Selector block accepts and outputs real or complex values of any
data type supported by Simulink, including fixed-point data types.

For a discussion on the data types supported by Simulink, see “Data
Types Supported by Simulink” in the “Working with Data” chapter of
the Using Simulink documentation.

2-54

Bus Selector

Parameters
and
Dialog
Box

Signals in the bus
The Signals in the bus list shows the signals in the input bus.
Use the Select>> button to select output signals. To find the
source of any signal entering the block, select the signal in the
Signals in the bus list and click the adjacent Find button.
Simulink opens the subsystem containing the signal source, if
necessary, and highlights the source’s icon. To refresh the display
(e.g., to reflect modifications to the bus connected to the block),
click the adjacent Refresh button.

Selected signals
The Selected signals list box shows the output signals. You can
order the signals by using the Up, Down, and Remove buttons.
Port connectivity is maintained when the signal order is changed.

2-55

Bus Selector

If an output signal listed in the Selected signals list box is not
an input to the Bus Selector block, the signal name is preceded
by three question marks (???).

Output as bus
If selected, this option causes the block to output the selected
elements as a bus. Otherwise, the block outputs the elements as
standalone signals, each from its own output port and labeled
with the corresponding element’s name.

2-56

Check Discrete Gradient

Purpose Check that absolute value of difference between successive samples of
discrete signal is less than upper bound

Library Model Verification

Description The Check Discrete Gradient block checks each signal element at its
input to determine whether the absolute value of the difference between
successive samples of the element is less than an upper bound. The
block’s parameter dialog box allows you to specify the value of the upper
bound (1 by default). If the verification condition is true, the block does
nothing. Otherwise, the block halts the simulation, by default, and
displays an error message in the Simulation Diagnostics Viewer.

The Model Verification block enabling setting under Debugging on
the Data Validity diagnostics pane of the Configuration Parameters
dialog box lets you enable or disable all model verification blocks,
including Check Discrete Gradient blocks, in a model.

The Check Discrete Gradient block and its companion blocks in
the Model Verification library are intended to facilitate creation of
self-validating models. For example, you can use model verification
blocks to test that signals do not exceed specified limits during
simulation. When you are satisfied that a model is correct, you can
turn error checking off by disabling the verification blocks. You do not
have to physically remove them from the model. If you need to modify
a model, you can temporarily turn the verification blocks back on to
ensure that your changes do not break the model.

Data Type
Support

The Check Discrete Gradient block accepts single, double, int8,
int16, and int32 input signals of any dimensions.

2-57

Check Discrete Gradient

Parameters
and
Dialog
Box

Maximum gradient
Upper bound on the gradient of the discrete input signal.

Enable assertion
Unchecking this option disables the Check Discrete Gradient
block, that is, causes the model to behave as if the block did
not exist. The Model Verification block enabling setting
under Debugging on the Data Validity diagnostics pane of the
Configuration Parameters dialog box allows you to enable or
disable all model verification blocks in a model, including Check
Discrete Gradient blocks, regardless of the setting of this option.

Simulation callback when assertion fails
An M-expression to be evaluated when the assertion fails.

2-58

Check Discrete Gradient

Stop simulation when assertion fails
If checked, this option causes the Check Discrete Gradient block
to halt the simulation when the block’s output is zero and display
an error message in Simulink’s Simulation Diagnostics viewer.
Otherwise, the block displays a warning message in the MATLAB
Command Window and continues the simulation.

Output assertion signal
If checked, this option causes the Check Discrete Gradient block
to output a Boolean signal that is true (1) at each time step if
the assertion succeeds and false (0) if the assertion fails. The
data type of the output signal is Boolean if you have selected
the Implement logic signals as boolean data option on
the Simulation and code generation optimization pane of
Simulink’s Configuration Parameters dialog box. Otherwise
the data type of the output signal is double.

Select icon type
Type of icon used to display this block in a block diagram: either
graphic or text. The graphic option displays a graphical
representation of the assertion condition on the icon. The text
option displays a mathematical expression that represents
the assertion condition. If the icon is too small to display the
expression, the text icon displays an exclamation point. To see the
expression, enlarge the block.

Characteristics Direct Feedthrough No

Sample Time Inherited from driving block

Scalar Expansion No

Dimensionalized Yes

Zero Crossing No

2-59

Check Dynamic Gap

Purpose Check that gap of possibly varying width occurs in range of signal’s
amplitudes

Library Model Verification

Description The Check Dynamic Gap block checks that a gap of possibly varying
width occurs in the range of a signal’s amplitudes. The test signal
is the signal connected to the input labeled sig. The inputs labeled
min and max specify the lower and upper bounds of the dynamic gap,
respectively. If the verification condition is true, the block does nothing.
If not, the block halts the simulation, by default, and displays an error
message.

The Check Dynamic Gap block and its companion blocks in the Model
Verification library are intended to facilitate creation of self-validating
models. For example, you can use model verification blocks to test
that signals do not exceed specified limits during simulation. When
you are satisfied that a model is correct, you can turn error checking
off by disabling the verification blocks. You do not have to physically
remove them from the model. If you need to modify a model, you can
temporarily turn the verification blocks back on to ensure that your
changes do not break the model.

Data Type
Support

The Check Dynamic Gap block accepts input signals of any dimensions
and of any data type supported by Simulink. All three input signals
must have the same dimension and data type. If the inputs are
nonscalar, the block checks each element of the input test signal to the
corresponding elements of the reference signals.

For a discussion on the data types supported by Simulink, see “Data
Types Supported by Simulink” in the “Working with Data” chapter of
the Using Simulink documentation.

2-60

Check Dynamic Gap

Parameters
and
Dialog
Box

Enable assertion
Unchecking this option disables the Check Dynamic Gap block,
that is, causes the model to behave as if the block did not
exist. The Model Verification block enabling setting under
Debugging on the Data Validity diagnostics pane of the
Configuration Parameters dialog box allows you to enable or
disable all model verification blocks in a model, including Check
Dynamic Gap blocks, regardless of the setting of this option.

Simulation callback when assertion fails
An M-expression to be evaluated when the assertion fails.

Stop simulation when assertion fails
If checked, this option causes the Check Dynamic Gap block to
halt the simulation when the block’s output is zero and display
an error message in the Simulation Diagnostics viewer.

2-61

Check Dynamic Gap

Otherwise, the block displays a warning message in the MATLAB
Command Window and continues the simulation.

Output assertion signal
If checked, this option causes the Check Dynamic Gap block
to output a Boolean signal that is true (1) at each time step if
the assertion succeeds and false (0) if the assertion fails. The
data type of the output signal is Boolean if you have selected
the Implement logic signals as boolean data option on the
Simulation and code generation optimization pane of the
Configuration Parameters dialog box. Otherwise the data type
of the output signal is double.

Select icon type
Type of icon used to display this block in a block diagram: either
graphic or text. The graphic option displays a graphical
representation of the assertion condition on the icon. The text
option displays a mathematical expression that represents
the assertion condition. If the icon is too small to display the
expression, the text icon displays an exclamation point. To see the
expression, enlarge the block.

Characteristics Direct Feedthrough No

Sample Time Inherited from driving block

Scalar Expansion No

Dimensionalized Yes

Zero Crossing No

2-62

Check Dynamic Lower Bound

Purpose Check that one signal is always less than another signal

Library Model Verification

Description The Check Dynamic Lower Bound block checks that the amplitude of a
reference signal is less than the amplitude of a test signal at the current
time step. The test signal is the signal connected to the input labeled sig.
If the verification condition is true, the block does nothing. If not, the
block halts the simulation, by default, and displays an error message.

The Check Dynamic Lower Bound block and its companion blocks in
the Model Verification library are intended to facilitate creation of
self-validating models. For example, you can use model verification
blocks to test that signals do not exceed specified limits during
simulation. When you are satisfied that a model is correct, you can
turn error checking off by disabling the verification blocks. You do not
have to physically remove them from the model. If you need to modify
a model, you can temporarily turn the verification blocks back on to
ensure that your changes do not break the model.

Data Type
Support

The Check Dynamic Lower Bound block accepts input signals of any
data type supported by Simulink. The test and the reference signals
must have the same dimensions and data type. If the inputs are
nonscalar, the block checks each element of the input test signal to the
corresponding elements of the reference signal.

For a discussion on the data types supported by Simulink, see “Data
Types Supported by Simulink” in the “Working with Data” chapter of
the Using Simulink documentation.

2-63

Check Dynamic Lower Bound

Parameters
and
Dialog
Box

Enable assertion
Unchecking this option disables the Check Dynamic Lower Bound
block, that is, causes the model to behave as if the block did
not exist. The Model Verification block enabling setting
under Debugging on the Data Validity diagnostics pane of the
Configuration Parameters dialog box allows you to enable or
disable all model verification blocks, including Check Dynamic
Lower Bound blocks, in a model regardless of the setting of this
option.

Simulation callback when assertion fails
An M-expression to be evaluated when the assertion fails.

Stop simulation when assertion fails
If checked, this option causes the Check Dynamic Lower Bound
block to halt the simulation when the block’s output is zero and
display an error message in the Simulation Diagnostics viewer.

2-64

Check Dynamic Lower Bound

Otherwise, the block displays a warning message in the MATLAB
Command Window and continues the simulation.

Output assertion signal
If checked, this option causes the Check Dynamic Lower Bound
block to output a Boolean signal that is true (1) at each time step
if the assertion succeeds and false (0) if the assertion fails. The
data type of the output signal is Boolean if you have selected
the Implement logic signals as boolean data option on the
Simulation and code generation optimization pane of the
Configuration Parameters dialog box. Otherwise the data type
of the output signal is double.

Select icon type
Type of icon used to display this block in a block diagram: either
graphic or text. The graphic option displays a graphical
representation of the assertion condition on the icon. The text
option displays a mathematical expression that represents
the assertion condition. If the icon is too small to display the
expression, the text icon displays an exclamation point. To see the
expression, enlarge the block.

Characteristics Direct Feedthrough No

Sample Time Inherited from driving block

Scalar Expansion No

Dimensionalized Yes

Zero Crossing No

2-65

Check Dynamic Range

Purpose Check that signal falls inside range of amplitudes that varies from time
step to time step

Library Model Verification

Description The Check Dynamic Range block checks that a test signal falls inside a
range of amplitudes at each time step. The width of the range can vary
from time step to time step. The input labeled sig is the test signal. The
inputs labeled min and max are the lower and upper bounds of the valid
range at the current time step. If the verification condition is true, the
block does nothing. If not, the block halts the simulation, by default,
and displays an error message.

The Check Dynamic Range block and its companion blocks in the Model
Verification library are intended to facilitate creation of self-validating
models. For example, you can use model verification blocks to test
that signals do not exceed specified limits during simulation. When
you are satisfied that a model is correct, you can turn error checking
off by disabling the verification blocks. You do not have to physically
remove them from the model. If you need to modify a model, you can
temporarily turn the verification blocks back on to ensure that your
changes do not break the model.

Data Type
Support

The Check Dynamic Range block accepts input signals of any
dimensions and of any data type supported by Simulink. All three input
signals must have the same dimension and data type. If the inputs are
nonscalar, the block checks each element of the input test signal to the
corresponding elements of the reference signals.

For a discussion on the data types supported by Simulink, see “Data
Types Supported by Simulink” in the “Working with Data” chapter of
the Using Simulink documentation.

2-66

Check Dynamic Range

Parameters
and
Dialog
Box

Enable assertion
Unchecking this option disables the Check Dynamic Range
block, that is, causes the model to behave as if the block did
not exist. The Model Verification block enabling setting
under Debugging on the Data Validity diagnostics pane of the
Configuration Parameters dialog box allows you to enable or
disable all model verification blocks in a model, including Check
Dynamic Range blocks, regardless of the setting of this option.

Simulation callback when assertion fails
An M-expression to be evaluated when the assertion fails.

Stop simulation when assertion fails
If checked, this option causes the Check Dynamic Range block to
halt the simulation when the block’s output is zero and display
an error message in the Simulation Diagnostics viewer.

2-67

Check Dynamic Range

Otherwise, the block displays a warning message in the MATLAB
Command Window and continues the simulation.

Output assertion signal
If checked, this option causes the Check Dynamic Range block to
output a Boolean signal that is true (1) at each time step if the
assertion succeeds and false (0) if the assertion fails. The data
type of the output signal is Boolean if you selected the Implement
logic signals as boolean data option on the Simulation
and code generation optimization pane of the Configuration
Parameters dialog box. Otherwise the data type of the output
signal is double.

Select icon type
Type of icon used to display this block in a block diagram: either
graphic or text. The graphic option displays a graphical
representation of the assertion condition on the icon. The text
option displays a mathematical expression that represents
the assertion condition. If the icon is too small to display the
expression, the text icon displays an exclamation point. To see the
expression, enlarge the block.

Characteristics Direct Feedthrough No

Sample Time Inherited from driving block

Scalar Expansion No

Dimensionalized Yes

Zero Crossing No

2-68

Check Dynamic Upper Bound

Purpose Check that one signal is always greater than another signal

Library Model Verification

Description The Check Dynamic Upper Bound block checks that the amplitude of
a reference signal is greater than the amplitude of a test signal at the
current time step. The test signal is the signal connected to the input
labeled sig. If the verification condition is true, the block does nothing.
If not, the block halts the simulation, by default, and displays an error
message.

The Check Dynamic Upper Bound block and its companion blocks in
the Model Verification library are intended to facilitate creation of
self-validating models. For example, you can use model verification
blocks to test that signals do not exceed specified limits during
simulation. When you are satisfied that a model is correct, you can
turn error-checking off by disabling the verification blocks. You do not
have to physically remove them from the model. If you need to modify
a model, you can temporarily turn the verification blocks back on to
ensure that your changes do not break the model.

Data Type
Support

The Check Dynamic Upper Bound block accepts input signals of any
dimensions and of any data type supported by Simulink. The test and
the reference signals must have the same dimensions and data type. If
the inputs are nonscalar, the block compares each element of the input
test signal to the corresponding elements of the reference signal.

For a discussion on the data types supported by Simulink, see “Data
Types Supported by Simulink” in the “Working with Data” chapter of
the Using Simulink documentation.

2-69

Check Dynamic Upper Bound

Parameters
and
Dialog
Box

Enable assertion
Unchecking this option disables the Check Dynamic Upper Bound
block, that is, causes the model to behave as if the block did
not exist. The Model Verification block enabling setting
under Debugging on the Data Validity diagnostics pane of the
Configuration Parameters dialog box allows you to enable or
disable all model verification blocks, including Check Dynamic
Upper Bound blocks, in a model regardless of the setting of this
option.

Simulation callback when assertion fails
An M-expression to be evaluated when the assertion fails.

Stop simulation when assertion fails
If checked, this option causes the Check Dynamic Upper Bound
block to halt the simulation when the block’s output is zero and
display an error message in the Simulation Diagnostics viewer.

2-70

Check Dynamic Upper Bound

Otherwise, the block displays a warning message in the MATLAB
Command Window and continues the simulation.

Output assertion signal
If checked, this option causes the Check Dynamic Upper Bound
block to output a Boolean signal that is true (1) at each time step
if the assertion succeeds and false (0) if the assertion fails. The
data type of the output signal is Boolean if you have selected
the Implement logic signals as boolean data option on the
Simulation and code generation optimization pane of the
Configuration Parameters dialog box. Otherwise the data type
of the output signal is double.

Select icon type
Type of icon used to display this block in a block diagram: either
graphic or text. The graphic option displays a graphical
representation of the assertion condition on the icon. The text
option displays a mathematical expression that represents
the assertion condition. If the icon is too small to display the
expression, the text icon displays an exclamation point. To see the
expression, enlarge the block.

Characteristics Direct Feedthrough No

Sample Time Inherited from driving block

Scalar Expansion No

Dimensionalized Yes

Zero Crossing No

2-71

Check Input Resolution

Purpose Check that input signal has specified resolution

Library Model Verification

Description The Check Input Resolution block checks whether the input signal has
a specified scalar or vector resolution (see Resolution). If the resolution
is a scalar, the input signal must be a multiple of the resolution within
a 10e-3 tolerance. If the resolution is a vector, the input signal must
equal an element of the resolution vector. If the verification condition is
true, the block does nothing. If not, the block halts the simulation, by
default, and displays an error message.

The Check Input Resolution block and its companion blocks in the Model
Verification library are intended to facilitate creation of self-validating
models. For example, you can use model verification blocks to test
that signals do not exceed specified limits during simulation. When
you are satisfied that a model is correct, you can turn error checking
off by disabling the verification blocks. You do not have to physically
remove them from the model. If you need to modify a model, you can
temporarily turn the verification blocks back on to ensure that your
changes do not break the model.

Data Type
Support

The Check Input Resolution block accepts input signals of data type
double and of any dimension. If the input signal is nonscalar, the block
checks the resolution of each element of the input test signal.

For a discussion on the data types supported by Simulink, see “Data
Types Supported by Simulink” in the “Working with Data” chapter of
the Using Simulink documentation.

2-72

Check Input Resolution

Parameters
and
Dialog
Box

Resolution
Resolution that the input signal must have.

Enable assertion
Unchecking this option disables the Check Input Resolution
block, that is, causes the model to behave as if the block did
not exist. The Model Verification block enabling setting
under Debugging on the Data Validity diagnostics pane of the
Configuration Parameters dialog box allows you to enable or
disable all model verification blocks in a model, including Check
Input Resolution blocks, regardless of the setting of this option.

Simulation callback when assertion fails
An M-expression to be evaluated when the assertion fails.

2-73

Check Input Resolution

Stop simulation when assertion fails
If checked, this option causes the Check Input Resolution block to
halt the simulation when the block’s output is zero and display
an error message in the Simulation Diagnostics viewer.
Otherwise, the block displays a warning message in the MATLAB
Command Window and continues the simulation.

Output assertion signal
If checked, this option causes the Check Input Resolution block
to output a Boolean signal that is true (1) at each time step if
the assertion succeeds and false (0) if the assertion fails. The
data type of the output signal is Boolean if you have selected
the Implement logic signals as boolean data option on the
Simulation and code generation optimization pane of the
Configuration Parameters dialog box. Otherwise the data type
of the output signal is double.

Characteristics Direct Feedthrough No

Sample Time Inherited from driving block

Scalar Expansion No

Dimensionalized Yes

Zero Crossing No

2-74

Check Static Gap

Purpose Check that gap exists in signal’s range of amplitudes

Library Model Verification

Description The Check Static Gap block checks that each element of the input signal
is less than (or optionally equal to) a static lower bound or greater than
(or optionally equal to) a static upper bound at the current time step.
If the verification condition is true, the block does nothing. If not, the
block halts the simulation, by default, and displays an error message.

The Check Static Gap block and its companion blocks in the Model
Verification library are intended to facilitate creation of self-validating
models. For example, you can use model verification blocks to test
that signals do not exceed specified limits during simulation. When
you are satisfied that a model is correct, you can turn error checking
off by disabling the verification blocks. You do not have to physically
remove them from the model. If you need to modify a model, you can
temporarily turn the verification blocks back on to ensure that your
changes do not break the model.

Data Type
Support

The Check Static Gap block accepts input signals of any dimensions
and of any data type supported by Simulink.

For a discussion on the data types supported by Simulink, see “Data
Types Supported by Simulink” in the “Working with Data” chapter of
the Using Simulink documentation.

2-75

Check Static Gap

Parameters
and
Dialog
Box

Upper bound
Upper bound of the gap in the input signal’s range of amplitudes.

Inclusive upper bound
If checked, this option specifies that the gap includes the upper
bound.

Lower bound
Lower bound of the gap in the input signal’s range of amplitudes.

2-76

Check Static Gap

Inclusive lower bound
If checked, this option specifies that the gap includes the lower
bound.

Enable assertion
Unchecking this option disables the Check Static Gap block, that
is, causes the model to behave as if the block did not exist. The
Model Verification block enabling setting under Debugging
on the Data Validity diagnostics pane of the Configuration
Parameters dialog box allows you to enable or disable all model
verification blocks in a model, including Check Static Gap blocks,
regardless of the setting of this option.

Simulation callback when assertion fails
An M-expression to be evaluated when the assertion fails.

Stop simulation when assertion fails
If checked, this option causes the Check Static Gap block to halt
the simulation when the block’s output is zero and display an error
message in the Simulation Diagnostics viewer. Otherwise, the
block displays a warning message in the MATLAB Command
Window and continues the simulation.

Output assertion signal
If checked, this option causes the Check Static Gap block to output
a Boolean signal that is true (1) at each time step if the assertion
succeeds and false (0) if the assertion fails. The data type of the
output signal is Boolean if you have selected the Implement
logic signals as boolean data option on the Simulation
and code generation optimization pane of the Configuration
Parameters dialog box. Otherwise the data type of the output
signal is double.

Select icon type
Type of icon used to display this block in a block diagram: either
graphic or text. The graphic option displays a graphical
representation of the assertion condition on the icon. The text
option displays a mathematical expression that represents
the assertion condition. If the icon is too small to display the

2-77

Check Static Gap

expression, the text icon displays an exclamation point. To see the
expression, enlarge the block.

Characteristics Direct Feedthrough No

Sample Time Inherited from driving block

Scalar Expansion No

Dimensionalized Yes

Zero Crossing No

2-78

Check Static Lower Bound

Purpose Check that signal is greater than (or optionally equal to) static lower
bound

Library Model Verification

Description The Check Static Lower Bound block checks that each element of the
input signal is greater than (or optionally equal to) a specified lower
bound at the current time step. The block’s parameter dialog box allows
you to specify the value of the lower bound and whether the lower
bound is inclusive. If the verification condition is true, the block does
nothing. If not, the block halts the simulation, by default, and displays
an error message.

The Check Static Lower Bound block and its companion blocks in
the Model Verification library are intended to facilitate creation of
self-validating models. For example, you can use model verification
blocks to test that signals do not exceed specified limits during
simulation. When you are satisfied that a model is correct, you can
turn error checking off by disabling the verification blocks. You do not
have to physically remove them from the model. If you need to modify
a model, you can temporarily turn the verification blocks back on to
ensure that your changes do not break the model.

Data Type
Support

The Check Static Lower Bound block accepts input signals of any
dimensions and of any data type supported by Simulink.

For a discussion on the data types supported by Simulink, see “Data
Types Supported by Simulink” in the “Working with Data” chapter of
the Using Simulink documentation.

2-79

Check Static Lower Bound

Parameters
and
Dialog
Box

Lower bound
Lower bound on the range of amplitudes that the input signal
can have.

Inclusive boundary
Checking this option makes the range of valid input amplitudes
include the lower bound.

Enable assertion
Unchecking this option disables the Check Static Lower Bound
block, that is, causes the model to behave as if the block did
not exist. The Model Verification block enabling setting
under Debugging on the Data Validity diagnostics pane of the
Configuration Parameters dialog box allows you to enable or

2-80

Check Static Lower Bound

disable all model verification blocks in a model, including Check
Static Lower Bound blocks, regardless of the setting of this option.

Simulation callback when assertion fails
An M-expression to be evaluated when the assertion fails.

Stop simulation when assertion fails
If checked, this option causes the Check Static Lower Bound
block to halt the simulation when the block’s output is zero and
display an error message in the Simulation Diagnostics viewer.
Otherwise, the block displays a warning message in the MATLAB
Command Window and continues the simulation.

Output assertion signal
If checked, this option causes the Check Static Lower Bound block
to output a Boolean signal that is true (1) at each time step if
the assertion succeeds and false (0) if the assertion fails. The
data type of the output signal is Boolean if you have selected
the Implement logic signals as boolean data option on the
Simulation and code generation optimization pane of the
Configuration Parameters dialog box. Otherwise the data type
of the output signal is double.

Select icon type
Type of icon used to display this block in a block diagram: either
graphic or text. The graphic option displays a graphical
representation of the assertion condition on the icon. The text
option displays a mathematical expression that represents
the assertion condition. If the icon is too small to display the
expression, the text icon displays an exclamation point. To see the
expression, enlarge the block.

Characteristics Direct Feedthrough No

Sample Time Inherited from driving block

Scalar Expansion No

2-81

Check Static Lower Bound

Dimensionalized Yes

Zero Crossing No

2-82

Check Static Range

Purpose Check that signal falls inside fixed range of amplitudes

Library Model Verification

Description The Check Static Range block checks that each element of the input
signal falls inside the same range of amplitudes at each time step. The
block’s parameter dialog box allows you to specify the upper and lower
bounds of the valid amplitude range and whether the range includes
the bounds. If the verification condition is true, the block does nothing.
If not, the block halts the simulation, by default, and displays an error
message.

The Check Static Range block and its companion blocks in the Model
Verification library are intended to facilitate creation of self-validating
models. For example, you can use model verification blocks to test
that signals do not exceed specified limits during simulation. When
you are satisfied that a model is correct, you can turn error checking
off by disabling the verification blocks. You do not have to physically
remove them from the model. If you need to modify a model, you can
temporarily turn the verification blocks back on to ensure that your
changes do not break the model.

Data Type
Support

The Check Static Range block accepts input signals of any dimensions
and of any data type supported by Simulink.

For a discussion on the data types supported by Simulink, see “Data
Types Supported by Simulink” in the “Working with Data” chapter of
the Using Simulink documentation.

2-83

Check Static Range

Parameters
and
Dialog
Box

Upper bound
Upper bound of the range of valid input signal amplitudes.

Inclusive upper bound
Checking this option specifies that the valid signal range includes
the upper bound.

Lower bound
Lower bound of the range of valid input signal amplitudes.

2-84

Check Static Range

Inclusive lower bound
Checking this option specifies that the valid signal range includes
the lower bound.

Enable assertion
Unchecking this option disables the Check Static Range block,
that is, causes the model to behave as if the block did not
exist. The Model Verification block enabling setting under
Debugging on the Data Validity diagnostics pane of the
Configuration Parameters dialog box allows you to enable or
disable all model verification blocks in a model, including Check
Static Range blocks, regardless of the setting of this option.

Simulation callback when assertion fails
An M-expression to be evaluated when the assertion fails.

Stop simulation when assertion fails
If checked, this option causes the Check Static Range block to
halt the simulation when the block’s output is zero and display
an error message in the Simulation Diagnostics viewer.
Otherwise, the block displays a warning message in the MATLAB
Command Window and continues the simulation.

Output assertion signal
If checked, this option causes the Check Static Range block to
output a Boolean signal that is true (1) at each time step if the
assertion succeeds and false (0) if the assertion fails. The data
type of the output signal is Boolean if you have selected the
Implement logic signals as boolean data option on the
Simulation and code generation optimization pane of the
Configuration Parameters dialog box. Otherwise the data type
of the output signal is double.

Select icon type
Type of icon used to display this block in a block diagram: either
graphic or text. The graphic option displays a graphical
representation of the assertion condition on the icon. The text
option displays a mathematical expression that represents
the assertion condition. If the icon is too small to display the

2-85

Check Static Range

expression, the text icon displays an exclamation point. To see the
expression, enlarge the block.

Characteristics Direct Feedthrough No

Sample Time Inherited from driving block

Scalar Expansion No

Dimensionalized Yes

Zero Crossing No

2-86

Check Static Upper Bound

Purpose Check that signal is less than (or optionally equal to) static upper bound

Library Model Verification

Description The Check Static Upper Bound block checks that each element of the
input signal is less than (or optionally equal to) a specified upper bound
at the current time step. The block’s parameter dialog box allows you to
specify the value of the upper bound and whether the bound is inclusive.
If the verification condition is true, the block does nothing. If not, the
block halts the simulation, by default, and displays an error message.

The Check Static Upper Bound block and its companion blocks in
the Model Verification library are intended to facilitate creation of
self-validating models. For example, you can use model verification
blocks to test that signals do not exceed specified limits during
simulation. When you are satisfied that a model is correct, you can
turn error checking off by disabling the verification blocks. You do not
have to physically remove them from the model. If you need to modify
a model, you can temporarily turn the verification blocks back on to
ensure that your changes do not break the model.

Data Type
Support

The Check Static Upper Bound block accepts input signals of any
dimensions and of any data type supported by Simulink.

For a discussion on the data types supported by Simulink, see “Data
Types Supported by Simulink” in the “Working with Data” chapter of
the Using Simulink documentation.

2-87

Check Static Upper Bound

Parameters
and
Dialog
Box

Upper bound
Upper bound on the range of amplitudes that the input signal
can have.

Inclusive boundary
Checking this option makes the range of valid input amplitudes
include the upper bound.

Enable assertion
Unchecking this option disables the Check Static Upper Bound
block, that is, causes the model to behave as if the block did
not exist. The Model Verification block enabling setting
under Debugging on the Data Validity diagnostics pane of the
Configuration Parameters dialog box allows you to enable or

2-88

Check Static Upper Bound

disable all model verification blocks in a model, including Check
Static Upper Bound blocks, regardless of the setting of this option.

Simulation callback when assertion fails
An M-expression to be evaluated when the assertion fails.

Stop simulation when assertion fails
If checked, this option causes the Check Static Upper Bound
block to halt the simulation when the block’s output is zero and
display an error message in the Simulation Diagnostics viewer.
Otherwise, the block displays a warning message in the MATLAB
Command Window and continues the simulation.

Output assertion signal
If checked, this option causes the Check Static Upper Bound block
to output a Boolean signal that is true (1) at each time step if
the assertion succeeds and false (0) if the assertion fails. The
data type of the output signal is Boolean if you have selected
the Implement logic signals as boolean data option on the
Simulation and code generation optimization pane of the
Configuration Parameters dialog box. Otherwise the data type
of the output signal is double.

Select icon type
Type of icon used to display this block in a block diagram: either
graphic or text. The graphic option displays a graphical
representation of the assertion condition on the icon. The text
option displays a mathematical expression that represents
the assertion condition. If the icon is too small to display the
expression, the text icon displays an exclamation point. To see the
expression, enlarge the block.

Characteristics Direct Feedthrough No

Sample Time Inherited from driving block

Scalar Expansion No

2-89

Check Static Upper Bound

Dimensionalized Yes

Zero Crossing No

2-90

Chirp Signal

Purpose Generate sine wave with increasing frequency

Library Sources

Description The Chirp Signal block generates a sine wave whose frequency increases
at a linear rate with time. You can use this block for spectral analysis of
nonlinear systems. The block generates a scalar or vector output.

The parameters, Initial frequency, Target time, and Frequency at
target time, determine the block’s output. You can specify any or all
of these variables as scalars or arrays. All the parameters specified
as arrays must have the same dimensions. The block expands scalar
parameters to have the same dimensions as the array parameters. The
block output has the same dimensions as the parameters unless you
select the Interpret vector parameters as 1-D option. If you select
this option and the parameters are row or column vectors, the block
outputs a vector (1-D array) signal.

Data Type
Support

The Chirp Signal block outputs a real-valued signal of type double.

2-91

Chirp Signal

Parameters
and
Dialog
Box

Opening this dialog box causes a running simulation to pause. See
"Changing Source Block Parameters" in the “Working with Blocks”
chapter of the Using Simulink documentation.

Initial frequency
The initial frequency of the signal, specified as a scalar or matrix
value. The default is 0.1 Hz.

Target time
The time at which the frequency reaches the Frequency at
target time parameter value, a scalar or matrix value. The
frequency continues to change at the same rate after this time.
The default is 100 seconds.

Frequency at target time
The frequency of the signal at the target time, a scalar or matrix
value. The default is 1 Hz.

2-92

Chirp Signal

Interpret vector parameters as 1-D
If selected, column or row matrix values for the Initial
frequency, Target time, and Frequency at target time
parameters result in a vector output whose elements are the
elements of the row or column. See “Determining the Output
Dimensions of Source Blocks” in the “Working with Signals”
chapter of the Using Simulink documentation.

Characteristics Sample Time Continuous

Scalar Expansion Yes, of parameters

Dimensionalized Yes

Zero Crossing No

2-93

Clock

Purpose Display and provide simulation time

Library Sources

Description The Clock block outputs the current simulation time at each simulation
step. This block is useful for other blocks that need the simulation time.

When you need the current time within a discrete system, use the
Digital Clock block.

Data Type
Support

The Clock block outputs a real-valued signal of type double.

Parameters
and
Dialog
Box

Display time
Use the Display time check box to display the current simulation
time inside the Clock icon.

Decimation
The Decimation parameter value is the increment at which
the clock’s icon is updated when Display timeis checked; it can
be any positive integer. For example, if the decimation is 1000,

2-94

Clock

then, for a fixed integration step of 1 millisecond, the clock’s icon
updates at 1 second, 2 seconds, and so on.

Characteristics Sample Time Continuous

Scalar Expansion N/A

Dimensionalized No

Zero Crossing No

2-95

Combinatorial Logic

Purpose Implement truth table

Library Logic and Bit Operations

Description The Combinatorial Logic block implements a standard truth table for
modeling programmable logic arrays (PLAs), logic circuits, decision
tables, and other Boolean expressions. You can use this block in
conjunction with Memory blocks to implement finite-state machines
or flip-flops.

You specify a matrix that defines all possible block outputs as the
Truth table parameter. Each row of the matrix contains the output
for a different combination of input elements. You must specify outputs
for every combination of inputs. The number of columns is the number
of block outputs.

The relationship between the number of inputs and the number of
rows is

number of rows = 2 ^ (number of inputs)

Simulink returns a row of the matrix by computing the row’s index from
the input vector elements. Simulink computes the index by building a
binary number where input vector elements having zero values are 0
and elements having nonzero values are 1, then adding 1 to the result.
For an input vector, u, of m elements,

row index = 1 + u(m)*20 + u(m-1)*21 + ... + u(1)*2m-1

Example of Two-Input AND Function

This example builds a two-input AND function, which returns 1 when
both input elements are 1, and 0 otherwise. To implement this function,
specify the Truth table parameter value as [0; 0; 0; 1]. The portion
of the model that provides the inputs to and the output from the
Combinatorial Logic block might look like this.

2-96

Combinatorial Logic

The following table indicates the combination of inputs that generate
each output. The input signal labeled "Input 1" corresponds to the
column in the table labeled Input 1. Similarly, the input signal "Input
2" corresponds to the column with the same name. The combination of
these values determines the row of the Output column of the table that
is passed as block output.

For example, if the input vector is [1 0], the input references the third
row:

(2^1*1 + 1)

The output value is 0.

Row Input 1 Input 2 Output

1 0 0 0

2 0 1 0

3 1 0 0

4 1 1 1

Example of Circuit

This sample circuit has three inputs: the two bits (a and b) to be
summed and a carry-in bit (c). It has two outputs: the carry-out bit (c’)
and the sum bit (s). Here are the truth table and the outputs associated
with each combination of input values for this circuit.

2-97

Combinatorial Logic

Inputs Outputs

a b c c’ s

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

To implement this adder with the Combinatorial Logic block, you enter
the 8-by-2 matrix formed by columns c’ and s as the Truth table
parameter.

You can also implement sequential circuits (that is, circuits with states)
with the Combinatorial Logic block by including an additional input
for the state of the block and feeding the output of the block back into
this state input.

Data Type
Support

The type of signals accepted by a Combinatorial Logic block depends
on whether you selected the Boolean logic signals option (see “Enabling
Strict Boolean Type Checking” in the “Working with Data” chapter of
the Using Simulink documentation). If this option is enabled, the block
accepts real signals of type Boolean or double. The truth table can
have Boolean values (0 or 1) of any data type. If the table contains
non-Boolean values, the table’s data type must be double.

The type of the output is the same as that of the input except that
the block outputs double if the input is Boolean and the truth table
contains non-Boolean values.

If Boolean compatibility mode is disabled, the Combinatorial Logic
block accepts only signals of type Boolean. The block outputs double if

2-98

Combinatorial Logic

the truth table contains non-Boolean values of type double. Otherwise,
the output is Boolean.

Parameters
and
Dialog
Box

Truth table
The matrix of outputs. Each column corresponds to an element
of the output vector and each row corresponds to a row of the
truth table.

Sample time (-1 for inherited)
Specify the time interval between samples. To inherit the sample
time, set this parameter to -1. See “Specifying Sample Time”
in the “How Simulink Works” chapter of the Using Simulink
documentation.

Characteristics Direct Feedthrough Yes

Sample Time Inherited from driving block

2-99

Combinatorial Logic

Scalar Expansion No

Dimensionalized Yes; the output width is the number of
columns of the Truth table parameter

Zero Crossing No

2-100

Compare To Constant

Purpose Determine how signal compares to specified constant

Library Logic and Bit Operations

Description The Compare To Constant block compares an input signal to a constant.
Specify the constant in the Constant value parameter. Specify how the
input is compared to the constant value with the Operator parameter.
The Operator parameter can have the following values:

• == — Determine whether the input is equal to the specified constant.

• ~= — Determine whether the input is not equal to the specified
constant.

• < — Determine whether the input is less than the specified constant.

• <= — Determine whether the input is less than or equal to the
specified constant.

• > — Determine whether the input is greater than the specified
constant.

• >= — Determine whether the input is greater than or equal to the
specified constant.

The output is 0 if the comparison is false, and 1 if it is true.

Data Type
Support

The Compare To Constant block accepts inputs of any data type
supported by Simulink, including fixed-point data types. The block
output is uint8 or Boolean as specified by the Output data type
mode parameter.

For a discussion on the data types supported by Simulink, see “Data
Types Supported by Simulink” in the “Working with Data” chapter of
the Using Simulink documentation.

2-101

Compare To Constant

Parameters
and
Dialog
Box

Operator
Specify how the input is compared to the constant value, as
discussed in Description.

Constant value
Specify the constant value to which the input is compared.

Output data type mode
Specify the data type of the output, uint8 or boolean.

Enable zero crossing detection
Select to enable zero-crossing detection. For more information, see
“Zero-Crossing Detection” in the “How Simulink Works” chapter
of the Using Simulink documentation.

Characteristics Direct Feedthrough Yes

Scalar Expansion Yes

Zero Crossing Yes, if enabled.

2-102

Compare To Constant

See Also Compare To Zero

2-103

Compare To Zero

Purpose Determine how signal compares to zero

Library Logic and Bit Operations

Description The Compare To Zero block compares an input signal to zero. Specify
how the input is compared to zero with the Operator parameter. The
Operator parameter can have the following values:

• == — Determine whether the input is equal to zero.

• ~= — Determine whether the input is not equal to zero.

• < — Determine whether the input is less than zero.

• <= — Determine whether the input is less than or equal to zero.

• > — Determine whether the input is greater than zero.

• >= — Determine whether the input is greater than or equal to zero.

The output is 0 if the comparison is false, and 1 if it is true.

Data Type
Support

The Compare To Zero block accepts inputs of any data type supported
by Simulink, including fixed-point data types. The block output is uint8
or Boolean as specified by the Output data type mode parameter.

For a discussion on the data types supported by Simulink, see “Data
Types Supported by Simulink” in the “Working with Data” chapter of
the Using Simulink documentation.

2-104

Compare To Zero

Parameters
and
Dialog
Box

Operator
Specify how the input is compared to zero, as discussed in
Description.

Output data type mode
Specify the data type of the output, uint8 or boolean.

Enable zero crossing detection
Select to enable zero-crossing detection. For more information, see
“Zero-Crossing Detection” in the “How Simulink Works” chapter
of the Using Simulink documentation.

Characteristics Direct Feedthrough Yes

Scalar Expansion Yes

Zero Crossing Yes, if enabled.

See Also Compare To Constant

2-105

Complex to Magnitude-Angle

Purpose Compute magnitude and/or phase angle of complex signal

Library Math Operations

Description The Complex to Magnitude-Angle block accepts a complex-valued signal
of type double. It outputs the magnitude and/or phase angle of the
input signal, depending on the setting of the Output parameter. The
outputs are real values of type double. The input can be an array of
complex signals, in which case the output signals are also arrays. The
magnitude signal array contains the magnitudes of the corresponding
complex input elements. The angle output similarly contains the angles
of the input elements.

Data Type
Support

See the preceding description.

Parameters
and
Dialog
Box

Output
Determines the output of this block. Choose from the following
values: Magnitude and angle (outputs the input signal’s
magnitude and phase angle in radians), Magnitude (outputs the

2-106

Complex to Magnitude-Angle

input’s magnitude), Angle (outputs the input’s phase angle in
radians).

Sample time (-1 for inherited)
Specify the time interval between samples. To inherit the sample
time, set this parameter to -1. See “Specifying Sample Time”
in the “How Simulink Works” chapter of the Using Simulink
documentation.

Characteristics Direct Feedthrough Yes

Sample Time Inherited from driving block

Scalar Expansion No

Dimensionalized Yes

Zero Crossing No

2-107

Complex to Real-Imag

Purpose Output real and imaginary parts of complex input signal

Library Math Operations

Description The Complex to Real-Imag block accepts a complex-valued signal of any
data type supported by Simulink, including fixed-point data types. It
outputs the real and/or imaginary part of the input signal, depending on
the setting of the Output parameter. The real outputs are of the same
data type as the complex input. The input can be an array (vector or
matrix) of complex signals, in which case the output signals are arrays
of the same dimensions. The real array contains the real parts of the
corresponding complex input elements. The imaginary output similarly
contains the imaginary parts of the input elements.

Data Type
Support

See the preceding description. For a discussion on the data types
supported by Simulink, see “Data Types Supported by Simulink” in the
“Working with Data” chapter of the Using Simulink documentation.

Parameters
and
Dialog
Box

2-108

Complex to Real-Imag

Output
Determines the output of this block. Choose from the following
values: Real and imag (outputs the input signal’s real and
imaginary parts), Real (outputs the input’s real part), Imag
(outputs the input’s imaginary part).

Sample time (-1 for inherited)
Specify the time interval between samples. To inherit the sample
time, set this parameter to -1. See “Specifying Sample Time”
in the “How Simulink Works” chapter of the Using Simulink
documentation.

Characteristics Direct Feedthrough Yes

Sample Time Inherited from driving block

Scalar Expansion No

Dimensionalized Yes

Zero Crossing No

2-109

Concatenate

Purpose Concatenate input signals of same data type to create contiguous
output signal

Library Math Operations

Description The Concatenate block concatenates the signals at its inputs to create
an output signal whose elements reside in contiguous locations in
memory. This block operates in either vector or matrix concatenation
mode, depending on the setting of its Mode parameter. In either case,
the inputs are concatenated from the top to bottom, or left to right,
input ports

Vector Mode

In vector mode, all input signals must be either vectors or row vectors
[1xM matrices] or column vectors [Mx1 matrices] or a combination of
vectors and either row or column vectors. The output is a vector if all
inputs are vectors.

The output is a row or column vector if any of the inputs are row or
column vectors, respectively.

Matrix Mode

Matrix mode accepts vectors and matrices of any size. It treats vector
inputs as column vectors. The output is always a matrix. The block’s
Mode parameter allows you to choose either horizontal or vertical
matrix concatenation. Horizontal matrix concatenation places the input
matrices side-by-side to create the output matrix, e.g.,

2-110

Concatenate

Vertical matrix concatenation stacks the input matrices on top of each
other to create the output matrix, e.g.,

For horizontal concatenation, the input matrices must have the same
column dimension; for vertical concatenation, the same row dimension.

Data Type
Support

Accepts signals of any data type supported by Simulink. All inputs
must be of the same data type. Outputs the same data type as the input.

2-111

Concatenate

Parameters
and
Dialog
Box

Number of inputs
Number of inputs on this block.

Mode
Specifies the type of concatenation performed by this block.
Options are:

• Vector concatenation (see “Vector Mode” on page 2-110)

• Horizontal matrix concatenation (see “Matrix Mode” on
page 2-110)

• Vertical matrix concatenation (see “Matrix Mode” on page
2-110)

2-112

Concatenate

Characteristics Direct Feedthrough Yes

Sample Time Inherited from driving block

Scalar Expansion No

Dimensionalized Yes

Zero Crossing No

2-113

Configurable Subsystem

Purpose Represent any block selected from user-specified library of blocks

Library Ports & Subsystems

Description The Configurable Subsystem block represents one of a set of blocks
contained in a specified library of blocks. The block’s context menu lets
you choose which block the configurable subsystem represents.

Configurable Subsystem blocks simplify creation of models that
represent families of designs. For example, suppose that you want to
model an automobile that offers a choice of engines. To model such a
design, you would first create a library of models of the engine types
available with the car. You would then use a Configurable Subsystem
block in your car model to represent the choice of engines. To model a
particular variant of the basic car design, a user need only choose the
engine type, using the configurable engine block’s dialog.

To create a configurable subsystem in a model, you must first create a
library containing a master configurable subsystem and the blocks that
it represents. You can then create configurable instances of the master
subsystem by dragging copies of the master subsystem from the library
and dropping them into models.

You can add any type of block to a master configurable subsystem
library. Simulink derives the port names for the configurable subsystem
by making a unique list from the port names of all the choices. Note
that Simulink uses default port names for non-subsystem block choices.

Note that Simulink does not allow you to break library links in a
configurable subsystem because Simulink needs the links to reconfigure
the subsystem when you choose a new configuration. Breaking links
would be useful only if you never intended to reconfigure the subsystem,
in which case you could simply replace the configurable subsystem
with a nonconfigurable subsystem that implements the permanent
configuration.

Creating a Master Configurable Subsystem

To create a master configurable subsystem:

2-114

Configurable Subsystem

1 Create a library of blocks representing the various configurations
of the configurable subsystem.

2 Save the library.

3 Create an instance of the Configurable Subsystem block in the library.

To do this, drag a copy of the Configurable Subsystem block from the
Simulink Ports & Subsystems library into the library you created in
the preceding step.

4 Display the Configurable Subsystem block’s dialog by double-clicking
it. The dialog displays a list of the other blocks in the library.

5 Under List of block choices in the dialog box, select the blocks that
represent the various configurations of the configurable subsystems
you are creating.

6 Click the OK button to apply the changes and close the dialog box.

7 Select Block Choice from the Configurable Subsystem block’s
context menu.

The context menu displays a submenu listing the blocks that the
subsystem can represent.

8 Select the block that you want the subsystem to represent by default.

9 Save the library.

Note If you add or remove blocks from a library, you must recreate
any Configurable Subsystem blocks that use the library.

If you modify a library block that is the default block choice for a
configurable subsystem, the change does not immediately propagate to
the configurable subsystem. To propagate this change, do one of the
following:

2-115

Configurable Subsystem

• Change the default block choice to another block in the subsystem,
then change the default block choice back to the original block.

• Recreate the configurable subsystem block, including the selection of
the updated block as the default block choice.

Creating an Instance of a Configurable Subsystem

To create an instance of a configurable subsystem in a model,

1 Open the library containing the master configurable subsystem.

2 Drag a copy of the master into the model.

3 Select Block Choice from the copy’s context menu.

4 Select the block that you want the configurable subsystem to
represent.

The instance of the configurable system displays the icon and parameter
dialog box of the block that it represents.

Setting Instance Block Parameters

As with other blocks, you can use the parameter dialog box of a
configurable subsystem instance to set the instance’s parameters
interactively and the set_param command to set the parameters
from the MATLAB command line or in an M-file program. If you use
set_param, you must specify the full path name of the configurable
subsystem’s current block choice as the first argument of set_param,
e.g.,

curr_choice = get_param('mymod/myconfigsys', 'BlockChoice');
curr_choice = ['mymod/myconfigsys/' curr_choice];
set_param(curr_choice, 'MaskValues', ...);

Mapping I/O Ports

A configurable subsystem displays a set of input and output ports
corresponding to input and output ports in the selected library.

2-116

Configurable Subsystem

Simulink uses the following rules to map library ports to Configurable
Subsystem block ports:

• Map each uniquely named input/output port in the library to a
separate input/output port of the same name on the Configurable
Subsystem block.

• Map all identically named input/output ports in the library to the
same input/output ports on the Configurable Subsystem block.

• Terminate any input/output port not used by the currently selected
library block with a Terminator/Ground block.

This mapping allows a user to change the library block represented by a
Configurable Subsystem block without having to rewire connections to
the Configurable Subsystem block.

For example, suppose that a library contains two blocks A and B and
that block A has input ports labeled a, b, and c and an output port
labeled d and that block B has input ports labeled a and b and an
output port labeled e. A Configurable Subsystem block based on this
library would have three input ports labeled a, b, and c, respectively,
and two output ports labeled d and e, respectively, as illustrated in
the following figure.

In this example, port a on the Configurable Subsystem block connects to
port a of the selected library block no matter which block is selected. On
the other hand, port c on the Configurable Subsystem block functions
only if library block A is selected. Otherwise, it simply terminates.

2-117

Configurable Subsystem

Note A Configurable Subsystem block does not provide ports that
correspond to non-I/O ports, such as the trigger and enable ports on
triggered and enabled subsystems. Thus, you cannot use a Configurable
Subsystem block directly to represent blocks that have such ports. You
can do so indirectly, however, by wrapping such blocks in subsystem
blocks that have input or output ports connected to the non-I/O ports.

Data Type
Support

The Configurable Subsystem block accepts and outputs signals of the
same types as are accepted or output by the block that it currently
represents. The data types may be any supported by Simulink,
including fixed-point data types.

Parameters
and
Dialog
Box

List of block choices
Select the blocks you want to include as members of the
configurable subsystem. You can include user-defined subsystems
as blocks.

2-118

Configurable Subsystem

Port information
Lists of input and output ports of member blocks. In the case of
multiports, you can rearrange selected port positions by clicking
the Up and Down buttons.

Characteristics A Configurable Subsystem block has the characteristics of the block
that it currently represents. Double-clicking the block opens the dialog
box for the block that it currently represents.

2-119

Constant

Purpose Generate constant value

Library Sources

Description The Constant block generates a real or complex constant value. The
block generates scalar (one-element array), vector (1-D array), or matrix
(2-D array) output, depending on the dimensionality of the Constant
value parameter and the setting of the Interpret vector parameters
as 1-D parameter. Also, the block can generate either a sample-based
or frame-based signal, depending on the setting of the Sampling mode
parameter.

The output of the block has the same dimensions and elements as the
Constant value parameter. If you specify a vector for this parameter,
and you want the block to interpret it as a vector (i.e., a 1-D array),
select the Interpret vector parameters as 1-D parameter; otherwise,
the block treats the Constant value parameter as a matrix (i.e., a
2-D array).

Data Type
Support

By default, the Constant block outputs a signal whose data type
and complexity are the same as that of the block’s Constant value
parameter. However, you can specify the output to be any data type
supported by Simulink, including fixed-point data types.

For a discussion on the data types supported by Simulink, see “Data
Types Supported by Simulink” in the “Working with Data” chapter of
the Using Simulink documentation.

2-120

Constant

Parameters
and
Dialog
Box

The Main pane of the Constant block dialog appears as follows:

Opening this dialog box causes a running simulation to pause. See
“Changing Source Block Parameters During Simulation” in the
“Working with Blocks” chapter of the Using Simulink documentation.

Constant value
Specify the constant value output by the block. You can enter any
MATLAB expression in this field, including the Boolean keywords,
true or false, that evaluates to a matrix value. The Constant
value parameter is converted from its data type to the specified
output data type offline using round-to-nearest and saturation.

Interpret vector parameters as 1-D
If you select this check box, the Constant block outputs a vector
of length N if the Constant value parameter evaluates to an
N-element row or column vector, i.e., a matrix of dimension 1xN

2-121

Constant

or Nx1. If you uncheck this option, you can interact with the
Sampling mode parameter. See “Determining the Output
Dimensions of Source Blocks” in the “Working with Signals”
chapter of the Using Simulink documentation.

Sample time
Specify the interval between times that the Constant block’s
output can change during simulation (e.g., as a result of tuning
its Constant value parameter). The default sample time is inf,
i.e., the block’s output can never change. This setting speeds
simulation and generated code by avoiding the need to recompute
the block’s output. See “Specifying Sample Time” in the “How
Simulink Works” chapter of the Using Simulink documentation.

Sampling mode
Specify whether the output signal is Sample based or Frame
based. For more information about these types of signals, see
“Sample-Based Signals” and “Frame-Based Signals” in the Signal
Processing Blockset User’s Guide.

Note To generate frame-based signals, you must have the Signal
Processing Blockset installed.

The Signal Data Types pane of the Constant block dialog appears
as follows:

2-122

Constant

Output data type mode
Specify how the data type of the output is designated. The
data type can be inherited through backpropagation, or can
be designated in the Constant value parameter, for example
int8(29). You can also choose a built-in data type from the list.
If you choose Specify via dialog, the following parameters
become visible.

Output data type
Specify any data type, including fixed-point data types. This
parameter is only visible you select Specify via dialog for the
Output data type mode parameter.

Output scaling mode
Specify how the scaling of the output is designated. The output
can be automatically scaled to maintain best vector-wise precision
without overflow, or you can choose to specify the scaling in the

2-123

Constant

dialog via the Output scaling value parameter. This parameter
is only visible if you select Specify via dialog for the Output
data type mode parameter.

Output scaling value
Set the output scaling using binary point-only or [Slope Bias]
scaling. This parameter is only visible if you select Specify via
dialog for the Output data type mode parameter and Use
specified scaling for the Output Scaling Mode parameter.

Characteristics Direct Feedthrough N/A

Sample Time Specified in the Sample time parameter

Scalar Expansion No

Dimensionalized Yes

Zero Crossing No

2-124

Cosine

Purpose Implement cosine function in fixed-point using lookup table approach
that exploits quarter wave symmetry

Library Lookup Tables

Description The Cosine block is an implementation of the Sine and Cosine block.

2-125

Coulomb and Viscous Friction

Purpose Model discontinuity at zero, with linear gain elsewhere

Library Discontinuities

Description The Coulomb and Viscous Friction block models Coulomb (static) and
viscous (dynamic) friction. The block models a discontinuity at zero
and a linear gain otherwise. The offset corresponds to the Coulombic
friction; the gain corresponds to the viscous friction. The block is
implemented as

y = sign(u) * (Gain * abs(u) + Offset)

where y is the output, u is the input, and Gain and Offset are block
parameters.

The block accepts one input and generates one output. The input can be
a scalar, vector, or matrix. If using a vector or matrix input, the offset
and gain must have the same dimensions as the input or be scalars.
If using a scalar input, the output will be a scalar, vector, or matrix
based on the dimensions of the offset and gain. For example, passing
a scalar input to the block when using the default offset produces an
output vector with four elements.

Data Type
Support

The Coulomb and Viscous Friction block accepts and outputs real
signals of type double.

2-126

Coulomb and Viscous Friction

Parameters
and
Dialog
Box

Coulomb friction value
The offset, applied to all input values. The default is [1 3 2 0].

Coefficient of viscous friction
The signal gain at nonzero input points. The default is 1.

Characteristics Direct Feedthrough Yes

Sample Time Inherited from driving block

Scalar Expansion Yes

Dimensionalized Yes

Zero Crossing Yes, at the point where the static friction
is overcome

2-127

Counter Free-Running

Purpose Count up and overflow back to zero after maximum value possible is
reached for specified number of bits

Library Sources

Description The Counter Free-Running block counts up until the maximum possible
value, 2Nbits - 1, is reached, where Nbits is the number of bits. Then the
counter overflows to zero, and restarts counting up. The counter is
always initialized to zero.

You can specify the number of bits with the Number of Bits parameter.

You can specify the sample time with the Sample time parameter.

The output is an unsigned integer. If you select the global doubles
override, the Counter Free-Running block does not wrap back to zero.

Data Type
Support

The Counter Free-Running block outputs an unsigned integer.

Parameters
and
Dialog
Box

2-128

Counter Free-Running

Number of Bits
Specified number of bits.

Sample time
Specify the time interval between samples. To inherit the sample
time, set this parameter to -1. See “Specifying Sample Time”
in the “How Simulink Works” chapter of the Using Simulink
documentation.

Characteristics Sample Time Specified in the Sample time parameter

Scalar Expansion No

See Also Counter Limited

2-129

Counter Limited

Purpose Count up and wrap back to zero after outputting specified upper limit

Library Sources

Description The Counter Limited block counts up until the specified upper limit is
reached. Then the counter wraps back to zero, and restarts counting
up. The counter is always initialized to zero.

You can specify the upper limit with the Upper limit parameter.

You can specify the sample time with the Sample time parameter. A
Sample time of -1 means that the sample time is inherited.

The output is an unsigned integer of 8, 16, or 32 bits, with the smallest
number of bits needed to represent the upper limit.

Data Type
Support

The Counter Limited block outputs an unsigned integer.

Parameters
and
Dialog
Box

2-130

Counter Limited

Upper limit
Upper limit.

Sample time
Specify the time interval between samples. To inherit the sample
time, set this parameter to -1. See “Specifying Sample Time”
in the “How Simulink Works” chapter of the Using Simulink
documentation.

Characteristics Sample Time Specified in the Sample time parameter

Scalar Expansion No

See Also Counter Free-Running

2-131

Data Store Memory

Purpose Define data store

Library Signal Routing

Description The Data Store Memory block defines and initializes a named shared
data store, which is a memory region usable by Data Store Read and
Data Store Write blocks with the same data store name.

The location of the Data Store Memory block that defines a data store
determines the Data Store Read and Data Store Write blocks that can
access the data store:

• If the Data Store Memory block is in the top-level system, the data
store can be accessed by Data Store Read and Data Store Write
blocks located anywhere in the model.

• If the Data Store Memory block is in a subsystem, the data store
can be accessed by Data Store Read and Data Store Write blocks
located in the same subsystem or in any subsystem below it in the
model hierarchy.

Note You can use signal objects in addition to or instead of Data
Store Memory blocks to define data stores. See “Working with Data
Stores” for more information.

You initialize the data store by specifying a scalar value or an array of
values in the Initial value parameter. The dimensions of the array
determine the dimensionality of the data store. Any data written to the
data store must have the dimensions designated by the Initial value
parameter. Otherwise, an error occurs.

2-132

Data Store Memory

Data Type
Support

The Data Store Memory block stores real or complex signals of any data
type supported by Simulink, including fixed-point data types.

For a discussion on the data types supported by Simulink, see “Data
Types Supported by Simulink” in the “Working with Data” chapter of
the Using Simulink documentation.

2-133

Data Store Memory

Parameters
and
Dialog
Box

The Main pane of the Data Store Memory block dialog appears as
follows:

Data store name
Specify a name for the data store you are defining with this block.
Data Store Read and Data Store Write blocks with the same name

2-134

Data Store Memory

will be able to read from and write to the data store initialized
by this block.

Corresponding Data Store Read blocks
This parameter lists all the Data Store Read and Data Store
Write blocks that have the same data store name as the current
block, and that are in the current (sub)system or in any subsystem
below it in the model hierarchy. Double-click any entry on this list
to highlight the block and bring it to the foreground.

Initial value
Specify the initial value or values of the data store. The
dimensions of this value determine the dimensions of data that
may be written to the data store.

Data store must resolve to Simulink signal object
Causes Simulink, when compiling the model, to search the model
and base workspace for a Simulink.Signal object having the
same name. If such an object is not found, Simulink halts the
compilation and displays an error. Otherwise Simulink compares
the attributes of the signal object with the corresponding
attributes of the data store memory block. If the block and
the object attributes are inconsistent, Simulink halts model
compilation and displays an error.

These following parameters pertain to code generation and have no
effect during model simulation:

• Data store name must resolve to Simulink signal object

• RTW storage class

• RTW type qualifier

See “Block States: Storing and Interfacing” in the Real-Time Workshop®

documentation for more information.

2-135

Data Store Memory

Interpret vector parameters as 1-D
If selected and the Initial value parameter is specified as a
column or row matrix, the data store is initialized to a 1-D array
whose elements are equal to the elements of the row or column
vector. See “Determining the Output Dimensions of Source
Blocks” in the “Working with Signals” chapter of the Using
Simulink documentation.

The Data Types pane of the Data Store Memory block dialog appears
as follows:

2-136

Data Store Memory

Data type
Select the data type of the values stored in the data store from
the drop-down menu. If you select auto, Simulink sets the data
type of the data store to the data type of the data store read and
write blocks that access it. If you select Specify via dialog, the
dialog box displays the Output data type and Output scaling

2-137

Data Store Memory

value fields, which enable you to specify fixed-point and other
data types not listed in the drop-down menu.

Output data type
Specify any data type for the data store, including fixed-point
data types. This parameter is only visible if you select Specify
via dialog for the Data type parameter.

Output scaling value
Set the output scaling using either binary point-only or [Slope
Bias] scaling. This parameter is only visible if you select Specify
via dialog for the Data type parameter.

Signal type
Specify the numeric type, real or complex, of the values stored
in the data store.

The Diagnostics pane of the Data Store Memory block dialog appears
as follows:

2-138

Data Store Memory

Detect read before write
The model is attempting to read data from this data store without
having previously written data into the store in the current time
step.

2-139

Data Store Memory

Detect write after write
The model is attempting to store data in this data store twice in
succession in the current time step.

Detect write after read
The model is attempting to store data in this data store after
previously reading data from it in the current time step.

Characteristics Sample Time N/A

Dimensionalized Yes

See Also Data Store Read, Data Store Write

2-140

Data Store Read

Purpose Read data from data store

Library Signal Routing

Description The Data Store Read block copies data from the named data store to
its output.

The data store from which the data is read is determined by the location
of the Data Store Memory block or signal object that defines the data
store. For more information, see “Working with Data Stores”and Data
Store Memory.

More than one Data Store Read block can read from the same data store.

Note Be careful when setting an execution priority on a Data Store
Read block. Make sure that the block reads from the data store after
the store is updated by any Data Store Write blocks that write to the
store in the same time step.

Data Type
Support

The Data Store Read block can output a real or complex signal of any
data type supported by Simulink, including fixed-point data types.

For a discussion on the data types supported by Simulink, see “Data
Types Supported by Simulink” in the “Working with Data” chapter of
the Using Simulink documentation.

2-141

Data Store Read

Parameters
and
Dialog
Box

Data store name
Specifies the name of the data store from which this block reads
data. The adjacent pull-down list lists the names of Data Store
Memory blocks that exist at the same level in the model as the
Data Store Read block or at higher levels. To change the name,
select a name from the pull-down list or enter the name directly
in the edit field.

When Simulink compiles the model containing this block,
Simulink searches the model upwards from this block’s level for a
Data Store Memory block having the specified data store name.
If Simulink does not find such a block, it searches the model
workspace and the MATLAB workspace for a Simulink.Signal
object having the same name. If Simulink finds the signal object,
it creates a hidden Data Store Memory block at the model’s root
level having the properties specified by the signal object and

2-142

Data Store Read

an initial value of 0. If Simulink finds neither the Data Store
Memory block nor the signal object, it halts the compilation and
displays an error.

Data store memory block
This field lists the Data Store Memory block that initialized the
store from which this block reads.

Data store write blocks
This parameter lists all the Data Store Write blocks with the same
data store name as this block that are in the same (sub)system or
in any subsystem below it in the model hierarchy. Double-click
any entry on this list to highlight the block and bring it to the
foreground.

Sample time
The sample time, which controls when the block reads from
the data store. A value of -1 indicates that the sample
time is inherited. See Specifying Sample Time in the online
documentation for more information.

Characteristics Sample Time Specified in the Sample time parameter

Dimensionalized Yes

See Also Data Store Memory, Data Store Write

2-143

Data Store Write

Purpose Write data to data store

Library Signal Routing

Description The Data Store Write block copies the value at its input to the named
data store.

Each write operation performed by a Data Store Write block writes over
the data store, replacing the previous contents.

The data store to which this block writes is determined by the location
of the Data Store Memory or signal object that defines the data store.
For more information, see “Working with Data Stores” and Data Store
Memory. The size of the data store is set by the signal object or the Data
Store Memory block that defines and initializes the data store. Each
Data Store Write block that writes to that data store must write the
same amount of data.

More than one Data Store Write block can write to the same data store.
However, if two Data Store Write blocks attempt to write to the same
data store during the same simulation step, results are unpredictable.

Data Type
Support

The Data Store Write block accepts a real or complex signal of any data
type supported by Simulink, including fixed-point data types.

For a discussion on the data types supported by Simulink, see “Data
Types Supported by Simulink” in the “Working with Data” chapter of
the Using Simulink documentation.

Parameters
and
Dialog
Box

Data store name
Specifies the name of the data store to which this block writes
data. The adjacent pull-down list lists the names of Data Store
Memory blocks that exist at the same level in the model as the
Data Store Write block or at higher levels. To change the name,
select a name from the pull-down list or enter the name directly
in the edit field.

2-144

Data Store Write

When Simulink compiles the model containing this block,
Simulink searches the model upwards from this block’s level for a
Data Store Memory block having the specified data store name.
If Simulink does not find such a block, it searches the model
workspace and the MATLAB workspace for a Simulink.Signal
object having the same name. If Simulink finds the signal object,
it creates a hidden Data Store Memory block at the model’s root
level having the properties specified by the signal object and
an initial value of 0. If Simulink finds neither the Data Store
Memory block nor the signal object, it halts the compilation and
displays an error.

Data store memory block
This field lists the Data Store Memory block that initialized the
store to which this block writes.

Data store read blocks
This parameter lists all the Data Store Read blocks with the same
data store name as this block that are in the same (sub)system or
in any subsystem below it in the model hierarchy. Double-click
any entry on this list to highlight the block and bring it to the
foreground.

Sample time
Specify the sample time that controls when the block writes
to the data store. A value of -1 indicates that the sample
time is inherited. See Specifying Sample Time in the online
documentation for more information.

Characteristics Sample Time Specified in the Sample time parameter

Dimensionalized Yes

See Also Data Store Memory, Data Store Read

2-145

Data Type Conversion

Purpose Convert input signal to specified data type

Library Signal Attributes

Description The Data Type Conversion block converts an input signal of any
Simulink data type to the data type and scaling specified by the block’s
Output data type mode, Output data type, and/or Output scaling
parameters. The input can be any real- or complex-valued signal. If the
input is real, the output is real. If the input is complex, the output
is complex.

Note This block requires that you specify the data type and/or scaling
for the conversion. If you want to inherit this information from an input
signal, you should use the Data Type Conversion Inherited block.

The Input and output to have equal parameter controls how the
input is processed. The possible values are Real World Value (RWV)
and Stored Integer (SI):

• Select Real World Value (RWV) to treat the input as V = SQ + B
where S is the slope and B is the bias. V is used to produce Q = (V -
B)/S, which is stored in the output. This is the default value.

• Select Stored Integer (SI) to treat the input as a stored integer,
Q. The value of Q is directly used to produce the output. In this
mode, the input and output are identical except that the input is a
raw integer lacking proper scaling information. Selecting Stored
Integer may be useful in these circumstances:

- If you are generating code for a fixed-point processor, the resulting
code only uses integers and does not use floating-point operations.

- If you want to partition your model based on hardware
characteristics. For example, part of your model may involve
simulating hardware that produces integers as output.

2-146

Data Type Conversion

Working with Fixed-Point Values Greater than 32 Bits

The MATLAB built-in integer data types are limited to 32 bits. If you
want to output fixed-point numbers that range between 33 and 53 bits
without loss of precision or range, you should break the number into
pieces using the Gain block, and then output the pieces using the Data
Type Conversion block to store the value inside a double.

For example, suppose the original signal is an unsigned 128-bit value
with default scaling. You can break this signal into four pieces using
four parallel Gain blocks configured with the gain and output settings
shown below.

Piece Gain Output Data Type

1 2^0 uint(32) - Least significant 32 bits

2 2^-32 uint(32)

3 2^-64 uint(32)

4 2^-96 uint(32) - Most significant 32 bits

For each Gain block, you must also configure the Round integer
calculations toward parameter to Floor, and the Saturate on
integer overflow check box must be cleared.

Data Type
Support

The Data Type Conversion block handles any data type supported by
Simulink, including fixed-point data types.

For a discussion on the data types supported by Simulink, see “Data
Types Supported by Simulink” in the “Working with Data” chapter of
the Using Simulink documentation.

2-147

Data Type Conversion

Parameters
and
Dialog
Box

Output data type mode
You can set the output signal to a built-in data type from this
drop-down list, or you can choose to inherit the output data type
and scaling by backpropagation. Lastly, if you choose Specify
via dialog, the Output data type, Output scaling value, and
Lock output scaling against changes by the autoscaling
tool parameters become visible.

2-148

Data Type Conversion

Output data type
Set the output data type. This parameter is only visible if you
select Specify via dialog for the Output data type mode
parameter.

Output scaling value
Set the output scaling using either binary point-only or [Slope
Bias] scaling. This parameter is only visible if you select Specify
via dialog for the Output data type mode parameter.

Lock output scaling against changes by the autoscaling tool
Select to lock scaling of outputs. This parameter is only visible if
you select Specify via dialog for the Output data type mode
parameter.

Input and output to have equal
Specify whether the Real World Value (RWV) or the Stored
Integer (SI) of the input and output should be the same.

Round integer calculations toward
Select the rounding mode for fixed-point operations.

Saturate on integer overflow
Select to have overflows saturate.

Sample time (-1 for inherited)
Specify the time interval between samples. To inherit the sample
time, set this parameter to -1. See Specifying Sample Time
in the “How Simulink Works” chapter of the Using Simulink
documentation.

Examples Example 1 — Real World Values Versus Stored Integers

This example uses the Data Type Conversion block to help you
understand the difference between a real-world value and a stored
integer. Consider the two fixed-point models shown below.

2-149

Data Type Conversion

In the top model, the Data Type Conversion block treats the input as a
real-world value, and maps that value to an 8-bit signed generalized
fixed-point data type with a scaling of 2-2. When the value is then output
from the Data Type Conversion1 block as a real-world value, the scaling
and data type information is retained and the output value is 001111.00,
or 15. When the value is output from the Data Type Conversion2 block
as a stored integer, the scaling and data type information is not retained
and the stored integer is interpreted as 00111100, or 60.

In the bottom model, the Data Type Conversion3 block treats the input
as a stored integer, and the data type and scaling information is not
applied. When the value is then output from the Data Type Conversion4
block as a real-world value, the scaling and data type information is
applied to the stored integer, and the output value is 000011.11, or 3.75.

2-150

Data Type Conversion

When the value is output from the Data Type Conversion5 block as a
stored integer, you get back the original input value of 15.

Example 2 — Real World Values and Stored Integers in
Summations

The model shown below illustrates how a summation operation applies
to real-world values and stored integers, and how scaling information is
dealt with in generated code.

Note that the summation operation produces the correct result when
the Data Type Conversion (2 or 5) block outputs a real-world value.
This is because the specified scaling information is applied to the stored
integer value. However, when the Data Type Conversion4 block outputs
a stored integer value, then the summation operation produces an
unexpected result due to the absence of scaling information.

2-151

Data Type Conversion

If you generate code for the above model, then the code captures
the appropriate scaling information. The code for the Sum block is
shown below. The inputs to this block are tagged with the specified
scaling information so that the necessary shifts are performed for the
summation operation.

/* Sum Block: <Root>/Sum
*
* y = u0 + u1
*
* Input0 Data Type: Fixed Point S16 2^-2
* Input1 Data Type: Fixed Point S16 2^-4
* Output0 Data Type: Fixed Point S16 2^-5
*
* Round Mode: Floor
* Saturation Mode: Wrap
*
*/

sum = ((in1) << 3);

sum += ((in2) << 1);

Characteristics Direct Feedthrough Yes

Sample Time Inherited from driving block

Scalar Expansion N/A

Dimensionalized Yes

Zero Crossing No

See Also Data Type Conversion Inherited

2-152

Data Type Conversion Inherited

Purpose Convert from one data type to another using inherited data type and
scaling

Library Signal Attributes

Description The Data Type Conversion Inherited block forces dissimilar data types
to be the same. The first (top, or left) input is used as the reference
signal and the second (bottom, or right) input is converted to the
reference type by inheriting the data type and scaling information.
Either input is scalar expanded such that the output has the same
width as the widest input.

Inheriting the data type and scaling provides these advantages:

• It makes reusing existing models easier.

• It allows you to create new fixed-point models with less effort since
you can avoid the detail of specifying the associated parameters.

Data Type
Support

The Data Type Conversion Inherited block handles any data type
supported by Simulink, including fixed-point data types.

For a discussion on the data types supported by Simulink, see “Data
Types Supported by Simulink” in the “Working with Data” chapter of
the Using Simulink documentation.

2-153

Data Type Conversion Inherited

Parameters
and
Dialog
Box

Input and Output to have equal
Specify whether the Real World Value (RWV) or the Stored
Integer (SI) of the input and output should be the same. Refer
to Description in the Data Type Conversion block reference page
for more information about these choices.

Round toward
Select the rounding mode for fixed-point operations.

Saturate to max or min when overflows occur
Select to have overflows saturate.

Characteristics Direct Feedthrough Yes

See Also Data Type Conversion

2-154

Data Type Duplicate

Purpose Force all inputs to same data type

Library Signal Attributes

Description The Data Type Duplicate block forces all inputs to have exactly the
same data type. Other attributes of input signals, such as dimension,
complexity, and sample time, are completely independent.

You can use the Data Type Duplicate block to check for consistency of
data types among blocks. If all signals do not have the same data type,
the block returns an error message.

The Data Type Duplicate block is typically used such that one signal to
the block controls the data type for all other blocks. The other blocks
are set to inherit their data types via backpropagation.

The block is also used in a user created library. These library blocks
can be placed in any model, and the data type for all library blocks are
configured according to the usage in the model. To create a library block
with more complex data type rules than duplication, use the Data Type
Propagation block.

Data Type
Support

The Data Type Duplicate block accepts signals of any data type
supported by Simulink, including fixed-point data types.

2-155

Data Type Duplicate

Parameters
and
Dialog
Box

Number of input ports
Number of input ports.

Characteristics Scalar Expansion Yes

States 0

2-156

Data Type Propagation

Purpose Set data type and scaling of propagated signal based on information
from reference signals

Library Signal Attributes

Description The Data Type Propagation block allows you to control the data type and
scaling of signals in your model. You can use this block in conjunction
with fixed-point blocks that have their Specify data type and scaling
parameter configured to Inherit via back propagation.

The block has three inputs: Ref1 and Ref2 are the reference inputs,
while the Prop input back propagates the data type and scaling
information gathered from the reference inputs. This information is
then passed on to other fixed-point blocks.

The block provides you with many choices for propagating data type
and scaling information. For example, you can:

• Use the number of bits from the Ref1 reference signal, or use the
number of bits from widest reference signal.

• Use the range from the Ref2 reference signal, or use the range of the
reference signal with the greatest range.

• Use a bias of zero, regardless of the biases used by the reference
signals.

• Use the precision of the reference signal with the least precision.

You specify how data type information is propagated with the
Propagated data type parameter list. If the parameter list is
configured as Specify via dialog, then you manually specify the data
type via the Propagated data type edit field. If the parameter list is
configured as Inherit via propagation rule, then you must use the
parameters described in “Parameters and Dialog Box” on page 2-160.

You specify how scaling information is propagated with the Propagated
scaling parameter list. If the parameter list is configured as Specify
via dialog, then you manually specify the scaling via the Propagated
scaling edit field. If the parameter list is configured as Inherit via

2-157

Data Type Propagation

propagation rule, then you must use the parameters described in
“Parameters and Dialog Box” on page 2-160.

After you use the information from the reference signals, you can apply
a second level of adjustments to the data type and scaling by using
individual multiplicative and additive adjustments. This flexibility has
a variety of uses. For example, if you are targeting a DSP, then you
can configure the block so that the number of bits associated with a
MAC (multiply and accumulate) operation is twice as wide as the input
signal, and has a certain number of guard bits added to it.

The Data Type Propagation block also provides a mechanism to force
the computed number of bits to a useful value. For example, if you are
targeting a 16-bit micro, then the target C compiler is likely to support
sizes of only 8 bits, 16 bits, and 32 bits. The block will force these three
choices to be used. For example, suppose the block computes a data type
size of 24 bits. Since 24 bits is not directly usable by the target chip, the
signal is forced up to 32 bits, which is natively supported.

There is also a method for dealing with floating-point reference signals.
This makes it easier to create designs that are easily retargeted from
fixed-point chips to floating-point chips or vice versa.

The Data Type Propagation block allows you to set up libraries of useful
subsystems that will be properly configured based on the connected
signals. Without this data type propagation process, a subsystem
that you use from a library will almost certainly not work as desired
with most integer or fixed-point signals, and manual intervention to
configure the data type and scaling would be required. This block can
eliminate the manual intervention in many situations.

Precedence Rules

The precedence of the dialog box parameters decreases from top to
bottom. Additionally:

• Double-precision reference inputs have precedence over all other
data types.

2-158

Data Type Propagation

• Single-precision reference inputs have precedence over integer and
fixed-point data types.

• Multiplicative adjustments are carried out before additive
adjustments.

• The number of bits is determined before the precision or positive
range is inherited from the reference inputs.

Data Type
Support

The Data Type Propagation block accepts signals of any data type
supported by Simulink, including fixed-point data types.

2-159

Data Type Propagation

Parameters
and
Dialog
Box

The Propagated type pane of the Data Type Propagation block dialog
appears as follows:

2-160

Data Type Propagation

Propagated data type
Use the parameter list to propagate the data type via the dialog
box, or inherit the data type from the reference signals. Use the
edit field to specify the data type via the dialog box.

If any reference input is double, output is
Specify single or double. This parameter makes it easier to
create designs that are easily retargeted from fixed-point chips to
floating-point chips or vice versa.

This parameter is only visible if Inherit via propagation rule
is selected for the Propagated data type parameter list.

If any reference input is single, output is
Specify single or double. This parameter makes it easier to
create designs that are easily retargeted from fixed-point chips to
floating-point chips or visa versa.

This parameter is only visible if Inherit via propagation rule
is selected for the Propagated data type parameter list.

Is-Signed
Specify the sign of Prop as one of the following values:

Parameter
Value Description

IsSigned1 Prop is a signed data type if Ref1 is a signed
data type.

IsSigned2 Prop is a signed data type if Ref2 is a signed
data type.

IsSigned1 or
IsSigned2

Prop is a signed data type if either Ref1 or
Ref2 are signed data types.

TRUE Ref1 and Ref2 are ignored, and Prop is always
a signed data type.

FALSE Ref1 and Ref2 are ignored, and Prop is always
an unsigned data type.

2-161

Data Type Propagation

For example, if the Ref1 signal is ufix(16), the Ref2 signal
is sfix(16), and the Is-Signed parameter is IsSigned1 or
IsSigned2, then Prop is forced to be a signed data type.

This parameter is only visible if Inherit via propagation rule
is selected for the Propagated data type parameter list.

Number-of-bits: Base
Specify the number of bits used by Prop for the base data type
as one of the following values:

Parameter Value Description

NumBits1 The number of bits for Prop is given by the
number of bits for Ref1.

NumBits2 The number of bits for Prop is given by the
number of bits for Ref2.

max([NumBits1
NumBits2])

The number of bits for Prop is given by
the reference signal with largest number
of bits.

min([NumBits1
NumBits2])

The number of bits for Prop is given by
the reference signal with smallest number
of bits.

NumBits1+NumBits2 The number of bits for Prop is given by the
sum of the reference signal bits.

Refer to Targeting an Embedded Processor in the “Simulink Fixed
Point User’s Guide” documentation for more information about
the base data type.

This parameter is only visible if Inherit via propagation rule
is selected for the Propagated data type parameter list.

2-162

Data Type Propagation

Number-of-bits: Multiplicative adjustment
Specify the number of bits used by Prop by including a
multiplicative adjustment. For example, suppose you want to
guarantee that the number of bits associated with a multiply and
accumulate (MAC) operation is twice as wide as the input signal.
To do this, you configure this parameter to the value 2.

This parameter is only visible if Inherit via propagation rule
is selected for the Propagated data type parameter list.

Number-of-bits: Additive adjustment
Specify the number of bits used by Prop by including an additive
adjustment. For example, if you are performing multiple additions
during a MAC operation, the result may overflow. To prevent
overflow, you can associate guard bits with the propagated data
type. To associate four guard bits, you specify the value 4.

This parameter is only visible if Inherit via propagation rule
is selected for the Propagated data type parameter list.

Number-of-bits: Allowable final values
Force the computed number of bits used by Prop to a useful value.
For example, if you are targeting a processor that supports only 8,
16, and 32 bits, then you configure this parameter to [8,16,32].
The block always propagates the smallest specified value that
fits. If you want to allow all fixed-point data types, you would
specify the value 1:128.

This parameter is only visible if Inherit via propagation rule
is selected for the Propagated data type parameter list.

The Propagated scaling pane of the Data Type Propagation block
dialog appears as follows:

2-163

Data Type Propagation

2-164

Data Type Propagation

Propagated scaling
Use the parameter list to propagate the scaling via the dialog box,
or inherit the scaling from the reference signals. Use the edit field
to specify the scaling via the dialog box.

Values used to determine best precision scaling
Specify any values to be used to constrain the precision, such as
the upper and lower limits on the propagated input. Based on
the data type, the scaling will automatically be selected such
that these values can be represented with no overflow error and
minimum quantization error.

This parameter is only visible if Obtain via best precision is
selected for the Propagated scaling parameter list.

Slope: Base
Specify the slope used by Prop for the base data type as one of
the following values:

Parameter Value Description

Slope1 The slope of Prop is given by the slope
of Ref1.

Slope2 The slope of Prop is given by the slope
of Ref2.

max([Slope1
Slope2])

The slope of Prop is given by the
maximum slope of the reference
signals.

min([Slope1
Slope2])

The slope of Prop is given by the
minimum slope of the reference
signals.

Slope1*Slope2 The slope of Prop is given by the
product of the reference signal slopes.

Slope1/Slope2 The slope of Prop is given by the ratio
of the Ref1 slope to the Ref2 slope.

2-165

Data Type Propagation

Parameter Value Description

PosRange1 The range of Prop is given by the range
of Ref1.

PosRange2 The range of Prop is given by the range
of Ref2.

max([PosRange1
PosRange2])

The range of Prop is given by the
maximum range of the reference
signals.

min([PosRange1
PosRange2])

The range of Prop is given by the
minimum range of the reference
signals.

PosRange1*PosRange2 The range of Prop is given by the
product of the reference signal ranges.

PosRange1/PosRange2 The range of Prop is given by the ratio
of the Ref1 range to the Ref2 range.

You control the precision of Prop with Slope1 and Slope2, and
you control the range of Prop with PosRange1 and PosRange2.
Additionally, PosRange1 and PosRange2 are one bit higher than
the maximum positive range of the associated reference signal.

This parameter is only visible if Inherit via propagation rule
is selected for the Propagated scaling parameter list.

Slope: Multiplicative adjustment
Specify the slope used by Prop by including a multiplicative
adjustment. For example, if you want 3 bits of additional precision
(with a corresponding decrease in range), the multiplicative
adjustment is 2^-3.

This parameter is only visible if Inherit via propagation rule
is selected for the Propagated scaling parameter list.

2-166

Data Type Propagation

Slope: Additive adjustment
Specify the slope used by Prop by including an additive
adjustment. An additive slope adjustment is often not needed.
The most likely use is to set the multiplicative adjustment to
0, and set the additive adjustment to force the final slope to a
specified value.

This parameter is only visible if Inherit via propagation rule
is selected for the Propagated scaling parameter list.

Bias: Base
Specify the bias used by Prop for the base data type. The
parameter values are described below.

Parameter
Value Description

Bias1 The bias of Prop is given by the bias of Ref1.

Bias2 The bias of Prop is given by the bias of Ref2.

max([Bias1
Bias2])

The bias of Prop is given by the maximum
bias of the reference signals.

min([Bias1
Bias2])

The bias of Prop is given by the minimum
bias of the reference signals.

Bias1*Bias2 The bias of Prop is given by the product of
the reference signal biases.

Bias1/Bias2 The bias of Prop is given by the ratio of the
Ref1 bias to the Ref2 bias.

Bias1+Bias2 The bias of Prop is given by the sum of the
reference biases.

Bias1-Bias2 The bias of Prop is given by the difference of
the reference biases.

This parameter is only visible if Inherit via propagation rule
is selected for the Propagated scaling parameter list.

2-167

Data Type Propagation

Bias: Multiplicative adjustment
Specify the bias used by Prop by including a multiplicative
adjustment.

This parameter is only visible if Inherit via propagation rule
is selected for the Propagated scaling parameter list.

Bias: Additive adjustment
Specify the bias used by Prop by including an additive adjustment.

If you want to guarantee that the bias associated with Prop is
zero, you should configure both the multiplicative adjustment and
the additive adjustment to 0.

This parameter is only visible if Inherit via propagation rule
is selected for the Propagated scaling parameter list.

Characteristics Direct Feedthrough Yes

Scalar Expansion Yes

2-168

Data Type Scaling Strip

Purpose Remove scaling and map to built in integer

Library Signal Attributes

Description The Scaling Strip block strips the scaling off a fixed point signal. It
maps the input data type to the smallest built in data type that has
enough data bits to hold the input. The stored integer value of the input
is the value of the output. The output always has nominal scaling (slope
= 1.0 and bias = 0.0), so the output does not make a distinction between
real world value and stored integer value.

Data Type
Support

The Data Type Scaling Strip block accepts signals of any data type
supported by Simulink, including fixed-point data types.

Parameters
and
Dialog
Box

Characteristics Direct Feedthrough Yes

Scalar Expansion Yes

2-169

Dead Zone

Purpose Provide region of zero output

Library Discontinuities

Description The Dead Zone block generates zero output within a specified region,
called its dead zone. The lower and upper limits of the dead zone
are specified as the Start of dead zone and End of dead zone
parameters. The block output depends on the input and dead zone:

• If the input is within the dead zone (greater than the lower limit and
less than the upper limit), the output is zero.

• If the input is greater than or equal to the upper limit, the output is
the input minus the upper limit.

• If the input is less than or equal to the lower limit, the output is
the input minus the lower limit.

This sample model uses lower and upper limits of -0.5 and +0.5, with a
sine wave as input.

This plot shows the effect of the Dead Zone block on the sine wave. While
the input (the sine wave) is between -0.5 and 0.5, the output is zero.

2-170

Dead Zone

Data Type
Support

The Dead Zone block accepts and outputs a real signal of any data type
supported by Simulink, except Boolean. The Dead Zone block supports
fixed-point data types.

For a discussion on the data types supported by Simulink, see “Data
Types Supported by Simulink” in the “Working with Data” chapter of
the Using Simulink documentation.

2-171

Dead Zone

Parameters
and
Dialog
Box

Start of dead zone
Specify the lower limit of the dead zone. The default is -0.5.

End of dead zone
Specify the upper limit of the dead zone. The default is 0.5.

Saturate on integer overflow
Select to have overflows saturate.

Treat as gain when linearizing
The linearization commands in Simulink treat this block as a gain
in state space. Select this option to cause the commands to treat
the gain as 1; otherwise, the commands treat the gain as 0.

2-172

Dead Zone

Enable zero crossing detection
Select to enable zero crossing detection to detect when the limits
are reached. For more information, see Zero Crossing Detection
in the “How Simulink Works” chapter of the Using Simulink
documentation.

Sample time (-1 for inherited)
Specify the time interval between samples. To inherit the sample
time, set this parameter to -1. See Specifying Sample Time
in the “How Simulink Works” chapter of the Using Simulink
documentation.

Characteristics Direct Feedthrough Yes

Sample Time Specified in the Sample time parameter

Scalar Expansion Yes, of parameters

Dimensionalized Yes

Zero Crossing Yes, if enabled

See Also Dead Zone Dynamic

2-173

Dead Zone Dynamic

Purpose Set inputs within bounds to zero

Library Discontinuities

Description The Dead Zone Dynamic block dynamically bounds the range of the
input signal, providing a region of zero output. The bounds change
according to the upper and lower limit input signals where

• The input within the bounds is set to zero.

• The input below the lower limit is shifted down by the lower limit.

• The input above the upper limit is shifted down by the upper limit.

The input for the upper limit is the up port, and the input for the lower
limit is the lo port.

Data Type
Support

The Dead Zone Dynamic block accepts signals of any data type
supported by Simulink, including fixed-point data types.

Parameters
and
Dialog
Box

Characteristics Direct Feedthrough Yes

Scalar Expansion Yes

See Also Dead Zone

2-174

Decrement Real World

Purpose Decrease real world value of signal by one

Library Additional Math & Discrete / Additional Math: Increment - Decrement

Description The Decrement Real World block decreases the real world value of the
signal by one. Overflows always wrap.

Data Type
Support

The Decrement Real World block accepts signals of any data type
supported by Simulink, including fixed-point data types.

Parameters
and
Dialog
Box

Characteristics Direct Feedthrough Yes

Scalar Expansion No

See Also Decrement Stored Integer, Decrement Time To Zero, Decrement To
Zero, Increment Real World

2-175

Decrement Stored Integer

Purpose Decrease stored integer value of signal by one

Library Additional Math & Discrete / Additional Math: Increment - Decrement

Description The Decrement Stored Integer block decreases the stored integer value
of a signal by one.

Floating-point signals are also decreased by one, and overflows always
wrap.

Data Type
Support

The Decrement Stored Integer block accepts signals of any data type
supported by Simulink, including fixed-point data types.

Parameters
and
Dialog
Box

Characteristics Direct Feedthrough Yes

Scalar Expansion No

See Also Decrement Real World, Decrement Time To Zero, Decrement To Zero,
Increment Stored Integer

2-176

Decrement Time To Zero

Purpose Decrease real-world value of signal by sample time, but only to zero

Library Additional Math & Discrete / Additional Math: Increment - Decrement

Description The Decrement Time To Zero block decreases the real-world value of
the signal by the sample time, Ts. The output will never go below zero.
This block only works with fixed sample rates.

Data Type
Support

The Decrement Time To Zero block accepts signals of any data type
supported by Simulink, including fixed-point data types.

Parameters
and
Dialog
Box

Characteristics Direct Feedthrough Yes

Scalar Expansion No

See Also Decrement Real World, Decrement Stored Integer, Decrement To Zero

2-177

Decrement To Zero

Purpose Decrease real-world value of signal by one, but only to zero

Library Additional Math & Discrete / Additional Math: Increment - Decrement

Description The Decrement To Zero block decreases the real-world value of the
signal by one. The output will never go below zero.

Data Type
Support

The Decrement To Zero block accepts signals of any data type supported
by Simulink, including fixed-point data types.

Parameters
and
Dialog
Box

Characteristics Direct Feedthrough Yes

Scalar Expansion No

See Also Decrement Real World, Decrement Stored Integer, Decrement Time
To Zero

2-178

Demux

Purpose Extract and output elements of bus or vector signal

Library Signal Routing

Description The Demux block extracts the components of an input signal and
outputs the components as separate signals. The output signals are
ordered from top to bottom, or left to right, output port. The block
accepts either vector (1-D array) signals or bus signals (see “Signal
Buses” in the “Working with Signals” chapter of the Using Simulink
documentation). The Number of outputs parameter allows you to
specify the number and, optionally, the dimensionality of each output
port. If you do not specify the dimensionality of the outputs, the block
determines the dimensionality of the outputs for you.

The Demux block operates in either vector or bus selection mode,
depending on whether you selected the Bus selection mode parameter.
The two modes differ in the types of signals they accept. Vector mode
accepts only a vector-like signal, that is, either a scalar (one-element
array), vector (1-D array), or a column or row vector (one row or one
column 2-D array). Bus selection mode accepts only the output of a
Mux block or another Demux block.

The Demux block’s Number of outputs parameter determines the
number and dimensionality of the block’s outputs, depending on the
mode in which the block operates.

Specifying the Number of Outputs in Vector Mode

In vector mode, the value of the parameter can be a scalar specifying
the number of outputs or a vector whose elements specify the widths of
the block’s output ports. The block determines the size of its outputs
from the size of the input signal and the value of the Number of
outputs parameter.

The following table summarizes how the block determines the outputs
for an input vector of width n.

2-179

Demux

Parameter Value Block outputs... Comments

p = n p scalar signals For example, if the input is
a three-element vector and
you specify three outputs,
the block outputs three
scalar signals.

p > n Error

p < n

n mod p = 0

p vector signals each having
n/p elements

If the input is a six-element
vector and you specify three
outputs, the block outputs
three two-element vectors.

p < n

n mod p = m

m vector signals each having
(n/p)+1 elements and p-m
signals having n/p elements

If the input is a five-element
vector and you specify
three outputs, the block
outputs two two-element
vector signals and one scalar
signal.

[p1 p2 ... pm]

p1+p2+...+pm=n

pi > 0

m vector signals having
widths p1, p2, ... pm

If the input is a five-element
vector and you specify [3,
2] as the output, the block
outputs three of the input
elements on one port and the
other two elements on the
other port.

[p1 p2 ... pm]

p1+p2+...+pm=n

some or all

pi = -1

m vector signals If pi is greater than zero,
the corresponding output
has width pi. If pi is -1, the
width of the corresponding
output is dynamically sized.

[p1 p2 ... pm]

p1+p2+...+pm!=n

pi = > 0

Error

2-180

Demux

Note that you can specify the number of outputs as fewer than the
number of input elements, in which case the block distributes the
elements as evenly as possible over the outputs as illustrated in the
following example.

You can use -1 in a vector expression to indicate that the block should
dynamically size the corresponding port. For example, the expression
[-1, 3 -1] causes the block to output three signals in which the second
signal always has three elements while the sizes of the first and third
signals depend on the size of the input signal.

If a vector expression comprises positive values and -1 values, the block
assigns as many elements as needed to the ports with positive values
and distributes the remain elements as evenly as possible over the ports
with -1 values. For example, suppose that the block input is seven
elements wide and you specify the output as [-1, 3 -1]. In this case,
the block outputs two elements on the first port, three elements on the
second, and two elements on the third.

2-181

Demux

Specifying the Number of Outputs in Bus Selection Mode

In bus selection mode, the value of the Number of outputs parameter
can be a

• Scalar specifying the number of output ports

The specified value must equal the number of input signals. For
example, if the input bus comprises two signals and the value of this
parameter is a scalar, the value must equal 2.

• Vector each of whose elements specifies the number of signals to
output on the corresponding port

For example, if the input bus contains five signals, you can specify
the output as [3, 2], in which case the block outputs three of the
input signals on one port and the other two signals on a second port.

2-182

Demux

• Cell array each of whose elements is a cell array of vectors specifying
the dimensions of the signals output by the corresponding port

The cell array format constrains the Demux block to accept only signals
of specified dimensions. For example, the cell array {{[2 2], 3} {1}} tells
the block to accept only a bus signal comprising a 2-by-2 matrix, a
three-element vector, and a scalar signal. You can use the value -1 in
a cell array expression to let the block determine the dimensionality
of a particular output based on the input. For example, the following
diagram uses the cell array expression {{-1}, {-1,-1}} to specify the output
of the leftmost Demux block.

In bus selection mode, if you specify the dimensionality of an output
port, i.e., if you specify any value other than -1, the corresponding input
element must match the specified dimensionality.

Note Simulink hides the name of a Demux block when you copy it from
the Simulink library to a model.

2-183

Demux

Data Type
Support

The Demux block accepts and outputs complex or real signals of any
data type supported by Simulink, including fixed-point data types.

For a discussion on the data types supported by Simulink, see “Data
Types Supported by Simulink” in the “Working with Data” chapter of
the Using Simulink documentation.

Parameters
and
Dialog
Box

Number of outputs
The number and dimensions of outputs.

Display option
Options for displaying the Demux block. The options are

2-184

Demux

Option Description Example

bar Display the icon as a
solid bar of the block’s
foreground color.

none Display the icon as a box
containing the block’s
type name.

Bus selection mode
Enable bus selection mode.

2-185

Derivative

Purpose Output time derivative of input

Library Continuous

Description The Derivative block approximates the derivative of its input by
computing

where du is the change in input value and dt is the change in time since
the previous simulation time step. The block accepts one input and
generates one output. The initial output for the block is zero.

The accuracy of the results depends on the size of the time steps taken
in the simulation. Smaller steps allow a smoother and more accurate
output curve from this block. Unlike blocks that have continuous states,
the solver does not take smaller steps when the input changes rapidly.

When the input is a discrete signal, the continuous derivative of the
input is an impulse when the value of the input changes, otherwise it is
0. You can obtain the discrete derivative of a discrete signal using

and taking the z-transform

Using linmod to linearize a model that contains a Derivative block
can be troublesome. To improve the accuracy of linearizations of this
block, use the optional linearization parameter within the block dialog
box. Additionally, for more information about how to avoid problems
linearizing Derivative blocks, see Linearizing Models in the “Analyzing
Simulation Results” chapter of the Using Simulink documentation.

2-186

Derivative

Data Type
Support

The Derivative block accepts and outputs a real signal of type double.

Parameters
and
Dialog
Box

The exact linearization of the Derivative block is difficult due to the
fact that the block cannot be represented as a state space system since

the dynamic equation for the block is y u= � . However, it is possible to
approximate the linearization by adding a pole to the Derivative to
create a proper transfer function. The addition of the pole has the effect
of filtering the signal before differentiating it, to remove the effect of
noise. The approximated linearization of the Derivative block is then

s
Ns+1 . You can change the Linearization Time Constant, N, to more

accurately approximate the linearization for your system. Its default
value is Inf, corresponding to a linearization of 0, but it is common

practice to change it to 1
fb

, where fb is the break frequency for the filter.

Characteristics Direct Feedthrough Yes

Sample Time Continuous

Scalar Expansion N/A

States 2*[1+(number of input elements)]

2-187

Derivative

Dimensionalized Yes

Zero Crossing No

See Also Discrete Derivative

2-188

Detect Change

Purpose Detect change in signal’s value

Library Logic and Bit Operations

Description The Detect Change block determines if an input does not equal its
previous value where

• The output is true (equal to 1), when the input signal does not equal
its previous value.

• The output is false (equal to 0), when the input signal equals its
previous value.

Data Type
Support

The Detect Change block accepts signals of any data type supported by
Simulink, including fixed-point data types. The block output is uint8.

Parameters
and
Dialog
Box

Initial condition
Set the initial condition for the previous input U/z.

2-189

Detect Change

Characteristics Direct Feedthrough Yes

Scalar Expansion Yes

See Also Detect Decrease, Detect Fall Negative, Detect Fall Nonpositive, Detect
Increase, Detect Rise Nonnegative, Detect Rise Positive

2-190

Detect Decrease

Purpose Detect decrease in signal’s value

Library Logic and Bit Operations

Description The Detect Decrease block determines if an input is strictly less than
its previous value where

• The output is true (equal to 1), when the input signal is less than
its previous value.

• The output is false (equal to 0), when the input signal is greater than
or equal to its previous value.

Data Type
Support

The Detect Decrease block accepts signals of any data type supported by
Simulink, including fixed-point data types. The block output is uint8.

Parameters
and
Dialog
Box

Initial condition
Set the initial condition for the previous input U/z.

2-191

Detect Decrease

Characteristics Direct Feedthrough Yes

Scalar Expansion Yes

See Also Detect Change, Detect Fall Negative, Detect Fall Nonpositive, Detect
Increase, Detect Rise Nonnegative, Detect Rise Positive

2-192

Detect Fall Negative

Purpose Detect falling edge when signal’s value decreases to strictly negative
value, and its previous value was nonnegative

Library Logic and Bit Operations

Description The Detect Fall Negative block determines if the input is less than zero,
and its previous value was greater than or equal to zero where

• The output is true (equal to 1), when the input signal is less than
zero, and its previous value was greater than or equal to zero.

• The output is false (equal to 0), when the input signal is greater than
or equal to zero, or if the input signal is nonnegative, its previous
value was positive or zero.

Data Type
Support

The Detect Fall Negative block accepts signals of any data type
supported by Simulink, including fixed-point data types. The block
output is uint8.

Parameters
and
Dialog
Box

Initial condition
Set the initial condition of the Boolean expression U/z < 0.

Characteristics Direct Feedthrough Yes

Scalar Expansion Yes

See Also Detect Change, Detect Decrease, Detect Fall Nonpositive, Detect
Increase, Detect Rise Nonnegative, Detect Rise Positive

2-193

Detect Fall Nonpositive

Purpose Detect falling edge when signal’s value decreases to nonpositive value,
and its previous value was strictly positive

Library Logic and Bit Operations

Description The Detect Fall Nonpositive block determines if the input is less than or
equal to zero, and its previous value was positive where

• The output is true (equal to 1), when the input signal is less than or
equal to zero, and its previous value was greater than zero.

• The output is false (equal to 0), when the input signal is greater than
zero, or if it is nonpositive, its previous value was nonpositive.

Data Type
Support

The Detect Fall Nonpositive block accepts signals of any data type
supported by Simulink, including fixed-point data types. The block
output is uint8.

Parameters
and
Dialog
Box

Initial condition
Set the initial condition of the Boolean expression U/z <= 0.

2-194

Detect Fall Nonpositive

Characteristics Direct Feedthrough Yes

Scalar Expansion Yes

See Also Detect Change, Detect Decrease, Detect Fall Negative, Detect Increase,
Detect Rise Nonnegative, Detect Rise Positive

2-195

Detect Increase

Purpose Detect increase in signal’s value

Library Logic and Bit Operations

Description The Detect Increase block determines if an input is strictly greater than
its previous value where

• The output is true (equal to 1), when the input signal is greater than
its previous value.

• The output is false (equal to 0), when the input signal is less than or
equal to its previous value.

Data Type
Support

The Detect Increase block accepts signals of any data type supported by
Simulink, including fixed-point data types. The block output is uint8.

Parameters
and
Dialog
Box

Initial condition
Set the initial condition for the previous input U/z.

2-196

Detect Increase

Characteristics Direct Feedthrough Yes

Scalar Expansion Yes

See Also Detect Change, Detect Decrease, Detect Fall Negative, Detect Fall
Nonpositive, Detect Rise Nonnegative, Detect Rise Positive

2-197

Detect Rise Nonnegative

Purpose Detect rising edge when signal’s value increases to nonnegative value,
and its previous value was strictly negative

Library Logic and Bit Operations

Description The Detect Rise Nonnegative block determines if the input is greater
than or equal to zero, and its previous value was less than zero where

• The output is true (equal to 1), when the input signal is greater than
or equal to zero, and its previous value was less than zero.

• The output is false (equal to 0), when the input signal is less than
zero, or if nonnegative, its previous value was greater than or equal
to zero.

Data Type
Support

The Detect Rise Nonnegative block accepts signals of any data type
supported by Simulink, including fixed-point data types. The block
output is uint8.

Parameters
and
Dialog
Box

2-198

Detect Rise Nonnegative

Initial condition
Set the initial condition of the Boolean expression U/z >= 0.

Characteristics Direct Feedthrough Yes

Scalar Expansion Yes

See Also Detect Change, Detect Decrease, Detect Fall Negative, Detect Fall
Nonpositive, Detect Increase, Detect Rise Positive

2-199

Detect Rise Positive

Purpose Detect rising edge when signal’s value increases to strictly positive
value, and its previous value was nonpositive

Library Logic and Bit Operations

Description The Detect Rise Positive block determines if the input is strictly
positive, and its previous value was nonpositive where

• The output is true (equal to 1), when the input signal is greater than
zero, and its previous value was less than zero.

• The output is false (equal to 0), when the input is negative or zero, or
if the input is positive, its previous value was also positive.

Data Type
Support

The Detect Rise Positive block accepts signals of any data type
supported by Simulink, including fixed-point data types. The block
output is uint8.

Parameters
and
Dialog
Box

Initial condition
Set the initial condition of the Boolean expression U/z > 0.

2-200

Detect Rise Positive

Characteristics Direct Feedthrough Yes

Scalar Expansion Yes

See Also Detect Change, Detect Decrease, Detect Fall Negative, Detect Fall
Nonpositive, Detect Increase, Detect Rise Nonnegative

2-201

Difference

Purpose Calculate change in signal over one time step

Library Discrete

Description The Difference block outputs the current input value minus the previous
input value.

Data Type
Support

The Difference block accepts signals of any data type supported by
Simulink, including fixed-point data types.

Parameters
and
Dialog
Box

The Main pane of the Difference block dialog appears as follows:

Initial condition for previous output
Set the initial condition for the previous output.

2-202

Difference

The Signal Data Types pane of the Difference block dialog appears
as follows:

Output data type and scaling
Specify the output data type and scaling via the dialog box, or
inherit the data type and scaling from an internal rule or by
backpropagation.

Output data type
Set the output data type. This parameter is only visible if you
select Specify via dialog for the Output data type and
scaling parameter.

2-203

Difference

Output scaling
Set the output scaling using either binary point-only or [Slope
Bias] scaling. This parameter is only visible if you select Specify
via dialog for the Output data type and scaling parameter.

Lock output scaling against changes by the autoscaling tool
If you select this check box, the output scaling is locked.

Round toward
Rounding mode for the fixed-point output.

Saturate to max or min when overflows occur
If selected, fixed-point overflows saturate.

Characteristics Direct Feedthrough Yes

Scalar Expansion Yes, of inputs and gain

2-204

Digital Clock

Purpose Output simulation time at specified sampling interval

Library Sources

Description The Digital Clock block outputs the simulation time only at the specified
sampling interval. At other times, the output is held at the previous
value.

Use this block rather than the Clock block (which outputs continuous
time) when you need the current time within a discrete system.

Data Type
Support

The Digital Clock block outputs a real signal of type double.

Parameters
and
Dialog
Box

Sample time
The sampling interval. The default value is 1 second. See
Specifying Sample Time in the “How Simulink Works” chapter of
the Using Simulink documentation.

2-205

Digital Clock

Characteristics Sample Time Specified in the Sample time parameter

Scalar Expansion No

Dimensionalized No

Zero Crossing No

2-206

Direct Lookup Table (n-D)

Purpose Index into N-dimensional table to retrieve element, column, or 2-D
matrix

Library Lookup Tables

Description The Direct Lookup Table (n-D) block uses its block inputs as zero-based
indices into an n-D table. The number of inputs varies with the shape
of the output desired. The output can be an element, a column, or a
2-D matrix. The lookup table uses zero-based indexing, so integer data
types can fully address their range. For example, a table dimension
using the uint8 data type can address all 256 elements.

You define a set of output values as the Table data parameter. You
specify what object the inputs select from the table: an element, a
column, or a 2-D matrix. The first (top, or left) input specifies the
zero-based index to the first dimension higher than the number of
dimensions in the output, the next input specifies the index to the next
table dimension, and so on, as shown by this figure:

The figure shows a 5-D table with an output shape set to "2-D Matrix";
the output is a 2-D Matrix with R rows and C columns.

This figure shows the set of all the different icons that the Direct
Lookup Table block shows (depending on the options you choose in the
block’s dialog box).

2-207

Direct Lookup Table (n-D)

With dimensions higher than 4, the icon matches the 4-D icons, but
shows the exact number of dimensions in the top text, e.g., "8-D T[k]."
The top row of icons is used when the block output is made from one
or more single-element lookups on the table. The blocks labeled "n-D
Direct Table Lookup5," 6, 8, and 12 are configured to extract a column
from the table, and the two blocks ending in 7 and 9 are extracting a
plane from the table. Blocks in the figure ending in 10, 11, and 12 are
configured to have the table be an input instead of a parameter.

Example

In this example, the block parameters are defined as

Inputs select this object from table: "Column"
Table data: int16(a)

2-208

Direct Lookup Table (n-D)

where a is a 4-D array of linearly increasing numbers calculated using
MATLAB.

a = ones(20,4,5,7); L = prod(size(a));
a(1:L) = [1:L]';

The figure shows the block outputting a vector of the 20 values in the
second column of the fourth element of the third dimension from the
third element of the fourth dimension.

Note that the output has the same data type as the table, i.e., int16.
Also note that the block uses zero-based indexing. The output values
in this example can be calculated manually in MATLAB (which uses
1-based indexing):

a(:,1+1,1+3,1+2)

ans =

1061
1062
1063
1064
1065
1066
1067
1068

2-209

Direct Lookup Table (n-D)

1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080

Data Type
Support

The Direct Lookup Table (n-D) block accepts mixed-type signals of
data type supported by Simulink. For a discussion on the data types
supported by Simulink, see “Data Types Supported by Simulink” in the
“Working with Data” chapter of the Using Simulink documentation.

The output type can differ from the input type and can be any of the
types listed for input; the output type is inherited from the data type of
the Table data parameter.

In the case that the table comes into the block on an input port, the
output port type is inherited from the table input port. Inputs for
indexing must be real; table data can be complex.

2-210

Direct Lookup Table (n-D)

Parameters
and
Dialog
Box

Number of table dimensions
The number of dimensions that the Table data parameter must
have. This determines the number of independent variables
for the table and hence the number of inputs to the block. The
options are 1, 2, 3, 4, or More dimensions. If you choose More,
the dialog box displays an edit field, Explicit number of table
dimensions, that allows you to enter a number of dimensions.

Explicit number of table dimensions
This field appears if you select more as the value of the Number
of table dimensions. Enter the number of table dimensions in
this field.

Inputs select this object from table
Specify whether the output data is a single element, a column, or
a 2-D matrix. The number of ports changes for each selection:

2-211

Direct Lookup Table (n-D)

Element — # of ports = # of dimensions

Column — # of ports = # of dimensions - 1

2-D matrix — # of ports = # of dimensions - 2

This numbering agrees with MATLAB indexing. For example, if
you have a 4-D table of data, to access a single element you must
specify four indices, as in array(1,2,3,4). To specify a column,
you need three indices, as in array(:,2,3,4). Finally, to specify
a 2-D matrix, you only need two indices, as in array(:,:,3,4).

Make table an input
Selecting this box forces the Direct Lookup Table (n-D) block to
ignore the Table Data parameter. Instead, a new port appears
with "T" next to it. Use this port to input table data.

Table data
The table of output values. The matrix size must match the
dimensions defined by the Number of table dimensions
parameter or by the Explicit number of dimensions
parameter when the number of dimensions exceeds four. During
block diagram editing, you can leave the Table data field
empty, but for running the simulation, you must match the
number of dimensions in the Table data to the Number of
table dimensions. For information about how to construct
multidimensional arrays in MATLAB, see “Multidimensional
Arrays” in the MATLAB online documentation. (This field
appears only if Make table an input is not selected.)

Action for out of range input
None, Warning, Error.

Characteristics Direct Feedthrough Yes

Sample Time Inherited from driving blocks

2-212

Direct Lookup Table (n-D)

Scalar Expansion For scalar lookups only (not when
returning a column or a 2-D matrix from
the table)

Dimensionalized For scalar lookups only (not when
returning a column or a 2-D matrix from
the table)

Zero Crossing No

2-213

Discrete Derivative

Purpose Compute discrete time derivative

Library Discrete

Description The Discrete Derivative block computes an optionally scaled discrete
time derivative as follows

y t
Ku t

T
Ku t

Tn
n

s

n

s
()

() ()
= − −1

where y tn() and u tn() are the block’s input and output at the current

time step, respectively, u tn()−1 is the block’s input at the previous time

step, K is a scaling factor, and Ts is the simulation’s discrete step size,
which must be fixed.

Data Type
Support

The Discrete Derivative block supports all Simulink data types,
including fixed-point data types.

For a discussion on the data types supported by Simulink, see “Data
Types Supported by Simulink” in the “Working with Data” chapter of
the Using Simulink documentation.

2-214

Discrete Derivative

Parameters
and
Dialog
Box

The Main pane of the Discrete Derivative block dialog appears as
follows:

Gain value
Scaling factor used to weight the block’s input at the current
time step.

Initial condition for previous weighted input K*u/Ts
Set the initial condition for the previous scaled input.

The Signal Data Types pane of the Discrete Derivative block dialog
box appears as follows:

2-215

Discrete Derivative

Output data type and scaling
Specify the output data type and scaling via the dialog box, or
inherit the data type and scaling from the driving block or by
backpropagation. If you choose Specify via dialog, the Output
data type and Output scaling parameters appear.

Output data type
Set the output data type. This parameter is only visible if you
select Specify via dialog for the Output data type and
scaling parameter.

2-216

Discrete Derivative

Output scaling
Set the output scaling using either binary point-only or [Slope
Bias] scaling. This parameter is only visible if you select Specify
via dialog for the Output data type and scaling parameter.

Lock output scaling against changes by the autoscaling tool
If you select this check box, the output scaling is locked.

Round toward
Select the rounding mode for fixed-point operations.

Saturate to max or min when overflows occur
If selected, fixed-point overflows saturate.

Characteristics Direct Feedthrough Yes

Scalar Expansion Yes, of inputs and gain

See Also Derivative

2-217

Discrete Filter

Purpose Model IIR and FIR filters

Library Discrete

Description The Discrete Filter block models Infinite Impulse Response (IIR) and
Finite Impulse Response (FIR) filters. You specify the filter as a ratio of
polynomials in z-1. You can specify that the block have a scalar output or
vector output where the elements correspond to a set of filters that have
the same denominator polynomial but different numerator polynomials.

Use the Numerator coefficient parameter to specify the coefficients
of the discrete filter’s numerator polynomial or polynomials. Use a
vector to specify the coefficients for a single numerator polynomial. Use
a matrix to specify the coefficients of multiple numerator polynomials
where each row contains the coefficients of one of the polynomials. Use
the Denominator coefficient parameter to specify the coefficients of
the function’s denominator polynomial. The value of the Denominator
coefficient parameter must be a vector of coefficients.

You must specify the coefficients of the numerator and denominator
polynomials in ascending powers of z-1. The order of the denominator
must be greater than or equal to the order of the numerator.

If you specify a single numerator polynomial, i.e., a vector as the value
of the Numerator coefficient parameter, the block’s output is a scalar
signal. If you specify multiple numerator polynomials, i.e., a matrix as
the value of the Numerator coefficientsparameter, the block’s output
is a vector signal whose width equals the number of matrix rows, i.e.,
the number or numerator polynomials.

The Discrete Filter block lets you use polynomials in z-1 (the delay
operator) to represent a discrete system, a method typically used by
signal processing engineers. By contrast, the Discrete Transfer Fcn
block lets you use polynomials in z to represent a discrete system,
the method typically used by control engineers. The two methods are
identical when the numerator and denominator polynomials have the
same length.

2-218

Discrete Filter

The block displays the numerator and denominator according to how
they are specified. For a discussion of how Simulink displays the icon,
see Transfer Fcn.

Data Type
Support

The Discrete Filter block accepts and outputs a real signal of type
double.

Parameters
and
Dialog
Box

Numerator coefficient
A vector of polynomial coefficients or a matrix of coefficients
where each row of coefficients corresponds to a distinct numerator
polynomial. You must specify the polynomial coefficients in
ascending powers of z-1. If you specify a vector of coefficients,
i.e., a single numerator polynomial, the output of the block
is a scalar signal. If you specify a matrix of coefficients, i.e.,
multiple polynomials, the block’s output is a vector of signals,

2-219

Discrete Filter

each corresponding to the filter consisting off the corresponding
numerator polynomial and the denominator polynomial specified
by the Denominator coefficients parameter. The default is [1].

Denominator coefficient
The vector of denominator coefficients. The default is [1 0.5].
The width of the vector, i.e., the order of the denominator, must
be greater than or equal to the width of the numerator vector or
matrix rows, i.e., the order of the numerator.

Sample time
The time interval between samples. See Specifying Sample Time
in the “How Simulink Works” chapter of the Using Simulink
documentation.

The State Properties pane of this block pertains to code generation
and has no effect on model simulation. See “Block States: Storing
and Interfacing” in the Real-Time Workshop User’s Guide for more
information.

Characteristics Direct Feedthrough Only if the lengths of the Numerator and
Denominator parameters are equal

Sample Time Specified in the Sample time parameter

Scalar Expansion No

States Length of Denominator parameter -1

Dimensionalized No

Zero Crossing No

2-220

Discrete State-Space

Purpose Implement discrete state-space system

Library Discrete

Description The Discrete State-Space block implements the system described

by

where u is the input, x is the state, and y is the output. The matrix
coefficients must have these characteristics, as illustrated in the
following diagram:

• A must be an n-by-n matrix, where n is the number of states.

• B must be an n-by-m matrix, where m is the number of inputs.

• C must be an r-by-n matrix, where r is the number of outputs.

• D must be an r-by-m matrix.

The block accepts one input and generates one output. The input vector
width is determined by the number of columns in the B and D matrices.
The output vector width is determined by the number of rows in the C
and D matrices.

Simulink converts a matrix containing zeros to a sparse matrix for
efficient multiplication.

Data Type
Support

The Discrete State Space block accepts and outputs a real signal of
type double.

2-221

Discrete State-Space

Parameters
and
Dialog
Box

A, B, C, D
The matrix coefficients, as defined in the preceding equations.

Initial conditions
The initial state vector. The default is 0. Simulink does not allow
the initial states of this block to be inf or NaN.

2-222

Discrete State-Space

Sample time
The time interval between samples. See Specifying Sample Time
in the “How Simulink Works” chapter of the Using Simulink
documentation.

The State Properties pane of this block pertains to code generation
and has no effect on model simulation. See “Block States: Storing
and Interfacing” in the Real-Time Workshop User’s Guide for more
information.

Characteristics Direct Feedthrough Only if D ≠ 0

Sample Time Specified in the Sample time parameter

Scalar Expansion Yes, of the initial conditions

States Determined by the size of A

Dimensionalized Yes

Zero Crossing No

2-223

Discrete-Time Integrator

Purpose Perform discrete-time integration or accumulation of signal

Library Discrete

Description You can use the Discrete-Time Integrator block in place of the Integrator
block to create a purely discrete system.

The Discrete-Time Integrator block allows you to

• Define initial conditions on the block dialog box or as input to the
block.

• Define an input gain (K) value.

• Output the block state.

• Define upper and lower limits on the integral.

• Reset the state depending on an additional reset input.

These features are described below.

Integration and Accumulation Methods

The block can integrate or accumulate using the Forward Euler,
Backward Euler, and Trapezoidal methods. For a given step n, Simulink
updates y(n) and x(n+1). In integration mode, T is the block’s sample
time (delta T in the case of triggered sample time). In accumulation
mode, T = 1; the block’s sample time determines when the block’s
output is computed but not the output’s value. K is the gain value.
Values are clipped according to upper or lower limits.

• Forward Euler method (the default), also known as Forward
Rectangular, or left-hand approximation.

For this method, 1/s is approximated by T/(z-1). The resulting
expression for the output of the block at step n is

y(n) = y(n-1) + K*T*u(n-1)

2-224

Discrete-Time Integrator

Let x(n+1) = x(n) + K*T*u(n). The block uses the following steps
to compute its output:

Step 0: y(0) = x(0) = IC (clip if necessary)
x(1) = y(0) + K*T*u(0)

Step 1: y(1) = x(1)
x(2) = x(1) + K*T*u(1)

Step n: y(n) = x(n)
x(n+1) = x(n) + K*T*u(n) (clip if necessary)

With this method, input port 1 does not have direct feedthrough.

• Backward Euler method, also known as Backward Rectangular or
right-hand approximation.

For this method, 1/s is approximated by T*z/(z-1). The resulting
expression for the output of the block at step n is

y(n) = y(n-1) + K*T*u(n)

Let x(n) = y(n-1). The block uses the following steps to compute its
output

Step 0: y(0) = x(0) = IC (clipped if necessary)
x(1) = y(0)

or, depending on Use initial condition as initial and
reset value for
parameter:

Step 0: x(0) = IC (clipped if necessary)
x(1) = y(0) = x(0) + K*T*u(0)

Step 1: y(1) = x(1) + K*T*u(1)
x(2) = y(1)

2-225

Discrete-Time Integrator

Step n: y(n) = x(n) + K*T*u(n)
x(n+1) = y(n)

With this method, input port 1 has direct feedthrough.

• Trapezoidal method. For this method, 1/s is approximated by

T/2*(z+1)/(z-1)

When T is fixed (equal to the sampling period), let

x(n) = y(n-1) + K*T/2 * u(n-1)

The block uses the following steps to compute its output

Step 0: x(0) = IC (clipped if necessary)
x(1) = y(0) + K*T/2 * u(0)

or, depending on Use initial condition as initial and
reset value for
parameter:

Step 0: y(0) = x(0) = IC (clipped if necessary)
x(1) = y(0) = x(0) + K*T/2*u(0)

Step 1: y(1) = x(1) + K*T/2 * u(1)
x(2) = y(1) + K*T/2 * u(1)

Step n: y(n) = x(n) + K*T/2 * u(n)
x(n+1) = y(n) + K*T/2 * u(n)

Here, x(n+1) is the best estimate of the next output. It isn’t quite
the state, in the sense that x(n) != y(n).

If T is variable (i.e. obtained from the triggering times), the block
uses the following algorithm to compute its outputs

Step 0: y(0) = x(0) = IC (clipped if necessary)
x(1) = y(0)

2-226

Discrete-Time Integrator

or, depending on Use initial condition as initial and
reset value for
parameter:

Step 0: y(0) = x(0) = IC (clipped if necessary)
x(1) = y(0) = x(0) + K*T/2*u(0)

Step 1: y(1) = x(1) + T/2 * (u(1) + u(0))
x(2) = y(1)

Step n: y(n) = x(n) + T/2 * (u(n) + u(n-1))
x(n+1) = y(n)

With this method, input port 1 has direct feedthrough.

The block reflects the selected integration or accumulation method,
as this figure shows.

Defining Initial Conditions

You can define the initial conditions as a parameter on the block dialog
box or input them from an external signal:

• To define the initial conditions as a block parameter, specify the
Initial condition source parameter as internal and enter the
value in the Initial condition parameter field.

• To provide the initial conditions from an external source, specify the
Initial condition source parameter as external. An additional
input port appears under the block input, as shown in this figure.

2-227

Discrete-Time Integrator

Using the State Port

In two situations, you must use the state port instead of the output port:

• When the output of the block is fed back into the block through the
reset port or the initial condition port, causing an algebraic loop. For
an example of this situation, see the bounce model.

• When you want to pass the state from one conditionally executed
subsystem to another, which can cause timing problems. For an
example of this situation, see the clutch model.

You can correct these problems by passing the state through the state
port rather than the output port. Although the values are the same,
Simulink generates them at slightly different times, which protects
your model from these problems. You output the block state by selecting
the Show state port check box.

By default, the state port appears on the top of the block, as shown in
this figure.

Limiting the Integral

To prevent the output from exceeding specifiable levels, select the Limit
output check box and enter the limits in the appropriate parameter

2-228

Discrete-Time Integrator

fields. Doing so causes the block to function as a limited integrator.
When the output reaches the limits, the integral action is turned off to
prevent integral wind up. During a simulation, you can change the
limits but you cannot change whether the output is limited. The output
is determined as follows:

• When the integral is less than or equal to the Lower saturation
limit and the input is negative, the output is held at the Lower
saturation limit.

• When the integral is between the Lower saturation limit and the
Upper saturation limit, the output is the integral.

• When the integral is greater than or equal to the Upper saturation
limit and the input is positive, the output is held at the Upper
saturation limit.

To generate a signal that indicates when the state is being limited,
select the Show saturation port check box. A saturation port appears
below the block output port, as shown in this figure.

The signal has one of three values:

• 1 indicates that the upper limit is being applied.

• 0 indicates that the integral is not limited.

• -1 indicates that the lower limit is being applied.

Resetting the State

The block can reset its state to the specified initial condition, based on
an external signal. To cause the block to reset its state, select one of the

2-229

Discrete-Time Integrator

External reset parameter choices. A trigger port appears below the
block’s input port and indicates the trigger type, as shown in this figure.

The reset port has direct feedthrough. If the block output is fed back
into this port, either directly or through a series of blocks with direct
feedthrough, an algebraic loop results. To resolve this loop, feed the
output of the block’s state port into the reset port instead. To access the
block’s state, select the Show state port check box.

Reset Trigger Types

The External reset parameter lets you determine the attribute of the
reset signal that triggers the reset. The trigger options include:

• rising

Resets the state when the reset signal has a rising edge. For example,
the following figure shows the effect that a rising reset trigger has
on backward Euler integration.

�����

���	�

������
�����������

�����

����
����

2-230

Discrete-Time Integrator

• falling

Resets the state when the reset signal has a falling edge. For
example, the following figure shows the effect that a falling reset
trigger has on backward Euler integration.

�����

���	�

������
������������

�����

����
����

• either

Resets the state when the reset signal rises or falls. For example,
the following figure shows the effect that an either reset trigger has
on backward Euler integration.

�����

���	�

������
������������
�����

����
����

• level

2-231

Discrete-Time Integrator

Resets and holds the output to the initial condition while the reset
signal is nonzero. For example, the following figure shows the effect
that a level reset trigger has on backward Euler integration.

�����

���	�

������
�����������
�����

����
����

• sampled level

Resets the output to the initial condition when the reset signal is
nonzero. For example, the following figure shows the effect that a
sampled level reset trigger has on backward Euler integration.

���	�

�����

����
�����������
�����������
������
������

2-232

Discrete-Time Integrator

Note The sampled level reset option requires fewer computations
and hence is more efficient than the level reset option. However,
the level reset option, but may introduces a discontinuity when
integration resumes.

Choosing All Options

When all options are selected, the icon looks like this.

Data Type
Support

The Discrete-Time Integrator block accepts real signals of any data type
supported by Simulink, including fixed-point data types.

2-233

Discrete-Time Integrator

Parameters
and
Dialog
Box

The Main pane of the Discrete-Time Integrator block dialog appears
as follows:

2-234

Discrete-Time Integrator

Integrator method
Specify the integration or accumulation method.

Gain value
Specify a value by which to multiply the integrator input.
Specifying a value other than 1.0 (the default) is semantically
equivalent to connecting a signal to the input of the integrator
via a Gain block, i.e., to

Using this parameter to specify the input gain eliminates a
multiplication operation in the generated code. Realizing this
benefit, however, requires that this parameter be nontunable.
Accordingly, the Real-Time Workshop generates a warning during
code generation if the Model Parameter Configuration dialog
box for this model declares this parameter to be tunable. If you
want to tune the input gain, set this parameter to 1.0 and use an
external Gain block to specify the input gain.

External reset
Resets the states to their initial conditions when a trigger event
occurs in the reset signal. See “Resetting the State” on page 2-229
for more information.

Initial condition source
Gets the states’ initial conditions from the Initial condition
parameter (internal) or from an external block (external).
Simulink does not allow the initial condition of this block to be
inf or NaN.

Initial condition
The states’ initial conditions. This parameter is only available
if the Initial condition source parameter is set to internal.

2-235

Discrete-Time Integrator

Simulink does not allow the initial condition of this block to be
inf or NaN.

Use initial condition as initial and reset value for
When you set this parameter to State and output,

y(0) = IC

x(0) = IC

or at reset

y(n) = IC

x(n) = IC

When you set this parameter to State only (most efficient),

x(0) = IC

or at reset

x(n) = IC

Sample time
The time interval between samples. The default is 1. In
accumulation mode, the sample time specifies when the block’s
output is computed. See Specifying Sample Time in the “How
Simulink Works” chapter of the Using Simulink documentation.

Limit output
If selected, limits the block’s output to a value between the Lower
saturation limit and Upper saturation limit parameters.

Upper saturation limit
The upper limit for the integral. This parameter is only available
if you select the Limit output parameter.

2-236

Discrete-Time Integrator

Lower saturation limit
The lower limit for the integral. This parameter is only available
if you select the Limit output parameter.

Show saturation port
If selected, adds a saturation output port to the block.

Show state port
If selected, adds an output port to the block for the block’s state.

Ignore limit and reset when linearizing
Select this option to cause Simulink linearization commands to
treat this block as unresettable and as having no limits on its
output, regardless of the settings of the block’s reset and output
limitation options. This allows you to linearize a model around an
operating point that causes the integrator to reset or saturate.

The Signal Data Types pane of the Discrete-Time Integrator block
dialog appears as follows:

2-237

Discrete-Time Integrator

2-238

Discrete-Time Integrator

Output data type mode
Specify the output data type and scaling via the dialog box, or
inherit the data type and scaling from the driving block or by
backpropagation.

Output data type
Specify any data type, including fixed-point data types. This
parameter is only visible if you select Specify via dialog for
the Output data type and scaling parameter.

Output scaling value
Set the output scaling using either binary point-only or [Slope
Bias] scaling. This parameter is only visible if you select Specify
via dialog for the Output data type and scaling parameter.

Lock output scaling against changes by the autoscaling tool
Select to lock scaling of outputs. This parameter is only visible if
you select Specify via dialog for the Output data type mode
parameter.

Round integer calculations toward
Select the rounding mode for fixed-point operations.

Saturate on integer overflow
Select to have overflows saturate.

The State Properties pane of this block pertains to code generation
and has no effect on model simulation. See “Block States: Storing
and Interfacing” in the Real-Time Workshop User’s Guide for more
information.

Characteristics Direct Feedthrough Yes, of the reset and external initial
condition source ports. The input has
direct feedthrough for every integration
method except forward Euler and
accumulation forward Euler.

Sample Time Specified in the Sample time parameter

2-239

Discrete-Time Integrator

Scalar Expansion Yes, of parameters

States Inherited from driving block and
parameter

Dimensionalized Yes

Zero Crossing No

2-240

Discrete Transfer Fcn

Purpose Implement discrete transfer function

Library Discrete

Description The Discrete Transfer Fcn block implements the z-transform transfer
function described by the following equations:

where m+1 and n+1 are the number of numerator and denominator
coefficients, respectively. num and den contain the coefficients of the
numerator and denominator in descending powers of z. num can be
a vector or matrix, den must be a vector, and both are specified as
parameters on the block dialog box. The order of the denominator must
be greater than or equal to the order of the numerator.

Block input is scalar; output width is equal to the number of rows in
the numerator.

The Discrete Transfer Fcn block represents the method typically used
by control engineers, representing discrete systems as polynomials in z.
The Discrete Filter block represents the method typically used by signal
processing engineers, who describe digital filters using polynomials
in z-1 (the delay operator). The two methods are identical when the
numerator is the same length as the denominator.

The Discrete Transfer Fcn block displays the numerator and
denominator within its icon depending on how they are specified. See
Transfer Fcn for more information.

Data Type
Support

The Discrete Transfer Function block accepts and outputs real signals
of type double.

2-241

Discrete Transfer Fcn

Parameters
and
Dialog
Box

Numerator coefficient
The row vector of numerator coefficients. A matrix with multiple
rows can be specified to generate multiple output. The default
is [1].

Denominator coefficient
The row vector of denominator coefficients. The default is [1
0.5].

Sample time
The time interval between samples. The default is 1. See
Specifying Sample Time in the “How Simulink Works” chapter of
the Using Simulink documentation.

The State Properties pane of this block pertains to code generation
and has no effect on model simulation. See “Block States: Storing

2-242

Discrete Transfer Fcn

and Interfacing” in the Real-Time Workshop User’s Guide for more
information.

Characteristics Direct Feedthrough Only if the lengths of the Numerator and
Denominator parameters are equal

Sample Time Specified in the Sample time parameter

Scalar Expansion No

States Length of Denominator parameter -1

Dimensionalized No

Zero Crossing No

2-243

Discrete Zero-Pole

Purpose Model system defined by zeros and poles of discrete transfer function

Library Discrete

Description The Discrete Zero-Pole block models a discrete system defined by the
zeros, poles, and gain of a z-domain transfer function. This block
assumes that the transfer function has the following form

where Z represents the zeros vector, P the poles vector, and K the gain.
The number of poles must be greater than or equal to the number of
zeros (n ≥ m). If the poles and zeros are complex, they must be complex
conjugate pairs.

The block displays the transfer function depending on how the
parameters are specified. See Zero-Pole for more information.

Data Type
Support

The Discrete Zero-Pole block accepts and outputs real signals of type
double.

2-244

Discrete Zero-Pole

Parameters
and
Dialog
Box

Zeros
The matrix of zeros. The default is [1].

Poles
The vector of poles. The default is [0 0.5].

Gain
The gain. The default is 1.

Sample time
The time interval between samples. See Specifying Sample Time
in the “How Simulink Works” chapter of the Using Simulink
documentation.

2-245

Discrete Zero-Pole

The State Properties pane of this block pertains to code generation
and has no effect on model simulation. See “Block States: Storing
and Interfacing” in the Real-Time Workshop User’s Guide for more
information.

Characteristics Direct Feedthrough Yes, if the number of zeros and poles are
equal

Sample Time Specified in the Sample time parameter

Scalar Expansion No

States Length of Poles vector

Dimensionalized No

Zero Crossing No

2-246

Display

Purpose Show value of input

Library Sinks

Description The Display block shows the value of its input on its icon.

You control the display format using the Format parameter:

• short — displays a 5-digit scaled value with fixed decimal point

• long — displays a 15-digit scaled value with fixed decimal point

• short_e — displays a 5-digit value with a floating decimal point

• long_e — displays a 16-digit value with a floating decimal point

• bank — displays a value in fixed dollars and cents format (but with
no $ or commas)

• hex (Stored Integer) — displays the stored integer value of a
fixed-point input in hexadecimal format

• binary (Stored Integer) — displays the stored integer value of a
fixed-point input in binary format

• decimal (Stored Integer) — displays the stored integer value of a
fixed-point input in decimal format

• octal (Stored Integer) — displays the stored integer value of a
fixed-point input in octal format

The amount of data displayed and the time steps at which the data is
displayed are determined by the Decimation block parameter and
the SampleTime property:

• The Decimation parameter enables you to display data at every nth
sample, where n is the decimation factor. The default decimation, 1,
displays data at every time step.

• The SampleTime property, settable with set_param, enables you to
specify a sampling interval at which to display points. This property
is useful when you are using a variable-step solver where the interval

2-247

Display

between time steps might not be the same. The default value of -1
causes the block to ignore the sampling interval when determining
the points to display.

If the block input is an array, you can resize the block to show more
than just the first element. You can resize the block vertically or
horizontally; the block adds display fields in the appropriate direction.
A black triangle indicates that the block is not displaying all input
array elements. For example, the following figure shows a model that
passes a vector (1-D array) to a Display block. The black triangle on the
Display block indicates more data to be displayed.

The following figure shows the resized block displaying both input
elements.

Note that the Display block displays up to ten columns of a matrix.

Display Abbreviations

The following abbreviations appear on the Display block to help you
identify the format of the number being displayed.

2-248

Display

Symbol Description

(SI) This alerts you to the fact that the number being
displayed is the stored integer value. This symbol
does not appear when the signal is of an integer data
type.

hex The number being displayed is in hexadecimal
format.

bin The number being displayed is in binary format.

oct The number being displayed is in octal format.

Floating Display

To use the block as a floating display, select the Floating display
check box. The block’s input port disappears and the block displays the
value of the signal on a selected line. If you select the Floating display
option, you must turn off the signal storage reuse feature in Simulink.
See “Signal storage reuse” in the “Running Simulations” chapter of the
Using Simulink documentation.

Data Type
Support

The Display block accepts and outputs real or complex signals of any
data type supported by Simulink, including fixed-point data types.

For a discussion on the data types supported by Simulink, see “Data
Types Supported by Simulink” in the “Working with Data” chapter of
the Using Simulink documentation.

2-249

Display

Parameters
and
Dialog
Box

Format
Specify the format of the data displayed, as discussed in
Description. The default is short.

Decimation
Specify how often to display data. The default value, 1, displays
every input point.

Floating display
If selected, the block’s input port disappears, which enables the
block to be used as a floating Display block.

Characteristics SampleTime Use set_param to specify the SampleTime
property

Dimensionalized Yes

2-250

Divide

Purpose Multiply or divide inputs

Library Math Operations

Description The Divide block is an implementation of the Product block. See
Product for more information.

2-251

DocBlock

Purpose Create text that documents model and save text with model

Library Model-Wide Utilities

Description The DocBlock allows you to create and edit text that documents a
model, and save that text with the model. Double-clicking an instance
of the block creates a temporary file containing the text associated with
this block and opens the file in an editor. Use the editor to modify the
text and save the file. Simulink stores the contents of the saved file in
the model file.

The DocBlock supports HTML, Rich Text Format (RTF), and ASCII
text document types. The default editors for these different document
types are

• HTML — Microsoft Word (if available). Otherwise, the DocBlock
opens HTML documents using the editor specified on the
Editor/Debugger Preferences pane of the Preferences dialog box.

• RTF — Microsoft Word (if available). Otherwise, the DocBlock opens
RTF documents using the editor specified on the Editor/Debugger
Preferences pane of the Preferences dialog box.

• Text — The DocBlock opens text documents using the editor specified
on the Editor/Debugger Preferences pane of the Preferences
dialog box.

Use the docblock command to change the default editors.

Note Simulink embeds DocBlock documents in the model file (see
Chapter 11, “Model File Format”). This can greatly increase the size
of a model file, for example, if the RTF document contains bitmapped
images, and can require more time to open and save the model.

Data Type
Support

Not applicable.

2-252

DocBlock

Parameters
and
Dialog
Box

Double-clicking an instance of the DocBlock opens an editor. To access
the DocBlock parameter dialog box, select the block in the Model Editor
and then select Mask Parameters from either the Edit menu or the
block’s context menu.

RTW Embedded Coder Flag (Real-Time Workshop Embedded Coder
license required)

Enter a template symbol name in this field. Real-Time Workshop
Embedded Coder uses this symbol to add comments to the code
generated from the model. See “Adding Global Comments”
under “Module Packaging Features” in the Real-Time Workshop
Embedded Coder documentation for more information.

Document Type
Specifies the type of document associated with the DocBlock. The
options are

• Text (the default)

• RTF

• HTML

2-253

DocBlock

Characteristics Not applicable

2-254

Dot Product

Purpose Generate dot product of two vectors

Library Math Operations

Description The Dot Product block generates the dot product of the vectors at its
inputs. The scalar output, y, is equal to the MATLAB operation

y = sum(conj(u1) .* u2)

where u1 and u2 represent the vectors at the block’s top (or left) and
bottom (or right) inputs, respectively. The inputs can be vectors, column
vectors (single-column matrices), or scalars. If both inputs are vectors
or column vectors, they must be the same length. If u1 and u2 are
both column vectors, the block outputs the equivalent of the MATLAB
expression u1'*u2.

The elements of the input vectors can be real- or complex-valued
signals. The signal type (complex or real) of the output depends on the
signal types of the inputs.

Input 1 Input 2 Output

real real real

real complex complex

complex real complex

complex complex complex

To perform element-by-element multiplication without summing, use
the Product block.

Data Type
Support

The Dot Product block accepts and outputs signals of any data type
supported by Simulink, including fixed-point data types.

For a discussion on the data types supported by Simulink, see “Data
Types Supported by Simulink”.

2-255

Dot Product

Parameters
and
Dialog
Box

Require all inputs to have same data type
Select to require all inputs to have the same data type.

Output data type mode
Set the data type and scaling of the output to be the same as
that of the first input, or to be inherited via an internal rule or
by backpropagation. Alternatively, choose to specify the data type
and scaling of the output through the Output data type and
Output scaling value parameters.

2-256

Dot Product

Output data type
Set the output data type. This parameter is only visible if you
select Specify via dialog for the Output data type mode
parameter.

Output scaling
Set the output scaling using either binary point-only or [Slope
Bias] scaling. This parameter is only visible if you select Specify
via dialog for the Output data type and scaling parameter.

Lock output scaling against changes by the autoscaling tool
Select to lock scaling of outputs. This parameter is only visible if
you select Specify via dialog for the Output data type mode
parameter.

Round integer calculations toward
Select the rounding mode for fixed-point operations.

Saturate on integer overflow
Select to have overflows saturate.

Characteristics Direct Feedthrough Yes

Sample Time Inherited from driving block

Scalar Expansion No

States 0

Dimensionalized Yes

Zero Crossing No

2-257

Embedded MATLAB Function

Purpose Include MATLAB code in models that generate embeddable C code

Library User-Defined Functions

Description An Embedded MATLAB Function block lets you compose a MATLAB
function in Simulink like the following example:

The MATLAB function you create executes for simulation and generates
code for a Real-Time Workshop target. If you are new to Simulink
and MATLAB, see Using the Embedded MATLAB Function Block in

2-258

Embedded MATLAB Function

Simulink documentation for a comprehensive overview including a
step-by-step example.

You create the MATLAB function in the Embedded MATLAB Editor.
To learn about this editor’s capabilities see Using the Embedded
MATLAB Editor.

You specify input and output data to the Embedded MATLAB Function
block in the function header as arguments and return values. Notice
that the argument and return values of the preceding example function
correspond to the inputs and outputs of the block in Simulink.

The Embedded MATLAB Function block supports a subset of the
language for which it can generate efficient embeddable code. The
following table gives a high-level overview of its capabilities with links
to more detailed information.

2-259

Embedded MATLAB Function

Supported MATLAB Features
Unsupported MATLAB
Features

Two-Dimensional Arrays N-Dimensional Arrays

Matrix operations(+,-,*,....) Matrix Deletion (X(1) = [])

Logical Indexing

Complex Numbers Sparse Matrices

Double/Single Math try-catch

if/switch/while/for Cell Arrays, Structures, Java,
User-Defined Classes

Numeric Types Calling out to functions on the
path (except for simulation)

Subfunctions global

persistent Command Duality

Simulink Parameters as Inputs

See the Chapter 12, “Embedded MATLAB Basics” for full details.

To generate embeddable code, the Embedded MATLAB Function block
relies on an analysis that determines the size and class of each variable.
This analysis imposes the following additional restrictions on the way
in which the above features may be used.

1 The first definition of a variable must define both its class and size.
The class and size of a variable cannot be changed once it has been
set.

2 Whether data is complex or real is determined by the first definition.
Subsequent definitions may assign real numbers into complex
storage but may not assign complex numbers into real storage.

The preceding limitations require you to code in a certain style.
Some common idioms to avoid are listed in “Limitations on Indexing

2-260

Embedded MATLAB Function

Operations” on page 12-77 and “Limitations with Complex Numbers” on
page 12-78 in Simulink documentation.

In addition to language restrictions, Embedded MATLAB Function
blocks support only a subset of the functions available in MATLAB.
A list of supported functions is given in the “Embedded MATLAB
Run-Time Function Library” on page 12-8. These functions include
functions in common categories like

• Arithmetic functions like plus, minus, and power

• Matrix operations like size, and length

• Advanced matrix operations like lu, inv, svd, and chol

• Trigonometric functions like sin, cos, sinh, and cosh

to name just a few. See “Embedded MATLAB Run-Time Library —
Categorical List” on page 12-26 for a complete list of function categories.

Note Although Embedded MATLAB attempts to produce exactly the
same results as MATLAB, there will be occasions when they will differ
due to rounding errors. These numerical differences, which may be a
few eps initially, might be magnified after repeated operations. Reliance
on the behavior of nan is not recommended. Different C compilers may
yield different results for the same computation.

To support visualization of data, Embedded MATLAB Function blocks
support calls to MATLAB functions for simulation only. See “Calling
MATLAB Functions” on page 12-46 in Simulink documentation to
understand some of the limitations of this capability, and how it
is integrated into Embedded MATLAB analysis. If these calls do
not directly affect any of the Simulink inputs or outputs, they are
eliminated from the generated code when generating code with
Real-Time Workshop.

2-261

Embedded MATLAB Function

You can declare an Embedded MATLAB input to be a Simulink
parameter instead of a port in the Model Explorer. The Embedded
MATLAB Function block also supports inheritance of types and size
for inputs, outputs, and parameters. If needed, you can also set these
explicitly using the Model Explorer. See Typing Function Argument
and Return Variables, Sizing Function Argument and Return Variables,
and Parameter Arguments in Embedded MATLAB Functions for more
detailed descriptions of variables that you use in Embedded MATLAB
Functions.

Note that recursive calls are not allowed in Embedded MATLAB.

Data Type
Support

The Embedded MATLAB Function block accepts inputs of any type
supported by Simulink. For a discussion on the variable types supported
by Embedded MATLAB functions in Simulink, refer to “Data Types
Supported by Simulink” in the Simulink documentation.

For more information on fixed-point support in Embedded MATLAB,
refer to “Using the Fixed-Point Toolbox with Embedded MATLAB” in
the Fixed-Point Toolbox documentation.

Simulink frames are not supported. However, you can use the Rate
Transition block to convert frames into vectors.

Parameters
and
Dialog
Box

The Block Parameters dialog box for an Embedded MATLAB Function
block is identical to the Block Parameters dialog box for a Subsystem
block. See the reference page for the Subsystem, Atomic Subsystem,
CodeReuse Subsystem blocks for an identification of each field.

2-262

Embedded MATLAB Function

Characteristics Direct Feedthrough Yes

Sample Time Specified in the Sample time
parameter

Scalar Expansion Yes

Dimensionalized Yes

Zero Crossing No

2-263

Enable

Purpose Add enabling port to subsystem

Library Ports & Subsystems

Description Adding an Enable block to a subsystem makes it an enabled subsystem.
An enabled subsystem executes while the input received at the Enable
port is greater than zero.

At the start of simulation, Simulink initializes the states of blocks
inside an enabled subsystem to their initial conditions. When an
enabled subsystem restarts (executes after having been disabled), the
States when enabling parameter determines what happens to the
states of blocks contained in the enabled subsystem:

• reset resets the states to their initial conditions (zero if not defined).

• held holds the states at their previous values.

You can output the enabling signal by selecting the Show output
port check box. Selecting this option allows the system to process the
enabling signal.

A subsystem can contain no more than one Enable block.

Data Type
Support

The data type of the input of the Enable port, i.e., the enable port that
appears on the subsystem in which the Enable block resides, can be any
data type supported by Simulink, including fixed-point data types.

For a discussion on the data types supported by Simulink, see “Data
Types Supported by Simulink” in the “Working with Data” chapter of
the Using Simulink documentation.

2-264

Enable

Parameters
and
Dialog
Box

States when enabling
Specifies how to handle internal states when the subsystem
becomes reenabled.

Show output port
If selected, Simulink draws the Enable block output port and
outputs the enabling signal.

Enable zero crossing detection
Select to enable zero crossing detection. For more information, see
Zero Crossing Detection in the “How Simulink Works” chapter of
the Using Simulink documentation.

Characteristics Sample Time Determined by the signal at the enable
port

Dimensionalized Yes

Zero Crossing Yes, if enabled.

2-265

Enabled and Triggered Subsystem

Purpose Represent subsystem whose execution is enabled and triggered by
external input

Library Ports & Subsystems

Description This block is a Subsystem block that is preconfigured to serve as the
starting point for creating an enabled and triggered subsystem. For
more information, see “Triggered and Enabled Subsystems” in the
online Simulink help.

2-266

Enabled Subsystem

Purpose Represent subsystem whose execution is enabled by external input

Library Ports & Subsystems

Description This block is a Subsystem block that is preconfigured to serve as the
starting point for creating an enabled subsystem. For more information,
see “Enabled Subsystems” in the “Creating a Model” chapter of the
Using Simulink documentation.

2-267

Environment Controller

Purpose Create branches of block diagram that apply only to simulation or only
to code generation

Library Signal Routing

Description This block outputs the signal at its Sim port only if the model that
contains it is being simulated. It outputs the signal at its RTW port
only if code is being generated from the model. This allows you to create
branches of a model’s block diagram that apply only to simulation or
only to code generation. The table below describes various scenarios
where either the Sim or RTW port applies.

Scenario Output

Normal mode simulation Sim

Simulation with the Simulink
Accelerator

Sim

Simulation of a referenced model Sim

External mode simulation RTW

Standard code generation RTW

Code generation of a referenced
model

RTW

Processor-in-the-loop target code
generation

Sim

Real-Time Workshop does not generate code for blocks connected to
the Sim port. If you enable block reduction optimization (see “Block
reduction” in the online Simulink documentation), Simulink eliminates
blocks in the branch connected to the block’s RTW port when compiling
the model for simulation.

2-268

Environment Controller

Note Real-Time Workshop eliminates the blocks connected to the Sim
branch only if the Sim branch has the same signal dimensions as the
RTW branch. Regardless of whether it eliminates the Sim branch,
Real-Time Workshop uses the sample times on the Sim branch as well
as the RTW branch to determine the fundamental sample time of the
generated code and may, in some cases, generate sample-time handling
code that applies only to sample times specified on the Sim branch.

Data Type
Support

The Environment Controller block accepts signals of any numeric or
data type. It outputs the type at its input.

Parameters
and
Dialog
Box

2-269

Extract Bits

Purpose Output selection of contiguous bits from input signal

Library Logic and Bit Operations

Description The Extract Bits block allows you to output a contiguous selection of bits
from the stored integer value of the input signal. The Bits to extract
parameter defines the method by which you select the output bits.

• Select Upper half to output the half of the input bits that contain
the most significant bit. If there is an odd number of bits in the input
signal, the number of output bits is given by the equation

• Select Lower half to output the half of the input bits that contain
the least significant bit. If there is an odd number of bits in the input
signal, the number of output bits is given by the equation

• Select Range starting with most significant bit to output
a certain number of the most significant bits of the input signal.
Specify the number of most significant bits to output in the Number
of bits parameter.

• Select Range ending with least significant bit to output a
certain number of the least significant bits of the input signal.
Specify the number of least significant bits to output in the Number
of bits parameter.

• Select Range of bits to indicate a series of contiguous bits of the
input to output in the Bit indices parameter. You indicate the range
in [start end] format, and the indices of the input bits are labeled
contiguously starting at 0 for the least significant bit.

2-270

Extract Bits

Data Type
Support

The Extract Bits block accepts inputs of any data type supported by
Simulink, including fixed-point data types. Floating-point inputs are
passed through the block unchanged. Boolean inputs are treated as
uint8 signals.

For a discussion on the data types supported by Simulink, see “Data
Types Supported by Simulink” in the Simulink documentation.

Parameters
and
Dialog
Box

Bits to extract
Select the mode by which to extract bits from the input signal, as
discussed in Description.

Number of bits
(Not shown on dialog above.) Select the number of bits to output
from the input signal.

This parameter is only visible if you select Range starting
with most significant bit or Range ending with least
significant bit for the Bits to extract parameter.

2-271

Extract Bits

Bit indices
(Not shown on dialog above.) Specify a contiguous range of bits
of the input signal to output. Specify the range in [start end]
format. The indices are assigned to the input bits starting with 0
at the least significant bit.

This parameter is only visible if you select Range of bits for
the Bits to extract parameter.

Output scaling mode
Select the scaling mode to use on the output bits selection:

• When you select Preserve fixed-point scaling, the fixed-point
scaling of the input is used to determine the output scaling during
the data type conversion.

• When you select Treat bit field as an integer, the fixed-point
scaling of the input is ignored, and only the stored integer is used to
compute the output data type.

Example Consider an input signal that is represented in binary by 110111001:

• If you select Upper half for the Bits to extract parameter, the
output is 11011 in binary.

• If you select Lower half for the Bits to extract parameter, the
output is 11001 in binary.

• If you select Range starting with most significant bit for the
Bits to extract parameter, and specify 3 for the Number of bits
parameter, the output is 110 in binary.

• If you select Range ending with least significant bit for the
Bits to extract parameter, and specify 8 for the Number of bits
parameter, the output is 10111001 in binary.

• If you select Range of bits for the Bits to extract parameter, and
specify [4 7] for the Bit indices parameter, the output is 1011 in
binary.

2-272

Extract Bits

Characteristics Direct Feedthrough Yes

Sample Time Inherited

Scalar Expansion N/A

States None

Dimensionalized Inherited

Zero Crossing No

2-273

Fcn

Purpose Apply specified expression to input

Library User-Defined Functions

Description The Fcn block applies the specified C language style expression to
its input. The expression can be made up of one or more of these
components:

• u — The input to the block. If u is a vector, u(i) represents the ith
element of the vector; u(1) or u alone represents the first element.

• Numeric constants

• Arithmetic operators (+ - * /^)

• Relational operators (== != > < >= <=) — The expression returns 1
if the relation is true; otherwise, it returns 0.

• Logical operators (&& || !) — The expression returns 1 if the
relation is true; otherwise, it returns 0.

• Parentheses

• Mathematical functions — abs, acos, asin, atan, atan2, ceil, cos,
cosh, exp, fabs, floor, hypot, ln, log, log10, pow, power, rem, sgn,
sin, sinh, sqrt, tan, and tanh.

• Workspace variables —Variable names that are not recognized in the
preceding list of items are passed to MATLAB for evaluation. Matrix
or vector elements must be specifically referenced (e.g., A(1,1)
instead of A for the first element in the matrix).

The Fcn block observes the following rules of operator precedence:

1 ()

2 ^

3 + - (unary)

4 !

2-274

Fcn

5 * /

6 + -

7 > < <= >=

8 == !=

9 &&

10 ||

The expression differs from a MATLAB expression in that the
expression cannot perform matrix computations. Also, this block does
not support the colon operator (:).

Block input can be a scalar or vector. The output is always a scalar. For
vector output, consider using the Math Function block. If a block input
is a vector and the function operates on input elements individually (for
example, the sin function), the block operates on only the first vector
element.

Data Type
Support

The Fcn block accepts and outputs signals of type double.

2-275

Fcn

Parameters
and
Dialog
Box

Expression
The C language style expression applied to the input.
Expression components are listed above. The expression must be
mathematically well formed (i.e., matched parentheses, proper
number of function arguments, etc.).

Note You cannot tune the expression during accelerated-mode
simulation (see “Simulink Accelerator”), in referenced models, or
in code generated from the model. The Fcn block also does not
support custom storage classes.

Sample time (-1 for inherited)
Specify the time interval between samples. To inherit the sample
time, set this parameter to -1. See “Specifying Sample Time” in
the online documentation for more information.

2-276

Fcn

Characteristics Direct Feedthrough Yes

Sample Time Inherited from driving block

Scalar Expansion No

Dimensionalized No

Zero Crossing No

2-277

First-Order Hold

Purpose Implement first-order sample-and-hold

Library Discrete

Description The First-Order Hold block implements a first-order sample-and-hold
that operates at the specified sampling interval. This block has little
value in practical applications and is included primarily for academic
purposes.

This figure compares the output from a Sine Wave block and a
First-Order Hold block.

Data Type
Support

The First-Order Hold block accepts and outputs signals of type double.

Parameters
and
Dialog
Box

2-278

First-Order Hold

Sample time
The time interval between samples. See “Specifying Sample
Time” in the online documentation for more information.

Characteristics Direct Feedthrough No

Sample Time Specified in the Sample time
parameter

Scalar Expansion No

States 1 continuous and 1 discrete per input
element

Dimensionalized Yes

Zero Crossing No

2-279

Fixed-Point State-Space

Purpose Implement discrete-time state space

Library Additional Math & Discrete / Additional Discrete

Description The Fixed-Point State-Space block implements the system described by

y(n) = Cx(n) + Du(n)

x(n+1) = Ax(n) + Bu(n)

where u is the input, x is the state, and y is the output. Both equations
have the same data type.

The matrices A, B, C and D have the following characteristics:

• A must be an n-by-n matrix, where n is the number of states.

• B must be an n-by-m matrix, where m is the number of inputs.

• C must be an r-by-n matrix, where r is the number of outputs.

• D must be an r-by-m matrix.

In addition:

• The state x must be a n-by-1 vector

• The input u must be a m-by-1 vector

• The output y must be a r-by-1 vector

The block accepts one input and generates one output. The input vector
width is determined by the number of columns in the B and D matrices.
The output vector width is determined by the number of rows in the C
and D matrices.

Data Type
Support

The Fixed-Point State-Space block accepts signals of any data type
supported by Simulink, including fixed-point data types.

2-280

Fixed-Point State-Space

Parameters
and
Dialog
Box

The Main pane of the Fixed-Point State-Space block dialog appears
as follows:

State Matrix A
Specify the matrix of states.

Input Matrix B
Specify the column vector of inputs.

Output Matrix C
Specify the column vector of outputs.

Direct Feedthrough Matrix D
Specify the matrix for direct feedthrough.

2-281

Fixed-Point State-Space

Initial condition for state
Specify the initial condition for the state.

The Signal Data Types pane of the Fixed-Point State-Space block
dialog appears as follows:

Data type for internal calculations
Specify the data type for internal calculations.

Scaling for State Equation AX+BU
Specify the scaling for state equations.

Scaling for Output Equation CX+DU
Specify the scaling for output equations.

2-282

Fixed-Point State-Space

Lock output scaling against changes by the autoscaling tool
If you select this check box, the output scaling is locked.

Round toward
Select the rounding mode for fixed-point operations.

Saturate to max or min when overflows occur
If selected, fixed-point overflows saturate.

Characteristics Direct Feedthrough Yes

Scalar Expansion Yes, of initial conditions

2-283

For Iterator

Purpose Repeatedly execute contents of subsystem at current time step until
iteration variable exceeds specified iteration limit

Library Ports & Subsystems/For Iterator Subsystem

Description The For Iterator block, when placed in a subsystem, repeatedly executes
the contents of the subsystem at the current time step until an iteration
variable exceeds a specified iteration limit. You can use this block
to implement the block diagram equivalent of a for loop in the C
programming language.

The block’s parameter dialog allows you to specify the maximum value
of the iteration variable or an external source for the maximum value
and an optional external source for the next value of the iteration
variable. If you do not specify an external source for the next value of
the iteration variable, the next value is determined by incrementing the
current value:

in+1 = in +1

The model in the following figure uses a For Iterator block to increment
an initial value of zero by 10 over 20 iterations at every time step.

2-284

For Iterator

The following figure shows the result.

2-285

For Iterator

The For Iterator subsystem in this example is equivalent to the
following C code.

sum = 0;
iterations = 20;
sum_increment = 10;
for (i = 0; i < iterations; i++) {
sum = sum + sum_increment;

}

Note Placing a For Iterator block in a subsystem makes it an atomic
subsystem if it is not already an atomic subsystem.

2-286

For Iterator

Data Type
Support

The following rules apply to the data type of the number of iterations
(N) input port:

• The input port accepts data of mixed types.

• If the input port value is noninteger, it is first truncated to an integer.

• Internally, the input value is cast to an integer of the type specified
for the iteration variable output port.

• If no output port is specified, the input port value is cast to type
int32.

• If the input port value exceeds the maximum value of the output
port’s type, it is truncated to that maximum value.

Data output for the iterator value can be selected as double, int32,
int16, or int8 in the Block Properties dialog.

The following rules apply to the iteration variable input port.

• It can appear only if the iteration variable output port is enabled.

• The data type of the iteration variable input port is the same as the
data type of the iteration variable output port.

2-287

For Iterator

Parameters
and
Dialog
Box

States when starting
Set this field to reset if you want the states of the For subsystem
to be reinitialized before the first iteration at each time step.
Otherwise, set this field to held (the default) to make sure that
these subsystem states retain their values from the last iteration
at the previous time step.

2-288

For Iterator

Iteration limit source
If you set this field to internal, the value of the Number of
iterations field determines the number of iterations. If you set
this field to external, the signal at the For Iterator block’s N port
determines the number of iterations. The iteration limit source
must reside outside the For Iterator subsystem.

Iteration limit
Set the number of iterations for the For Iterator block to this
value. This field appears only if you selected internal for the
Source of number of iterations field.

Set next i (iteration variable) externally
This option can be selected only if you select the Show iteration
variable option. If you select this option, the For Iterator block
displays an additional input for connecting an external iteration
variable source. The value of the input at the current iteration is
used as the value of the iteration variable at the next iteration.

Show iteration variable
If you select this check box, the For Iterator block outputs its
iteration value.

Index mode
If you set this field to Zero-based, the iteration number starts
at zero. If you set this field to One-based, the iteration number
starts at one.

Iteration variable data type
Set the type for the iteration value output from the iteration
number port to double, int32, int16, or int8.

Characteristics Direct Feedthrough No

Sample Time Inherited from driving blocks

Scalar Expansion No

2-289

For Iterator

Dimensionalized No

Zero Crossing No

2-290

For Iterator Subsystem

Purpose Represent subsystem that executes repeatedly during simulation time
step

Library Ports & Subsystems

Description The For Iterator Subsystem block is a Subsystem block that is
preconfigured to serve as a starting point for creating a subsystem
that executes repeatedly during a simulation time step. For more
information, see the For Iterator block in the online Simulink block
reference and “Modeling Control Flow Logic” in the Using Simulink
documentation.

2-291

From

Purpose Accept input from Goto block

Library Signal Routing

Description The From block accepts a signal from a corresponding Goto block, then
passes it as output. The data type of the output is the same as that of
the input from the Goto block. From and Goto blocks allow you to pass
a signal from one block to another without actually connecting them.
To associate a Goto block with a From block, enter the Goto block’s
tag in the Goto Tag parameter.

A From block can receive its signal from only one Goto block, although a
Goto block can pass its signal to more than one From block.

This figure shows that using a Goto block and a From block is equivalent
to connecting the blocks to which those blocks are connected. In the
model at the left, Block1 passes a signal to Block2. That model is
equivalent to the model at the right, which connects Block1 to the Goto
block, passes that signal to the From block, then on to Block2.

The visibility of a Goto block tag determines the From blocks that
can receive its signal. For more information, see Goto and Goto Tag
Visibility. The block indicates the visibility of the Goto block tag:

• A local tag name is enclosed in brackets ([]).

• A scoped tag name is enclosed in braces ({}).

• A global tag name appears without additional characters.

Data Type
Support

The From block outputs real or complex signals of any data type
supported by Simulink, including fixed-point data types.

For a discussion on the data types supported by Simulink, see “Data
Types Supported by Simulink” in the Simulink documentation.

2-292

From

Parameters
and
Dialog
Box

Goto Tag
The tag of the Goto block that forwards its signal to this From
block. To change the tag, select a new tag from this control’s
drop-down list. The drop-down list displays the Goto tags that the
From block can currently see. An item labeled <More Tags...>
appears at the end of the list the first time you display the list in
a Simulink session. Selecting this item causes the block to update
the tags list to include the tags of Goto blocks residing in library
subsystems referenced by the model containing this From block.
Simulink displays a progress bar while building the list of library
tags. Simulink saves the updated tags list for the duration of the
Simulink session or until the next time you select the adjacent
Update Tags button. You need to update the tags list again in
the current session only if the libraries referenced by the model
have changed since the last time you updated the list.

2-293

From

Update Tags
Updates the list of tags visible to this From block, including tags
residing in libraries referenced by the model containing this From
block.

Goto Source
Path of the Goto block connected to this From block. Clicking the
path displays and highlights the Goto block.

Icon Display
Specifies the text to display on the From block’s icon. The
options are the block’s tag, the name of the signal that the block
represents, or both the tag and the signal name.

Characteristics Sample Time Inherited from block driving the Goto
block

Dimensionalized Yes

2-294

From File

Purpose Read data from MAT file

Library Sources

Description The From File block outputs data read from a MAT file. Its icon displays
the pathname of the file supplying the data.

Note The From block can read data only from MAT files. It does not
support any other file format.

The MAT file must contain a matrix of two or more rows. The first
row must contain monotonically increasing time points. Other rows
contain data points that correspond to the time point in that column.
The matrix is expected to have this form.

The width of the output depends on the number of rows in the MAT
file. The block uses the time data to determine its output, but does not
output the time values. This means that in a matrix containing m rows,
the block outputs a vector of length m-1, consisting of data from all but
the first row of the appropriate column.

If an output value is needed at a time that falls between two values in
the MAT file, the value is linearly interpolated between the appropriate
values. If the required time is less than the first time value or greater
than the last time value in the MAT file, Simulink extrapolates, using
the first two or last two points to compute a value.

2-295

From File

If the matrix includes two or more columns at the same time value, the
output is the data point for the first column encountered. For example,
for a matrix that has this data:

time values: 0 1 2 2
data points: 2 3 4 5

At time 2, the output is 4, the data point for the first column
encountered at that time value.

Simulink reads the MAT file into memory at the start of the simulation.
As a result, you cannot read data from the same MAT file named in a
To File block in the same model.

See Importing Data from the MATLAB Workspace for guidelines on
choosing time vectors for discrete systems.

Using Data Saved by a To File or a To Workspace Block

The From File block can read data written by a To File block without
any modifications.

To read data written by a To Workspace block and saved to a MAT file:

• The data must include the simulation times. The easiest way to
include time data in the simulation output is to specify a variable
for time on the Data Import/Export pane of the Configuration
Parameters dialog box. See The Data Import/Export Pane for more
information.

• Before saving the data from the To Workspace block, transpose it to
the form expected by the From File block.

Data Type
Support

The From File block outputs real signals of type double.

2-296

From File

Parameters
and
Dialog
Box

Opening this dialog box causes a running simulation to pause.
See Changing Source Block Parameters in the online Simulink
documentation for details.

File name
The fully qualified pathname or file name of the MAT file that
contains the data used as input. On UNIX, the pathname can
start with a tilde (~) character signifying your home directory. The
default file name is untitled.mat. If you specify an unqualified
file name, Simulink assumes that the MAT file resides in the
MATLAB working directory. (To determine the working directory,
enter pwd at the MATLAB command line.) If Simulink cannot
find the specified file name in the working directory, it displays
an error message.

Sample time
The sample period and offset of the data read from the file. See
“Specifying Sample Time”in the online documentation for more
information.

2-297

From File

Characteristics Sample Time Specified in the Sample time
parameter

Scalar Expansion No

Dimensionalized 1-D array only

Zero Crossing No

2-298

From Workspace

Purpose Read data from workspace

Library Sources

Description The From Workspace block reads data from the MATLAB workspace.
The block’s Data parameter specifies the workspace data via a MATLAB
expression that evaluates to a matrix (2-D array), a structure containing
an array of signal values and time steps, or a time-series object (see
Simulink.Timeseries). The format of the matrix or structure is the
same as that used to load root-level input port data from the workspace
(see “Importing Data from the MATLAB Workspace”. The From
Workspace icon displays the expression in the Data parameter.

Note You must use the structure-with-time format or a time-series
object to load matrix (2-D) data from the workspace.

The From Workspace block’s Interpolate data parameter determines
the block’s output in the time interval for which workspace data is
supplied. If you select the Interpolate data option, the block uses
linear Lagrangian interpolation to compute data values for time steps
that occur between time steps for which the workspace supplies data.
In particular, the block linearly interpolates a missing data point from
the two known data points between which it falls. For example, suppose
the block reads the following time series from the workspace.

time: 1 2 3 4
signal: 253 254 ? 256

In this case, the block would output:

time: 1 2 3 4
signal: 253 254 255 256

If you do not select the Interpolate data option, the block uses the
most recent data value supplied from the workspace.

2-299

From Workspace

Note The data type of the workspace data can affect interpolated
values. See “How Data Types Affect Interpolation” on page 2-302 for
more information.

The block’s Form output after final data value by parameter
determines the block’s output after the last time step for which data
is available from the workspace. The following table summarizes the
output block based on the options that the parameter provides.

Form Output
Option

Interpolate
Option

Block Output After Final
Data

Extrapolate On Extrapolated from final data
value

Extrapolate Off Error

SettingToZero On Zero

SettingToZero Off Zero

HoldingFinalValue On Final value from workspace

HoldingFinalValue Off Final value from workspace

CyclicRepetition On Error

CyclicRepetition Off Repeated from workspace.
This option is valid only
for workspace data in
structure-without-time format.

If the input array contains more than one entry for the same time step,
Simulink detects a zero crossing at this time step. For example, suppose
the input array has this data:

time: 0 1 2 2 3
signal: 2 3 4 5 6

2-300

From Workspace

At time 2, there is a zero crossing from input signal discontinuity.

If the interpolation option is on, the block uses the last two known data
points to extrapolates data points that occur after the last known point.
Consider the following example.

In this example, the From Workspace block reads data from the
workspace consisting of the output of the Simulink Sine block sampled
at one-second intervals. The workspace contains the first 16 samples of
the output. The top and bottom X-Y plots display the output of the Sine
Wave and From Workspace blocks, respectively, from 0 to 20 seconds.
The straight line in the output of the From Workspace block reflects
the block’s linear extrapolation of missing data points at the end of
the simulation.

2-301

From Workspace

Note A From Workspace block can directly read the output of
a To Workspace block (see To Workspace) if the output is in
structure-with-time format (see “Importing Data from the MATLAB
Workspace” for a description of these formats).

See Importing Data from the MATLAB Workspace for guidelines on
choosing time vectors for discrete systems.

Data Type
Support

The From Workspace block accepts from the workspace and outputs
real or complex signals of any type supported by Simulink. Real signals
of type double can be in either structure or matrix format. Complex
signals and real signals of any type other than double must be in
structure format.

How Data Types Affect Interpolation

The data type of the data supplied by the workspace can affect
interpolation and extrapolation of missing values in the following cases.

Integer data

If the input data type is an integer type and an interpolated data point
exceeds the data type’s range, the block sets the missing data point to
be the maximum value that the data type can represent. Similarly, if
the interpolated or extrapolated value is less than the minimum value
that the data type can represent, the block sets the missing data point
to the minimum value that the data type can represent. For example,
suppose that the data type is uint8 and the value interpolated for a
missing data point is 256.

time: 1 2 3 4
signal: 253 254 255 ?

In this case, the block sets the value of the missing point to 255, the
largest value that can be represented by the uint8 data type:

time: 1 2 3 4

2-302

From Workspace

signal: 253 254 255 255

Boolean data

If the input data is boolean, the block uses the value of the nearest
workspace data point as the value of missing data point when
determining missing data points that fall between the first and last
known points. For example, suppose the workspace supplies values at
time steps 1 and 4 but not at 2 and 3:

time: 1 2 3 4
signal: 1 ? ? 0

In this case, the block would use the value of data point 1 as the value
of data point 2 and the value of data point 4 as the value of data point 3:

time: 1 2 3 4
signal: 1 1 0 0

The block uses the value of the last known data point as the value of
time steps that occur after the last known data point.

2-303

From Workspace

Parameters
and
Dialog
Box

Data
An expression that evaluates to an array or a structure containing
an array of simulation times and corresponding signal values. For
example, suppose that the workspace contains a column vector of
times named T and a vector of corresponding signal values named
U. Entering the expression [T,U] for this parameter yields the
required input array. If the required signal-versus-time array or

2-304

From Workspace

structure already exists in the workspace, enter the name of the
structure or matrix in this field.

Sample time
Sample rate of data from the workspace. See “Specifying Sample
Time” in the online documentation for more information.

Interpolate data
This option causes the block to linearly interpolate at time steps
for which no corresponding workspace data exists. Otherwise,
the current output equals the output at the most recent time for
which data exists.

Enable zero crossing detection
Select to enable zero crossing detection. For more information, see
Zero Crossing Detection in the “How Simulink Works” chapter of
the Using Simulink documentation.

Form output after final data value by
Select method for generating output after the last time point for
which data is available from the workspace.

Characteristics Sample Time Specified in the Sample time
parameter

Scalar Expansion No

Dimensionalized Yes

Zero Crossing Yes

2-305

Function-Call Generator

Purpose Execute function-call subsystem specified number of times at specified
rate

Library Ports & Subsystems

Description The Function-Call Generator block executes a function-call subsystem
(for example, a Stateflow® state chart configured as a function-call
system) at the rate specified by the block’s Sample time parameter.
To execute multiple function-call subsystems in a prescribed order,
first connect a Function-Call Generator block to a Demux block that
has as many output ports as there are function-call subsystems to be
controlled. Then connect the output ports of the Demux block to the
systems to be controlled. The system connected to the first demux port
executes first, the system connected to the second demux port executes
second, and so on.

Data Type
Support

The Function-Call Generator block outputs a signal of type fcn_call.

2-306

Function-Call Generator

Parameters
and
Dialog
Box

Sample time
The time interval between samples. See “Specifying Sample
Time”in the online documentation for more information.

Number of iterations
Number of times to execute the block per time step. The value of
this parameter may be a vector where each element of the vector
specifies a number of times to execute a function-call subsystem.
The total number of times that a function-call subsystem executes
per time step equals the sum of the values of the elements of the
generator signal entering its control port. For example, suppose
you specify the number of iterations to be [2 2] and connect
the output of this block to the control port of a function-call
subsystem. In this case, the function-call subsystem executes four
times at each time step.

2-307

Function-Call Generator

Characteristics Direct Feedthrough No

Sample Time Specified in the Sample time
parameter

Scalar Expansion No

Dimensionalized Yes

Zero Crossing No

2-308

Function-Call Subsystem

Purpose Represent subsystem that can be invoked as function by another block

Library Ports & Subsystems

Description The Function-Call Subsystem block is a Subsystem block that is
preconfigured to serve as a starting point for creating a function-call
subsystem. For more information, see “Function-Call Subsystems” in
the “Creating a Model” chapter of the Using Simulink documentation.

2-309

Gain

Purpose Multiply input by constant

Library Math Operations

Description The Gain block multiplies the input by a constant value (gain). The
input and the gain can each be a scalar, vector, or matrix.

You specify the value of the gain in the Gain parameter. The
Multiplication parameter lets you specify element-wise or matrix
multiplication. For matrix multiplication, this parameter also lets you
indicate the order of the multiplicands.

The gain is converted from doubles to the data specified in the block
mask offline using round-to-nearest and saturation. The input and gain
are then multiplied, and the result is converted to the output data type
using the specified rounding and overflow modes.

Data Type
Support

The Gain block accepts a real or complex scalar, vector, or matrix of
any data type supported by Simulink except Boolean. The Gain block
supports fixed-point data types. If the input of the Gain block is real
and the gain is complex, the output is complex.

For a discussion on the data types supported by Simulink, see “Data
Types Supported by Simulink” in the Simulink documentation.

2-310

Gain

Parameters
and
Dialog
Box

The Main pane of the Gain block dialog appears as follows:

Gain
Specify the value by which to multiply the input. The gain may be
a scalar, vector, or matrix. The gain may not be Boolean.

Multiplication
Specify the multiplication mode:

• Element-wise(K*u)—Each element of the input is multiplied by each
element of the gain. The block performs expansions, if necessary, so
that the input and gain have the same dimensions.

• Matrix(K*u)—The input and gain are matrix multiplied with the
input as the second operand.

• Matrix(u*K)—The input and gain are matrix multiplied with the
input as the first operand.

2-311

Gain

• Matrix(K*u)(u vector)—The input and gain are matrix multiplied
with the input as the second operand. The input and the output
are required to be vectors and their lengths are determined by the
dimensions of the gain.

Sample time (-1 for inherited)
Specify the time interval between samples. To inherit the sample
time, set this parameter to -1. See “Specifying Sample Time” in
the online documentation for more information.

The Signal Data Types pane of the Gain block dialog appears as
follows:

2-312

Gain

Output data type mode
Set the data type and scaling of the output to be the same as that
of the input, or to be inherited via an internal rule or by back
propagation. Alternatively, choose to specify the data type and
scaling of the output through the Output data type and Output
scaling value parameters in the dialog.

If you select Inherit via internal rule for this parameter,
Simulink chooses a combination of output scaling and data
type that requires the smallest amount of memory consistent
with accommodating the output range and maintaining the
output precision of the block and with the word size of the
targeted hardware implementation specified for the model. If the
Device type parameter on the Hardware Implementation
configuration parameters pane is set to ASIC/FPGA, Simulink
chooses the output data type without regard to hardware
constraints. Otherwise, Simulink chooses the smallest available
hardware data type capable of meeting the range and precision
constraints. For example, if the block multiplies an input of type
int8 by a gain of int16 and ASIC/FPGA is specified as the targeted
hardware type, the output data type is sfix24. If Unspecified
(assume 32-bit Generic), i.e., a generic 32-bit microprocessor,
is specified as the target hardware, the output data type is int32.
If none of the word lengths provided by the target microprocessor
can accommodate the output range, Simulink displays an error
message in the Simulation Diagnostics Viewer.

Output data type
Set the output data type. This parameter is only visible if you
select Specify via dialog for the Output data type mode
parameter.

Output scaling value
Set the output scaling using either binary point-only or [Slope
Bias] scaling. This parameter is only visible if you select Specify
via dialog for the Output data type mode parameter.

2-313

Gain

Lock output scaling against changes by the autoscaling tool
Select to lock scaling of outputs. This parameter is only visible if
you select Specify via dialog for the Output data type mode
parameter.

Round integer calculations toward
Select the rounding mode for fixed-point operations.

Saturate on integer overflow
Select to have overflows saturate.

The Parameter Data Types pane of the Gain block dialog appears
as follows:

2-314

Gain

Parameter data type mode
Set the data type and scaling of the gain to be the same as that of
the input, or to be inherited via an internal rule. Alternatively,
choose to specify the data type and scaling of the gain through
the Parameter data type, Parameter scaling mode, and
Parameter scaling parameters in the dialog.

Parameter data type
Specifies the data type of the Gain parameter. This parameter is
visible only if you select Specify via dialog for the Parameter
data type mode parameter.

Parameter scaling mode
Set the mode to determine the scaling of the gain.

• Use specified scaling—This mode allows you to set the
scaling of the gain in the Parameter scaling parameter.

• Best Precision: Element-wise—This mode sets binary
points for the elements of the gain such that the precision of
each element is maximized.

• Best Precision: Row-wise—This mode sets a common
binary point within each row of the gain such that the largest
element of each row has the best possible precision.

• Best Precision: Column-wise—This mode sets a common
binary point within each column of the gain such that the
largest element of each column has the best possible precision.

• Best Precision: Matrix-wise—This mode sets a common
binary point for all the elements of the gain such that the
largest element has the best possible precision.

Parameter scaling
Set the gain scaling using either binary point-only or [Slope Bias]
scaling. This parameter is only visible if you select Specify via
dialog for the Parameter data type mode parameter, and if
you select Use specified scaling for the Parameter scaling
mode parameter.

2-315

Gain

Characteristics Direct Feedthrough Yes

Sample Time Specified in the Sample time
parameter

Scalar Expansion Yes, of input and Gain parameter for
Element-wise multiplication

Dimensionalized Yes

Zero Crossing No

2-316

Goto

Purpose Pass block input to From blocks

Library Signal Routing

Description The Goto block passes its input to its corresponding From blocks. The
input can be a real- or complex-valued signal or vector of any data
type. From and Goto blocks allow you to pass a signal from one block
to another without actually connecting them.

A Goto block can pass its input signal to more than one From block,
although a From block can receive a signal from only one Goto block.
The input to that Goto block is passed to the From blocks associated
with it as though the blocks were physically connected. Goto blocks and
From blocks are matched by the use of Goto tags, defined in the Tag
parameter.

The Tag Visibility parameter determines whether the location of From
blocks that access the signal is limited:

• local, the default, means that From and Goto blocks using the same
tag must be in the same subsystem. A local tag name is enclosed
in brackets ([]).

• scoped means that From and Goto blocks using the same tag must be
in the same subsystem or at any level in the model hierarchy below
the Goto Tag Visibility block that does not entail crossing a nonvirtual
subsystem boundary, i.e., the boundary of an atomic, conditionally
executed, or function-call subsystem or a model reference. A scoped
tag name is enclosed in braces ({}).

• global means that From and Goto blocks using the same tag can
be anywhere in the model except in locations that span nonvirtual
subsystem boundaries.

The rule that From-Goto block connections cannot cross nonvirtual
subsystem boundaries has the following exception. A Goto block
connected to a state port in one conditionally executed subsystem is
visible to a From block inside another conditionally executed subsystem.
For more information about conditionally executed subsystems, see

2-317

Goto

“Creating Conditionally Executed Subsystems” in the “Creating a
Model” chapter of the Using Simulink documentation.

Note A scoped Goto block in a masked system is visible only in that
subsystem and in the nonvirtual subsystems it contains. Simulink
generates an error if you run or update a diagram that has a Goto
Tag Visibility block at a higher level in the block diagram than the
corresponding scoped Goto block in the masked subsystem.

Use local tags when the Goto and From blocks using the same tag name
reside in the same subsystem. You must use global or scoped tags when
the Goto and From blocks using the same tag name reside in different
subsystems. When you define a tag as global, all uses of that tag access
the same signal. A tag defined as scoped can be used in more than one
place in the model. This example shows a model that uses two scoped
tags with the same name (A).

2-318

Goto

Data Type
Support

The Goto block accepts real or complex signals of any data type
supported by Simulink, including fixed-point data types.

For a discussion on the data types supported by Simulink, see “Data
Types Supported by Simulink” in the Simulink documentation.

2-319

Goto

Parameters
and
Dialog
Box

Tag
The Goto block identifier. This parameter identifies the Goto
block whose scope is defined in this block.

Tag Visibility
The scope of the Goto block tag: local, scoped, or global. The
default is local.

Corresponding From blocks
List of the From blocks connected to this Goto block.
Double-clicking any entry in this list displays and highlights the
corresponding From block.

2-320

Goto

Icon Display
Specifies the text to display on the block’s icon. The options are
the block’s tag, the name of the signal that the block represents,
or both the tag and the signal name.

Characteristics Sample Time Inherited from driving block

Dimensionalized Yes

2-321

Goto Tag Visibility

Purpose Define scope of Goto block tag

Library Signal Routing

Description The Goto Tag Visibility block defines the accessibility of Goto block
tags that have scoped visibility. The tag specified as the Goto tag
parameter is accessible by From blocks in the same subsystem that
contains the Goto Tag Visibility block and in subsystems below it in
the model hierarchy.

A Goto Tag Visibility block is required for Goto blocks whose Tag
Visibility parameter value is scoped. No Goto Tag Visibility block is
needed if the tag visibility is either local or global. The block shows
the tag name enclosed in braces ({}).

Data Type
Support

Not applicable.

Parameters
and
Dialog
Box

2-322

Goto Tag Visibility

Goto tag
The Goto block tag whose visibility is defined by the location of
this block.

Characteristics Sample Time N/A

Dimensionalized N/A

2-323

Ground

Purpose Ground unconnected input port

Library Sources

Description The Ground block can be used to connect blocks whose input ports
are not connected to other blocks. If you run a simulation with blocks
having unconnected input ports, Simulink issues warning messages.
Using Ground blocks to ground those blocks avoids warning messages.
The Ground block outputs a signal with zero value. The data type of the
signal is the same as that of the port to which it is connected.

Data Type
Support

The Ground block outputs a signal of the same numeric type and data
type as the port to which it is connected. For example, consider the
following model.

In this example, the output of the Constant block determines the data
type (int8) of the port to which the Ground block is connected. That port
in turn determines the type of the signal output by the Ground block.

The Ground block supports all data types supported by Simulink,
including fixed-point data types.

2-324

Ground

Parameters
and
Dialog
Box

Characteristics Sample Time Inherited from driven block

Dimensionalized Yes

2-325

Hit Crossing

Purpose Detect crossing point

Library Discontinuities

Description The Hit Crossing block detects when the input reaches the Hit crossing
offset parameter value in the direction specified by the Hit crossing
direction property.

The block accepts one input of type double. If you select the Show
output port check box, the block output indicates when the crossing
occurs. If the input signal is exactly the value of the offset value after
the hit crossing is detected, the block continues to output a value of 1. If
the input signals at two adjacent points bracket the offset value (but
neither value is exactly equal to the offset), the block outputs a value
of 1 at the second time step. If the Show output port check box is
not selected, the block ensures that the simulation finds the crossing
point but does not generate output. If the input signal is constant and
equal to the offset value, the block outputs 1 only if the Hit crossing
direction property is set to either.

When the block’s Hit crossing direction property is set to either,
the block serves as an "Almost Equal" block, useful in working around
limitations in finite mathematics and computer precision. Used for
these reasons, this block might be more convenient than adding logic to
your model to detect this condition.

The hardstop and sldemo_clutch demos illustrate the use of the
Hit Crossing block. In the hardstop demo, the Hit Crossing block
is in the Friction Model subsystem. In the sldemo_clutch demo, the
Hit Crossing block is in the Friction Mode Logic/Lockup Detection
subsystem.

Data Type
Support

The Hit Crossing block outputs a signal of type Boolean if Boolean logic
signals are enabled (see “Enabling Strict Boolean Type Checking”).
Otherwise, the block outputs a signal of type double.

2-326

Hit Crossing

Parameters
and
Dialog
Box

Hit crossing offset
The value whose crossing is to be detected.

Hit crossing direction
The direction from which the input signal approaches the hit
crossing offset for a crossing to be detected.

Show output port
If selected, draw an output port.

2-327

Hit Crossing

Enable zero crossing detection
Select to enable zero crossing detection. For more information, see
Zero Crossing Detection in the “How Simulink Works” chapter of
the Using Simulink documentation.

Sample time (-1 for inherited)
Specify the time interval between samples. To inherit the sample
time, set this parameter to -1. See “Specifying Sample Time” in
the online documentation for more information.

Characteristics Direct Feedthrough Yes

Sample Time Inherited from driving block

Scalar Expansion Yes

Dimensionalized Yes

Zero Crossing Yes, if enabled.

2-328

IC

Purpose Set initial value of signal

Library Signal Attributes

Description The IC block sets the initial condition of the signal at its input port, i.e.,
the value of the signal at the simulation start time (t=0, by default). The
block does this by outputting the specified initial condition when you
start the simulation, regardless of the actual value of the input signal.
Thereafter, the block outputs the actual value of the input signal.

The IC block is useful for providing an initial guess for the algebraic
state variables in the loop. For more information, see “Algebraic
Loops” in the “How Simulink Works” chapter of the Using Simulink
documentation.

Data Type
Support

The IC block accepts and outputs signals of any Simulink built-in and
fixed-point data type. The Initial value parameter accepts any built-in
data type supported by Simulink.

Parameters
and
Dialog
Box

Initial value
Specify the initial value for the input signal.

2-329

IC

Sample time (-1 for inherited)
Specify the time interval between samples. To inherit the sample
time, set this parameter to -1. See “Specifying Sample Time” in
the online documentation for more information.

Examples The following diagram illustrates how the IC block initializes a signal
labeled "test signal."

At t = 0, the signal value is 3. Afterwards, the signal value is 6.

Characteristics Direct Feedthrough Yes

Sample Time Specified in the Sample time
parameter

Scalar Expansion Yes, of parameter only

Dimensionalized Yes

Zero Crossing No

2-330

If

Purpose Model if-else control flow

Library Ports & Subsystems

Description The If block, along with If Action subsystems containing Action Port
blocks, implements standard C-like if-else logic.

The following shows a completed if-else control flow statement.

In this example, the inputs to the If block determine the values of
conditions represented as output ports. Each output port is attached to
an If Action subsystem. The conditions are evaluated top down starting
with the if condition. If a condition is true, its If Action subsystem is
executed and the If block does not evaluate any remaining conditions.

The preceding if-else control flow statement can be represented by
the following pseudocode.

if (u1 > 0) {
body_1;

}

2-331

If

else if (u2 > 0){
body_2;

}
else {
body_3;

}

You construct a Simulink if-else control flow statement like the
preceding example as follows:

1 Place an If block in the current system.

2 Open the Block Parameters dialog of the If block and enter as
follows:

• Enter the Number of inputs field with the required number of
inputs necessary to define conditions for the if-else control flow
statement.

Elements of vector inputs can be accessed for conditions using (row,
column) arguments. For example, you can specify the fifth element
of the vector u2 in the condition u2(5) > 0 in an If expression or
Elseif expressions field.

• Enter the expression for the if condition of the if-else control
flow statement in the If expression field.

This creates an if output port for the If block with a label of the
form if(condition). This is the only required If Action signal
output for an If block.

• Enter expressions for any elseif conditions of the if-else control
flow statement in the Elseif expressions field.

Use a comma to separate one condition from another. Entering
these conditions creates an output port for the If block for each
condition, with a label of the form elseif(condition). elseif ports
are optional and not required for operation of the If block.

2-332

If

• Check the Show else condition check box to create an else
output port.

The else port is optional and not required for the operation of the
If block.

3 Create If Action subsystems to connect to each of the if, else, and
elseif ports.

These consist of a subsystem with an Action Port block. When you
place an Action Port block inside each subsystem, an input port
named Action is added to the subsystem.

4 Connect each if, else, and elseif port of the If block to the Action port
of an If Action subsystem.

When you make the connection, the icon for the If Action block is
renamed to the type of the condition that it attaches to.

Note During simulation of an if-else control flow statement, the
Action signal lines from the If block to the If Action subsystems turn
from solid to dashed.

5 In each If Action subsystem, enter the Simulink blocks appropriate
to the body to be executed for the condition it handles.

Note All blocks in an If Action Subsystem must run at the same
rate as the driving If block. You can achieve this by setting each
block’s sample time parameter to be either inherited (-1) or the same
value as the If block’s sample time.

In the preceding example, the If Action subsystems are named
body_1, body_2, and body_3.

2-333

If

Data Type
Support

Inputs u1,u2,...,un can be scalar or vector of any built-in Simulink
data type. For a discussion on the data types supported by Simulink, see
“Data Types Supported by Simulink” in the Simulink documentation.

Outputs from the if, else, and elseif ports are Action signals to If Action
subsystems that are created with Action Port blocks and subsystems.
See Action Port.

2-334

If

Parameters
and
Dialog
Box

2-335

If

Number of inputs
The number of inputs to the If block. These appear as data
input ports labeled with a 'u' character followed by a number,
1,2,...,n, where n equals the number of inputs that you specify.

If expression
The condition for the if output port. This condition appears on
the If block adjacent to the if output port. The if expression can
use any of the following operators: <. <=, ==, ~=, >, >=, &,
|, ~, (), unary-minus. The If Action subsystem attached to
the if port executes if its condition is true.

Note You cannot tune the If expression during accelerated-mode
simulation (see “Simulink Accelerator”), in referenced models,
or in code generated from the model. The If block also does not
support custom storage classes.

Elseif expressions
A string list of elseif conditions delimited by commas. These
conditions appear below the if port and above the else port if you
select the Show else condition check box. elseif expressions
can use any of the following operators: <, <=, ==, ~=, >, >=,
&, |, ~, (), unary-minus. The If Action subsystem attached
to an elseif port executes if its condition is true and all of the if
and elseif conditions are false.

Note You cannot tune the Elseif expression during
accelerated-mode simulation (see “Simulink Accelerator”), in
referenced models, or in code generated from the model. The If
block also does not support custom storage classes.

2-336

If

Show else condition
If you select this check box, an else port is created. The If Action
subsystem attached to the else port executes if the if port and
all the elseif ports are false.

Enable zero crossing detection
Select to enable zero crossing detection. For more information, see
“Zero Crossing Detection” in the “How Simulink Works” chapter
of the Using Simulink documentation.

Sample time
Specify the sample time of the input signal. See “Specifying
Sample Time” in the online documentation for more information.

Examples The If block does not directly support fixed-point data types. However,
you can use the Compare To Constant block to work around this
limitation.

For example, consider the following floating-point model.

In this model, the If Action subsystems use their default configurations.
The block and simulation parameters for the model are set to their
default values except as follows:

2-337

If

Block or Dialog Parameter Setting

Configuration
Parameters Dialog
— Solver pane

Start time 0.0

Stop time 1.0

Type Fixed-step

Solver discrete (no
continuous states)

Fixed-step size .1

Repeating Sequence
Stair

Vector of output
values

[-2 -1 1 2].'

Repeating Sequence
Stair1

Vector of output
values

[0 0 0 0 1 1 1
1].'

If Number of inputs 2

If expression (u1 > 0) | (u2 >
0.5)

Show else
condition

selected

Constant Constant value -4

Constant1 Constant value 4

Scope Number of axes 3

Time range 1

For this model, if input u1 is greater than 0 or input u2 is greater than
0.5, the output is 4. Otherwise, the output is -4. The Scope block shows
the output, u1, and u2 as depicted here:

2-338

If

2-339

If

The same model can be implemented using fixed-point data types:

The Repeating Sequence stair blocks are now outputting fixed-point
data types.

The Compare To Constant blocks implement two parts of the If
expression that is used in the If block in the floating-point version
of the model, (u1 > 0) and (u2 > 0.5). The OR operation, (u1|u2),
can still be implemented inside the If block. For a fixed-point model,
the expression must be partially implemented outside of the If block
as it is here.

The block and simulation parameters for the fixed-point model are
the same as for the floating-point model with the following exceptions
and additions:

Block Parameter Setting

Compare To
Constant

Operator >

Constant value 0

Output data type
mode

Boolean

2-340

If

Block Parameter Setting

Enable zero crossing
detection

unselected

Compare To
Constant1

Operator >

Constant value 0.5

Output data type
mode

Boolean

Enable zero crossing
detection

unselected

If Number of inputs 2

If expression u1|u2

Characteristics Direct Feedthrough Yes

Sample Time Inherited from driving block

Scalar Expansion No

Dimensionalized Yes

Zero Crossing Yes, if enabled

2-341

If Action Subsystem

Purpose Represent subsystem whose execution is triggered by If block

Library Ports & Subsystems

Description The If Action Subsystem block is a Subsystem block that is
preconfigured to serve as a starting point for creating a subsystem
whose execution is triggered by an If block.

Note All blocks in an If Action Subsystem must run at the same rate
as the driving If block. You can achieve this by setting each block’s
sample time parameter to be either inherited (-1) or the same value as
the If block’s sample time.

For more information, see the If block and Modeling with Control
Flow Blocks in the “Creating a Model” chapter of the Using Simulink
documentation.

2-342

Increment Real World

Purpose Increase real world value of signal by one

Library Additional Math & Discrete / Additional Math: Increment - Decrement

Description The Increment Real World block increases the real world value of the
signal by one. Overflows always wrap.

Data Type
Support

The Increment Real World block accepts signals of any data type
supported by Simulink, including fixed-point data types.

Parameters
and
Dialog
Box

Characteristics Direct Feedthrough Yes

Scalar Expansion No

See Also Decrement Real World, Increment Stored Integer

2-343

Increment Stored Integer

Purpose Increase stored integer value of signal by one

Library Additional Math & Discrete / Additional Math: Increment - Decrement

Description The Increment Stored Integer block increases the stored integer value
of a signal by one.

Floating-point signals are also increased by one, and overflows always
wrap.

Data Type
Support

The Increment Stored Integer block accepts signals of any data type
supported by Simulink, including fixed-point data types.

Parameters
and
Dialog
Box

Characteristics Direct Feedthrough Yes

Scalar Expansion No

See Also Decrement Stored Integer, Increment Real World

2-344

Index Vector

Purpose Switch output between different inputs based on value of first input

Library Signal Routing

Description The Index Vector block is an implementation of the Multiport Switch
block. See Multiport Switch for more information.

2-345

Inport

Purpose Create input port for subsystem or external input

Library Ports & Subsystems, Sources

Description Inport blocks are the links from outside a system into the system.

Simulink assigns Inport block port numbers according to these rules:

• It automatically numbers the Inport blocks within a top-level system
or subsystem sequentially, starting with 1.

• If you add an Inport block, it is assigned the next available number.

• If you delete an Inport block, other port numbers are automatically
renumbered to ensure that the Inport blocks are in sequence and that
no numbers are omitted.

• If you copy an Inport block into a system, its port number is not
renumbered unless its current number conflicts with an Inport block
already in the system. If the copied Inport block port number is not
in sequence, you must renumber the block or you will get an error
message when you run the simulation or update the block diagram.

You can specify the dimensions of the input to the Inport block
using the Port dimensions parameter, or let Simulink determine it
automatically by providing a value of -1.

The Sample time parameter is the rate at which the signal is coming
into the system. A value of -1 causes the block to inherit its sample
time from the block driving it. You might need to set this parameter
for Inport blocks in a top-level system or in models where Inport
blocks are driven by blocks whose sample times cannot be determined.
See “Specifying Sample Time” in the online documentation for more
information.

Inport Blocks in a Subsystem

Inport blocks in a subsystem represent inputs to the subsystem. A
signal arriving at an input port on a Subsystem block flows out of the
associated Inport block in that subsystem. The Inport block associated

2-346

Inport

with an input port on a Subsystem block is the block whose Port
number parameter matches the relative position of the input port
on the Subsystem block. For example, the Inport block whose Port
number parameter is 1 gets its signal from the block connected to the
topmost port on the Subsystem block.

If you renumber the Port number of an Inport block, the block becomes
connected to a different input port, although the block continues to
receive its signal from the same block outside the subsystem.

The Inport block name appears in the Subsystem icon as a port label. To
suppress display of the label, select the Inport block and choose Hide
Name from the Format menu.

Inport Blocks in a Top-Level System

Inport blocks in a top-level system have two uses:

• To supply external inputs from the workspace, use either the
Configuration Parameters dialog (see “Importing Data from the
MATLAB Workspace”) or the ut argument of the sim command (see
sim) to specify the inputs.

• To provide a means for perturbation of the model by the linmod and
trim analysis functions, use Inport blocks to define the points where
inputs are injected into the system.

Creating Duplicate Inports

You can create any number of duplicates of an Inport block. The
duplicates are graphical representations of the original intended
to simplify block diagrams by eliminating unnecessary lines. The
duplicate has the same port number, properties, and output as the
original. Changing a duplicate’s properties changes the original’s
properties and vice versa.

To create a duplicate of an Inport block,

1 Select the block.

2-347

Inport

2 Select Copy from the Simulink Edit menu or from the block’s
context menu.

3 Position the mouse cursor in the model’s block diagram where you
want to create the duplicate.

4 Select Paste Duplicate Inport from the Simulink Edit menu or the
block diagram’s context menu.

Data Type
Support

The Inport block accepts complex or real signals of any data type
supported by Simulink, including fixed-point data types. For a
discussion on the data types supported by Simulink, see “Data Types
Supported by Simulink”.

The numeric and data types of the block’s output are the same as those
of its input. You can specify the signal type, data type, and sampling
mode of an external input to a root-level Inport block using the Signal
type, Data type, and Sampling mode parameters.

The elements of a signal array connected to a root-level Inport block
must be of the same numeric and data types. Signal elements connected
to a subsystem input port can be of differing numeric and data types
except in the following circumstance: If the subsystem contains an
Enable or Trigger block or is an Atomic Subsystem and the input port,
or an element of the input port, is connected directly to an output port,
the input elements must be of the same type. For example, consider the
follow enabled subsystem.

2-348

Inport

In this example, the elements of a signal vector connected to In1 must
be of the same type. The elements connected to In2, however, can be of
differing types.

2-349

Inport

Parameters
and
Dialog
Box

The Main pane of the Inport block dialog appears as follows:

Port number
Specify the port number of the Inport block.

2-350

Inport

Icon display
Specifies the information to be displayed on the icon of this input
port. The options are:

Port number Displays port number of this port.

Signal name Displays the name of the signal
connected to this port (or signals
if the input is a bus).

Port name and signal
name

Displays both the port number
and the names of the signals
connected to this port.

Latch input by delaying outside signal
This option applies only to triggered subsystems and is enabled
only if the Inport block resides in a triggered subsystem. If
selected, the block outputs the value of the input signal at
the previous time step. This enables Simulink to resolve data
dependencies among triggered subsystems that are part of a loop.
Type sl_subsys_semantics at the MATLAB prompt for examples
using latched inputs with triggered subsystems.

The Inport block indicates that this option is selected by
displaying <Lo>.

1

Out1

Trigger

1<Lo>

In1

Latch input by copying inside signal
This option applies only to function-call subsystems and hence
is enabled only if the Inport block resides in a function-call

2-351

Inport

subsystem. Selecting this option causes Simulink to copy the
signal output by the block into a buffer before executing the
contents of the subsystem and to use this copy as the block’s
output during execution of the subsystem. This ensures that the
subsystem’s inputs, including those generated by the subsystem’s
context, will not change during execution of the subsystem. Type
sl_subsys_semantics at the MATLAB prompt for examples
using latched inputs with function-call subsystems.

The Inport block displays to indicate that this option is
selected.

f()

Trigger

1

In1

Interpolate data
Select this parameter to cause the block to interpolate or
extrapolate output at time steps for which no corresponding
workspace data exists when loading data from the workspace.
See “Importing Data from the MATLAB Workspace” for more
information.

The Signal Specification pane of the Inport block dialog appears as
follows:

2-352

Inport

2-353

Inport

Specify properties via bus object
Select this option to use a bus object to define the structure of the
bus created by this block (see “Working with Data Objects” and
Simulink.Bus class to learn how to create bus objects).

Bus object for validating input bus
This option is enabled only if you select the Specify properties
via bus object option. It specifies the name of the bus object
that defines the structure that a bus must have to be connected
to this input port. At the beginning of a simulation or when you
update the model’s diagram, Simulink checks whether the bus
connected to this input port has the specified structure. If not,
Simulink displays an error message.

Output as nonvirtual bus
This option is enabled only if you select the Specify properties
via bus object option. If this option is selected, this block
outputs a nonvirtual bus; otherwise, it outputs a virtual bus (see
“Virtual Versus Nonvirtual Buses”). Select this option if you want
code generated from this model to use a C structure to define the
structure of the bus signal output by this block.

Port dimensions
Specify the dimensions of the input signal to the Inport block.
Valid values are:

-1 Dimensions are inherited from input signal

n Vector signal of width n accepted

[m n] Matrix signal having m rows and n columns
accepted

Sample time
Specify the sample time of the input signal. See “Specifying
Sample Time”.

Data type
Specify the data type of the external input. To accept any data
type, set this parameter to auto.

2-354

Inport

Output data type
Specify any data type, including fixed-point data types. This
parameter is only visible if you select Specify via dialog for
the Data type parameter.

Output scaling value
Set the output scaling using binary point-only or [Slope Bias]
scaling. This parameter is only visible if you select Specify via
dialog for the Data type parameter.

Signal type
Specify the numeric type (real or complex) of the external input.
To accept either type, set this parameter to auto.

Sampling mode
Specify the sampling mode (Sample based or Frame based)
that the input signal must match. To accept any sampling
mode, set this parameter to auto. This parameter is intended
to support signal processing applications based on Simulink.
See the documentation for the buffer function provided by
the Signal Processing Toolbox or “Frame-Based Signals” in the
documentation for the Signal Processing Blockset for information
about frame-based signals.

Characteristics Sample Time Specified in the Sample time
parameter

Dimensionalized Yes

2-355

Integer Delay

Purpose Delay signal N sample periods

Library Discrete

Description The Integer Delay block delays its input by N sample periods.

The block accepts one input and generates one output, both of which
can be scalar or vector. If the input is a vector, all elements of the vector
are delayed by the same sample period.

Data Type
Support

The Integer Delay block accepts signals of any data type supported by
Simulink, including fixed-point data types.

Parameters
and
Dialog
Box

2-356

Integer Delay

Initial condition
The initial output of the simulation. The Initial condition
parameter is converted from a double to the input data type
offline using round-to-nearest and saturation.

Sample time (-1 for inherited)
Specify the time interval between samples. To inherit the sample
time, set this parameter to -1. See “Specifying Sample Time” in
the online documentation for more information.

Number of delays
The number of periods to delay the input signal.

Characteristics Direct Feedthrough No

Sample Time Specified in the Sample time
parameter

Scalar Expansion Yes, of input or initial conditions

2-357

Integrator

Purpose Integrate signal

Library Continuous

Description The Integrator block outputs the integral of its input at the current
time step. The following equation represents the output of the block y
as a function of its input u and an initial condition y0, where y and u are
vector functions of the current simulation time t.

Simulink can use a number of different numerical integration methods
to compute the Integrator block’s output, each with advantages in
particular applications. The Solver pane of the Configuration
parameters dialog box (see The Solver Pane) allows you to select the
technique best suited to your application.

Simulink treats the Integrator block as a dynamic system with one state,
its output. The Integrator block’s input is the state’s time derivative.

The currently selected solver computes the output of the Integrator
block at the current time step, using the current input value and
the value of the state at the previous time step. To support this
computational model, the Integrator block saves its output at the
current time step for use by the solver to compute its output at the next
time step. The block also provides the solver with an initial condition
for use in computing the block’s initial state at the beginning of a
simulation run. The default value of the initial condition is 0. The
block’s parameter dialog box allows you to specify another value for the
initial condition or create an initial value input port on the block.

The parameter dialog box also allows you to

2-358

Integrator

• Define upper and lower limits on the integral

• Create an input that resets the block’s output (state) to its initial
value, depending on how the input changes

• Create an optional state output that allows you to use the value of
the block’s output to trigger a block reset

Use the Discrete-Time Integrator block to create a purely discrete
system.

Defining Initial Conditions

You can define the initial conditions as a parameter on the block dialog
box or input them from an external signal:

• To define the initial conditions as a block parameter, specify the
Initial condition source parameter as internal and enter the
value in the Initial condition parameter field.

• To provide the initial conditions from an external source, specify the
Initial condition source parameter as external. An additional
input port appears under the block input, as shown in this figure.

Note If the integrator limits its output (see “Limiting the
Integral” on page 2-360), the initial condition must fall inside the
integrator’s saturation limits. If the initial condition is outside the
block’s saturation limits, the block displays an error message.

2-359

Integrator

Limiting the Integral

To prevent the output from exceeding specifiable levels, select the Limit
output check box and enter the limits in the appropriate parameter
fields. Doing so causes the block to function as a limited integrator.
When the output reaches the limits, the integral action is turned off to
prevent integral wind up. During a simulation, you can change the
limits but you cannot change whether the output is limited. The output
is determined as follows:

• When the integral is less than or equal to the Lower saturation
limit, the output is held at the Lower saturation limit.

• When the integral is between the Lower saturation limit and the
Upper saturation limit, the output is the integral.

• When the integral is greater than or equal to the Upper saturation
limit, the output is held at the Upper saturation limit.

To generate a signal that indicates when the state is being limited,
select the Show saturation port check box. A saturation port appears
below the block output port, as shown on this figure.

The signal has one of three values:

• 1 indicates that the upper limit is being applied.

• 0 indicates that the integral is not limited.

• -1 indicates that the lower limit is being applied.

When you select this option, the block has three zero crossings: one to
detect when it enters the upper saturation limit, one to detect when

2-360

Integrator

it enters the lower saturation limit, and one to detect when it leaves
saturation.

Resetting the State

The block can reset its state to the specified initial condition based on
an external signal. To cause the block to reset its state, select one of the
External reset choices. A trigger port appears below the block’s input
port and indicates the trigger type, as shown in this figure.

• Select rising to reset the state when the reset signal rises from a
zero to a positive value or from a negative to a positive value.

• Select falling to reset the state when the reset signal falls from a
positive value to zero or from a positive to a negative value.

• Select either to reset the state when the reset signal changes from a
zero to a nonzero value or changes sign.

• Select level to reset the state when the reset signal is nonzero at the
current time step or changes from nonzero at the previous time step
to zero at the current time step.

• Select level hold to reset the state when the reset signal is nonzero
at the current time step.

The reset port has direct feedthrough. If the block output is fed back
into this port, either directly or through a series of blocks with direct
feedthrough, an algebraic loop results (see “Algebraic Loops”). The
Integrator block’s state port allows you to feed back the block’s output
without creating an algebraic loop.

2-361

Integrator

Note To be compliant with the Motor Industry Software Reliability
Association (MISRA) software standard, your model must use Boolean
signals to drive the external reset ports of Integrator blocks.

About the State Port

Selecting the Show state port option on the Integrator block’s
parameter dialog box causes an additional output port, the state port, to
appear atop the Integrator block.

The output of the state port is the same as the output of the block’s
standard output port except for the following case. If the block is reset
in the current time step, the output of the state port is the value that
would have appeared at the block’s standard output if the block had not
been reset. The state port’s output appears earlier in the time step than
the output of the Integrator block’s output port. This allows you to avoid
creating algebraic loops in the following modeling scenarios:

• Self-resetting integrators (see “Creating Self-Resetting Integrators”
on page 2-363)

• Handing off a state from one enabled subsystem to another (see
“Handing Off States Between Enabled Subsystems” on page 2-364)

2-362

Integrator

Note The state port is intended to be used specifically in these two
scenarios. When updating a model, Simulink checks to ensure that
the state port is being used in one of these two scenarios. If not,
Simulink signals an error. Also, Simulink does not allow you to log
the output of this port in a referenced model. If logging is enabled
for the port, Simulink generates a "signal not found" warning during
simulation of the referenced model.

Creating Self-Resetting Integrators

The Integrator block’s state port allows you to avoid creating algebraic
loops when creating an integrator that resets itself based on the value
of its output. Consider, for example, the following model.

This model tries to create a self-resetting integrator by feeding the
integrator’s output, subtracted from 1, back into the integrator’s reset
port. In so doing, however, the model creates an algebraic loop. To
compute the integrator block’s output, Simulink needs to know the
value of the block’s reset signal, and vice versa. Because the two values
are mutually dependent, Simulink cannot determine either. It therefore
signals an error if you try to simulate or update this model.

2-363

Integrator

The following model uses the integrator’s state port to avoid the
algebraic loop.

In this version, the value of the reset signal depends on the value of the
state port. The value of the state port is available earlier in the current
time step than the value of the integrator block’s output port. Thus,
Simulink can determine whether the block needs to be reset before
computing the block’s output, thereby avoiding the algebraic loop.

Handing Off States Between Enabled Subsystems

The state port allows you to avoid an algebraic loop when passing a
state between two enabled subsystems. Consider, for example, the
following model.

2-364

Integrator

In this model, a constant input signal drives two enabled subsystems
that integrate the signal. A pulse generator generates an enabling
signal that causes execution to alternate between the two subsystems.
The enable port of each subsystem is set to reset. This causes the
subsystem to reset its integrator when it becomes active. Resetting the
integrator causes the integrator to read the value of its initial condition
port. The initial condition port of the integrator in each subsystem is
connected to the output port of the integrator in the other subsystem.

This connection is intended to enable continuous integration of the
input signal as execution alternates between the two subsystems.
However, the connection creates an algebraic loop. To compute the
output of A, Simulink needs to know the output of B, and vice versa.
Because the outputs are mutually dependent, Simulink cannot compute
them. It therefore generates an error if you attempt to update or
simulate this model.

2-365

Integrator

The following version of the same model uses the integrator state port
to avoid creating an algebraic loop when handing off the state.

In this model, the initial condition of the integrator in A depends on
the value of the state port of the integrator in B, and vice versa. The
values of the state ports are updated earlier in the simulation time
step than the values of the integrator output ports. Thus, Simulink
can compute the initial condition of either integrator without knowing
the final output value of the other integrator. For another example of
using the state port to hand off states between conditionally executed
subsystems, see the sldemo_clutch model.

2-366

Integrator

Note Simulink does not permit three or more enabled subsystems to
hand off a model state. If Simulink detects that a model is handing off a
state among more than two enabled subsystems, it generates an error.

Specifying the Absolute Tolerance for the Block’s Outputs

By default Simulink uses the absolute tolerance value specified in the
Configuration Parameters dialog box (see “Specifying Variable-Step
Solver Error Tolerances”) to compute the output of the Integrator block.
If this value does not provide sufficient error control, specify a more
appropriate value in the Absolute tolerance field of the Integrator
block’s dialog box. The value that you specify is used to compute all of
the block’s outputs.

Choosing All Options

When all options are selected, the icon looks like this.

Data Type
Support

The Integrator block accepts and outputs signals of type double on
its data ports. Its external reset port accepts signals of type double
or Boolean.

2-367

Integrator

Parameters
and
Dialog
Box

External reset
Resets the states to their initial conditions when a trigger event
(rising, falling, either, or level) occurs in the reset signal.

2-368

Integrator

Initial condition source
Gets the states’ initial conditions from the Initial condition
parameter (if set to internal) or from an external block (if set
to external).

Initial condition
The states’ initial conditions. Set the Initial condition source
parameter value to internal. Simulink does not allow the initial
condition of this block to be inf or NaN.

Limit output
If selected, limits the states to a value between the Lower
saturation limit and Upper saturation limit parameters.

Upper saturation limit
The upper limit for the integral. The default is inf.

Lower saturation limit
The lower limit for the integral. The default is -inf.

Show saturation port
If selected, adds a saturation output port to the block.

Show state port
If selected, adds an output port to the block for the block’s state.

Absolute tolerance
Absolute tolerance used to compute the block’s outputs. You
can enter auto or a numeric value. If you enter auto, Simulink
determines the absolute tolerance (see “Specifying Variable-Step
Solver Error Tolerances”). If you enter a numeric value, Simulink
uses the specified value to compute the block’s outputs. Note that
a numeric value overrides the setting for the absolute tolerance in
the Configuration Parameters dialog box.

Ignore limit and reset when linearizing
Select this option to cause Simulink linearization commands to
treat this block as unresettable and as having no limits on its
output, regardless of the settings of the block’s reset and output
limitation options. This allows you to linearize a model around an
operating point that causes the integrator to reset or saturate.

2-369

Integrator

Enable zero crossing detection
If this option, Limit output, and zero-crossing detection for
the model as a whole are selected, the Integrator block uses
zero-crossings to detect and take a time step at any of the
following events: reset, entering or leaving an upper saturation
state, entering or leaving a lower saturation state. For more
information, see Zero Crossing Detection in the “How Simulink
Works” chapter of the Using Simulink documentation.

Characteristics Direct Feedthrough Yes, of the reset and external initial
condition source ports

Sample Time Continuous

Scalar Expansion Yes, of parameters

States Inherited from driving block or
parameter

Dimensionalized Yes

Zero Crossing Yes, if enabled and you select
the Limit output option, one for
detecting reset, one each to detect
upper and lower saturation limits,
one when leaving saturation

2-370

Interpolation (n-D) Using PreLookup (Obsolete)

Purpose Perform high-performance constant or linear interpolation, mapping N
input values to sampled representation of function in N variables via
output from PreLookup Index Search block

Library Lookup Tables

Description
Note The Interpolation (n-D) Using PreLookup block is currently
supported, but The MathWorks plans to remove this block in a future
release. We recommend you use the Interpolation Using Prelookup
block instead.

The Interpolation (n-D) Using PreLookup block is intended for use
with the PreLookup Index Search (Obsolete) block. The PreLookup
Index Search block calculates the index and interval fraction that
specifies how its input value relates to the breakpoint data set. You
feed the resulting (index, fraction) pair into an Interpolation (n-D)
Using PreLookup block to interpolate an n-dimensional table. This
combination of blocks performs the equivalent operation that a single
instance of the Lookup Table (n-D) block performs. But by using these
blocks instead, you can potentially increase the simulation performance
of models that use many interpolation blocks.

This block supports two interpolation methods: flat (constant) interval
lookup and linear interpolation. These operations can be applied to 1-D,
2-D, 3-D, 4-D and higher dimensioned tables.

You define a set of output values as the Table data parameter. These
table values must correspond to the breakpoint data sets specified in
the PreLookup Index Search blocks. For example, the following model
illustrates the use of an Interpolation (n-D) Using PreLookup block with
two PreLookup Index Search blocks:

2-371

Interpolation (n-D) Using PreLookup (Obsolete)

The breakpoint data set in the first PreLookup Index Search block
contains 10 breakpoints, while that of the second PreLookup Index
Search block contains 10 breakpoints. Consequently, the Interpolation
(n-D) Using PreLookup block’s table data is of size 10-by-10.

The block generates its output by interpolating the table values based
on the (index, fraction) pairs fed into the block by each PreLookup
Index Search block:

• If the inputs match breakpoint parameter values, the output is
the table value at the intersection of the row, column, and higher
dimensions’ breakpoints.

• If the inputs do not match row and column parameter values, the
block generates output by interpolating between the appropriate table
values. If either or both block inputs are less than the first or greater
than the last row or column parameter values, the block extrapolates
from the first two or last two points in each corresponding dimension.

The block can perform interpolation on a portion of the table. For more
information, see Lookups: Prelookup and Sub-Table Interpolation
Blocks in the Simulink > Modeling Features section on the MATLAB
Help browser’s Demos pane.

2-372

Interpolation (n-D) Using PreLookup (Obsolete)

Data Type
Support

The Interpolation (n-D) Using PreLookup block accepts signals of types
double or single, but for any given block, the inputs must all be of the
same type. The Table data parameter must be of the same type as the
inputs. The output data type is set to the Table data data type.

Parameters
and
Dialog
Box

Number of table dimensions
The number of dimensions that the Table data parameter must
have. This determines the number of independent variables for

2-373

Interpolation (n-D) Using PreLookup (Obsolete)

the table and hence the number of inputs to the block. If the
number of table dimensions exceeds four, select the More...
option to access the Explicit number of table dimensions field
and enter a number between 1 and 30.

Table data
The table of output values. The matrix size must match the
dimensions defined by the Number of table dimensions
parameter or by the Explicit number of table dimensions
parameter when the number of dimensions exceeds four. During
block diagram editing, you can leave the Table data field empty,
but for running the simulation, you must match the number of
dimensions in the Table data parameter to the Number of table
dimensions or Explicit number of table dimensions. For
information about how to construct multidimensional arrays in
MATLAB, see “Multidimensional Arrays”.

Interpolation method
None (flat) or Linear.

Extrapolation method
None (clip) or Linear.

Action for out of range input
Specifies whether to produce a warning or error message if the
input is out of range. Options include:

• None

• Warning

• Error

• Error - No index checking in generated code

• Warning - No index checking in generated code

• None - No index checking in generated code

2-374

Interpolation (n-D) Using PreLookup (Obsolete)

Number of sub-table selection dimensions
Number of dimensions of the subtable used to compute this block’s
output. Specify 0 to use the entire table specified by Table data
parameter.

Characteristics Direct Feedthrough Yes

Sample Time Inherited from driving blocks

Scalar Expansion Yes

Zero Crossing No

See Also PreLookup Index Search (Obsolete)

2-375

Interpolation Using Prelookup

Purpose Use output of Prelookup block to accelerate approximation of
N-dimensional function

Library Lookup Tables

Description The Interpolation Using Prelookup block is intended for use with the
Prelookup block. The Prelookup block calculates the index and interval
fraction that specifies how its input value relates to the breakpoint
data set. You feed the resulting index and fraction values into an
Interpolation Using Prelookup block to interpolate an n-dimensional
table. This combination of blocks performs the equivalent operation that
a single instance of the Lookup Table (n-D) block performs. However,
the Prelookup and Interpolation Using Prelookup blocks offer greater
flexibility that can result in more efficient simulation performance.

To use this block, you must define a set of output values as the Table
data parameter. In normal use, these table values correspond to the
breakpoint data sets specified in Prelookup blocks. The Interpolation
Using Prelookup block generates its output by looking up or estimating
table values based on the index and interval fraction values (denoted on
the block as k and f, respectively) fed into the block by each Prelookup
block:

• If the inputs match the values of indices specified in breakpoint
data sets, the Interpolation Using Prelookup block outputs the table
value at the intersection of the row, column, and higher dimension
breakpoints.

• If the inputs do not match the values of indices specified in breakpoint
data sets, the Interpolation Using Prelookup block generates output
by interpolating appropriate table values. If the inputs are beyond
the range of breakpoint data sets, the Interpolation Using Prelookup
block can extrapolate its output value.

The Interpolation Using Prelookup block can perform interpolation on a
portion of its table. The Number of sub-table selection dimensions
parameter lets you specify that interpolation occur only on a subset of its
Table data parameter. For example, if your 3-D table data constitutes

2-376

Interpolation Using Prelookup

a stack of 2-D tables to be interpolated, set the Number of sub-table
selection dimensions parameter to 1. The block displays an input
port (labeled as sel) used to select and interpolate the 2-D tables.

Data Type
Support

The Interpolation Using Prelookup block accepts real signals of any
data type supported by Simulink, except Boolean. The Interpolation
Using Prelookup block supports fixed-point data types.

For a discussion on the data types supported by Simulink, see “Data
Types Supported by Simulink” in the Simulink documentation.

2-377

Interpolation Using Prelookup

Parameters
and
Dialog
Box

The Main pane of the Interpolation Using Prelookup block dialog
appears as follows:

2-378

Interpolation Using Prelookup

Number of table dimensions
The number of dimensions that the Table data parameter must
have. This determines the number of independent variables for
the table and hence the number of inputs to the block. Enter an
integer between 1 and 30 into this field.

Table data
The table of output values. During simulation, the matrix size
must match the dimensions defined by the Number of table
dimensions parameter. But note that during block diagram
editing, you can enter either an empty matrix (specified as []) or
an undefined workspace variable as the Table data parameter.
This allows you to postpone specifying a correctly dimensioned
matrix for the Table data parameter and continue editing
the block diagram. For information about how to construct
multidimensional arrays in MATLAB, see “Multidimensional
Arrays” in the MATLAB Programming documentation.

Note At runtime, the Interpolation Using Prelookup block
converts the data type of its Table data parameter to that of its
output.

Click the Edit button to open the Lookup Table Editor (see
“Lookup Table Editor” in the Simulink documentation).

Interpolation method
None - Flat or Linear. See “Interpolation Methods” in the
Simulink documentation for more information.

Extrapolation method
None - Clip or Linear. See “Extrapolation Methods” in
the Simulink documentation for more information. The
Extrapolation method parameter is visible only if you select
Linear as the Interpolation method parameter.

2-379

Interpolation Using Prelookup

Note The Interpolation Using Prelookup block does not support
Linear extrapolation if its input or output signals specify integer
or fixed-point data types.

Action for out of range input
Specifies whether to produce a warning or error message if the
input is out of range. The options are

• None — the default, no warning or error message

• Warning — display a warning message in the MATLAB
Command Window and continue the simulation

• Error — halt the simulation and display an error message in
the Simulation Diagnostics Viewer

Check index in generated code (Real-Time Workshop license
required)

Specifies whether Real-Time Workshop generates code that
checks the validity of the index values fed to this block.

Valid index input may reach last index
Specifies how the index and interval fraction inputs to the block
(labeled respectively as k and f on the block) access the last
elements of the n-dimensional table specified by the Table data
parameter. If enabled, the block returns the value of the last
element in a particular dimension of its table when k indexes
the last table element in the corresponding dimension and f is 0.
If disabled, the block returns the value of the last element in a
particular dimension of its table when k indexes the next-to-last
table element in the corresponding dimension and f is 1. Note
that index values are zero-based.

This parameter is visible only if the Interpolation method
specifies Linear and the Extrapolation method is None - Clip.

2-380

Interpolation Using Prelookup

Note If you enable the Valid index input may reach last
index parameter for an Interpolation Using Prelookup block,
you must also enable the Use last breakpoint for input at or
above upper limit parameter for all Prelookup blocks that feed
it. This allows the blocks to use the same indexing convention
when accessing the last elements of their Breakpoint data and
Table data parameters.

Number of sub-table selection dimensions
Specifies the number of dimensions of the subtable used to
compute this block’s output. Specify 0 (the default) to interpolate
the entire table, effectively disabling subtable selection.

Sample time
Specify the time interval between samples. To inherit the sample
time, set this parameter to -1. See “Specifying Sample Time” in
the Simulink documentation for more information.

The Signal Data Types pane of the Interpolation Using Prelookup
block dialog appears as follows:

2-381

Interpolation Using Prelookup

2-382

Interpolation Using Prelookup

Output data type mode
Specify how the data type of the output is designated. The
data type can be inherited through backpropagation, or can
be designated in the Table data parameter, for example
int8(reshape([1:25],5,5)). You can also choose a built-in
data type from the list. If you choose Specify via dialog, the
Output data type, Output scaling value, and Lock output
scaling against changes by the autoscaling tool parameters
become visible.

Output data type
Specify any data type, including fixed-point data types. This
parameter is visible only if you select Specify via dialog for
the Output data type mode parameter. See “Specifying Block
Output Data Types” in the Simulink documentation for more
information about using this parameter.

Output scaling value
Specify the scaling of the output using either [Slope Bias] or
the binary-point-only scaling representation. This parameter is
visible only if you select Specify via dialog for the Output
data type mode parameter.

Lock output scaling against changes by the autoscaling tool
Select to lock scaling of outputs. This parameter is visible only if
you select Specify via dialog for the Output data type mode
parameter.

Round integer calculations toward
Select the rounding mode for fixed-point operations.

Block parameters such as Table data are always rounded to
the nearest representable value. To control the rounding of a
block parameter, enter an expression using a MATLAB rounding
function into the mask field.

2-383

Interpolation Using Prelookup

Characteristics Direct Feedthrough Yes

Sample Time Specified in the Sample time
parameter

Scalar Expansion Yes

Dimensionalized Yes

Zero Crossing No

See Also Prelookup

2-384

Interval Test

Purpose Determine if signal is in specified interval

Library Logic and Bit Operations

Description The Interval Test block outputs TRUE if the input is between the values
specified by the Lower limit and Upper limit parameters. The block
outputs FALSE if the input is outside those values. The output of the
block when the input is equal to the Lower limit or the Upper limit is
determined by whether the boxes next to Interval closed on left and
Interval closed on right are selected in the dialog box.

Data Type
Support

The Interval Test block accepts signals of any data type supported by
Simulink, including fixed-point data types.

Parameters
and
Dialog
Box

2-385

Interval Test

Interval closed on right
When you select this check box, the Upper limit is included in
the interval for which the block outputs TRUE.

Upper limit
The upper limit of the interval for which the block outputs TRUE.

Interval closed on left
When you select this check box, the Lower limit is included in
the interval for which the block outputs TRUE.

Lower limit
The lower limit of the interval for which the block outputs TRUE.

Output data type mode
Select the output data type; boolean or uint8.

Characteristics Direct Feedthrough Yes

Scalar Expansion Yes

See Also Interval Test Dynamic

2-386

Interval Test Dynamic

Purpose Determine if signal is in specified interval

Library Logic and Bit Operations

Description The Interval Test Dynamic block outputs TRUE if the input is between
the values of the external signals up and lo. The block outputs FALSE
if the input is outside those values. The output of the block when the
input is equal to the signal up or the signal lo is determined by whether
the boxes next to Interval closed on left and Interval closed on
right are selected in the dialog box.

Data Type
Support

The Interval Test Dynamic block accepts signals of any data type
supported by Simulink, including fixed-point data types.

Parameters
and
Dialog
Box

Interval closed on right
When you select this check box, the value of the signal connected
to the block’s “up” input port is included in the interval for which
the block outputs TRUE.

2-387

Interval Test Dynamic

Interval closed on left
When you select this check box, the value of the signal connected
to the block’s “lo” input port is included in the interval for which
the block outputs TRUE.

Output data type mode
Select the output data type; boolean or uint8.

Characteristics Direct Feedthrough Yes

Scalar Expansion Yes

See Also Interval Test

2-388

Level-2 M-File S-Function

Purpose Use Level-2 M-file S-function in model

Library User-Defined Functions

Description This block allows you to use a Level-2 M-file S-function (see “Writing
Level-2 M-File S-Functions”) in a model. To do this, create an instance
of this block in the model. Then enter the name of the Level-2 M-File
S-function in the M-file name field of the block’s parameter dialog box.

Note Use the S-Function block to include a Level-1 M-file S-function
in a block.

If the Level-2 M-file S-function defines any additional parameters, you
can enter them in the Parameters field of the block’s parameter dialog
box. Enter them as MATLAB expressions that evaluate to their values
in the order defined by the M-file S-function. Use commas to separate
each expression.

Data Type
Support

Depends on the M-file that defines the behavior of a particular instance
of this block.

2-389

Level-2 M-File S-Function

Parameters
and
Dialog
Box

M-file name
Name of an M-file that defines the behavior of this block. The
M-file must follow the Level-2 standard for writing M-file
S-functions (see “Writing Level-2 M-File S-Functions”).

Parameters
Values of the parameters of this block.

Characteristics Direct Feedthrough Depends on the M-file S-function

Sample Time Depends on the M-file S-function

Scalar Expansion Depends on contents M-file
S-function

2-390

Level-2 M-File S-Function

Dimensionalized Depends on the M-file S-function

Zero Crossing No

2-391

Logical Operator

Purpose Perform specified logical operation on input

Library Logic and Bit Operations

Description The Logical Operator block performs the specified logical operation
on its inputs. An input value is TRUE (1) if it is nonzero and FALSE
(0) if it is zero.

You select the Boolean operation connecting the inputs with the
Operator parameter list. If you select rectangular as the Icon shape
property, the block updates to display the name of the selected operator.
The supported operations are given below.

Operation Description

AND TRUE if all inputs are TRUE

OR TRUE if at least one input is TRUE

NAND TRUE if at least one input is FALSE

NOR TRUE when no inputs are TRUE

XOR TRUE if an odd number of inputs are TRUE

NOT TRUE if the input is FALSE

If you select distinctive as the Icon shape, the block’s appearance
indicates its function. Simulink displays a distinctive shape for the
selected operator, conforming to the IEEE Standard Graphic Symbols
for Logic Functions:

2-392

Logical Operator

The number of input ports is specified with the Number of input
ports parameter. The output type is specified with the Output data
type mode and/or the Output data type parameters. An output value
is 1 if TRUE and 0 if FALSE.

Note The output data type should represent zero exactly. Data types
that satisfy this condition include signed and unsigned integers, and
any floating-point data type.

The size of the output depends on input vector size and the selected
operator:

• If the block has more than one input, any nonscalar inputs must have
the same dimensions. For example, if any input is a 2-by-2 array, all
other nonscalar inputs must also be 2-by-2 arrays.

Scalar inputs are expanded to have the same dimensions as the
nonscalar inputs.

If the block has more than one input, the output has the same
dimensions as the inputs (after scalar expansion) and each output
element is the result of applying the specified logical operation to the
corresponding input elements. For example, if the specified operation
is AND and the inputs are 2-by-2 arrays, the output is a 2-by-2 array
whose top left element is the result of applying AND to the top left
elements of the inputs, etc.

2-393

Logical Operator

• For a single vector input, the block applies the operation (except the
NOT operator) to all elements of the vector. The output is always a
scalar.

• The NOT operator accepts only one input, which can be a scalar or a
vector. If the input is a vector, the output is a vector of the same size
containing the logical complements of the input vector elements.

When configured as a multi-input XOR gate, this block performs an
addition- modulo-two operation as mandated by the IEEE Standard
for Logic Elements.

Data Type
Support

The Logical Operator block accepts real or complex signals of any data
type supported by Simulink, including fixed-point data types.

For a discussion on the data types supported by Simulink, see “Data
Types Supported by Simulink” in the Simulink documentation.

2-394

Logical Operator

Parameters
and
Dialog
Box

The Main pane of the Logical Operator block dialog appears as follows:

Operator
The logical operator to be applied to the block inputs. Valid
choices are the operators listed previously.

Number of input ports
The number of block inputs. The value must be appropriate for
the selected operator.

Icon shape
The shape of the block icon. Specifying rectangular (the default)
results in a rectangular block that displays the name of the
selected operator. The distinctive option uses the graphic
symbol for the selected operator as specified by the IEEE
standard.

2-395

Logical Operator

Sample time (-1 for inherited)
Specify the time interval between samples. To inherit the sample
time, set this parameter to -1. See “Specifying Sample Time” in
the online documentation for more information.

The Signal Data Types pane of the Logical Operator block dialog
appears as follows:

Require all inputs and output to have same data type
Select to require all inputs and the output to have the same data
type.

Output data type mode
Select a method for specifying the output data type. Options are:

2-396

Logical Operator

Option Description

Boolean Specifies the output data type as boolean.

Logical Use the Implement logic signals as
boolean data model configuration parameter
(see “Implement logic signals as boolean data
(vs. double)”) to specify the output data type.

Note This option is intended to support
models created before the Boolean option
became available. Use one of the other options,
preferably Boolean, for new models.

Specify via
dialog

Selecting this option causes the block’s dialog
box to display an Output data type field (see
below). Use this field to specify the block’s
output data type.

Output data type
This option appears only if you select Specify via dialog for
Output data type mode. It allows you to specify the data type
of the signal output by this block. See “Specifying Block Output
Data Types” in the Simulink documentation for more information
about using this option.

Note You should use data types that represent zero exactly. Data
types that satisfy this condition include signed and unsigned
integers and any floating-point data type.

2-397

Logical Operator

Characteristics Direct Feedthrough Yes

Sample Time Specified in the Sample time
parameter

Scalar Expansion Yes, of inputs

Dimensionalized Yes

Zero Crossing No

2-398

Lookup Table

Purpose Approximate one-dimensional function

Library Lookup Tables

Description The Lookup Table block computes an approximation to some function
y=f(x) given data vectors x and y.

Note To map two inputs to an output, use the Lookup Table (2-D) block.

The length of the x and y data vectors provided to this block must
match. Also, the x data vector must be strictly monotonically increasing
(i.e., the value of the next element in the vector is greater than the value
of the preceding element) after conversion to the input’s fixed-point data
type. However, the x data vector may be monotonically increasing (i.e.,
the value of the next element in the vector is greater than or equal to
the value of the preceding element) if all of the following apply:

• The input and output signals are both either single or double.

• The lookup method is Interpolation-Extrapolation.

Note that due to quantization, the x data vector may be strictly
monotonic in doubles format, but not so after conversion to a fixed-point
data type.

You define the table by specifying the Vector of input values
parameter as a 1-by-n vector and the Table data parameter as a 1-by-n
vector. The block generates output based on the input values using one
of these methods selected from the Look-up method parameter list:

• Interpolation-Extrapolation — This is the default method; it
performs linear interpolation and extrapolation of the inputs.

- If a value matches the block’s input, the output is the corresponding
element in the output vector.

2-399

Lookup Table

- If no value matches the block’s input, then the block performs
linear interpolation between the two appropriate elements of the
table to determine an output value. If the block input is less than
the first or greater than the last input vector element, then the
block extrapolates using the first two or last two points.

Note If the Look-up method parameter specifies
Interpolation-Extrapolation, Real-Time Workshop can generate
code for this block only if its input and output signals have the same
floating-point data type.

• Interpolation-Use End Values — This method performs linear
interpolation as described above but does not extrapolate outside the
end points of the input vector. Instead, the end-point values are used.

• Use Input Nearest — This method does not interpolate or
extrapolate. Instead, the element in x nearest the current input is
found. The corresponding element in y is then used as the output.

• Use Input Below — This method does not interpolate or extrapolate.
Instead, the element in x nearest and below the current input is
found. The corresponding element in y is then used as the output.
If there is no element in x below the current input, then the nearest
element is found.

• Use Input Above — This method does not interpolate or extrapolate.
Instead, the element in x nearest and above the current input is
found. The corresponding element in y is then used as the output.
If there is no element in x above the current input, then the nearest
element is found.

Note Note that there is no difference among the Use Input Nearest,
Use Input Below, and Use Input Above methods when the input
x corresponds exactly to table breakpoints.

2-400

Lookup Table

To create a table with step transitions, repeat an input value with
different output values. For example, these input and output parameter
values create the input/output relationship described by the plot that
follows:

Vector of input values: [-2 -1 -1 0 0 0 1 1 2]
Table data: [-1 -1 -2 -2 1 2 2 1 1]

This example has three step discontinuities: at x = -1, 0, and +1.

When there are two output values for a given input value, the block
chooses the output according to these rules:

• If the input signal u is less than zero, the block returns the output
value associated with the last occurrence of the input value in the
breakpoint data set. In this example, when u is -1, y is -2, marked
with a solid circle.

• If the input signal u is greater than zero, the block returns the output
value associated with the first occurrence of the input value in the
breakpoint data set. In this example, when u is 1, y is 2, marked
with a solid circle.

• If the input signal u is zero and there are two output values specified
at the origin, the block returns the average of those output values. In
this example, if there were no point defined at x = 0 and y = 1, the
output would be 0, the average of the two points at u = 0. If there are
three output values specified at the origin, the block generates the

2-401

Lookup Table

output associated with the middle point. In this example, the output
at the origin is 1, marked with a solid circle.

The Lookup Table icon displays a graph of the input vector versus the
output vector. When a parameter is changed on the block’s dialog box,
the graph is automatically redrawn when you click the OK or Apply
button.

To avoid parameter saturation errors, the automatic scaling script
autofixexp employs a special rule for the Lookup Table block.
autofixexp modifies the scaling by using the output lookup values
in addition to the logged minimum and maximum simulation values.
This prevents the data from being saturated to different values. The
lookup values are given by the Table data parameter (the YDataPoints
variable).

Data Type
Support

The Lookup Table block supports all data types supported by Simulink,
including fixed-point data types.

For a discussion on the data types supported by Simulink, see “Data
Types Supported by Simulink” in the Simulink documentation.

2-402

Lookup Table

Parameters
and
Dialog
Box

The Main pane of the Lookup Table block dialog appears as follows:

Vector of input values
Specify the vector of input values. The input values vector
must be the same size as the output values vector. Also, the
input values vector must be strictly monotonically increasing
after conversion to the input’s fixed-point data type, except in
the following case. If the input values vector and the output
signal are both either single or double, and if the lookup
method is Interpolation-Extrapolation, then the input values
vector may be monotonically increasing rather than strictly
monotonically increasing. Note that due to quantization, the
input values vector may be strictly monotonic in doubles format,
but not so after conversion to a fixed-point data type.

2-403

Lookup Table

The Vector of input values parameter is converted from
doubles to the input data type offline using round-to-nearest and
saturation.

Click the Edit button to open the Lookup Table Editor (see
“Lookup Table Editor” in the online Simulink documentation).

Table data
Specify the vector of output values. The table data must be the
same size as the input values vector.

The Table data parameter is converted from doubles to the
output data type offline using round-to-nearest and saturation.

Look-up method
Specify the lookup method. See Description for a discussion of
the options for this parameter.

Sample time (-1 for inherited)
Specify the time interval between samples. To inherit the sample
time, set this parameter to -1. See “Specifying Sample Time” in
the online documentation for more information.

The Data Types pane of the Lookup Table block dialog appears as
follows:

2-404

Lookup Table

Output data type mode
You can set the output signal to a built-in data type from this
drop-down list, or you can choose the output data type and scaling
to be the same as the input. Alternatively, you can choose to
inherit the output data type and scaling by backpropagation.
Lastly, if you choose Specify via dialog, the Output data
type, Output scaling value, and Lock output scaling against
changes by the autoscaling tool parameters become visible.

Output data type
Specify any data type, including fixed-point data types. This
parameter is only visible if you select Specify via dialog for
the Output data type mode parameter.

2-405

Lookup Table

Output scaling value
Set the output scaling using binary point-only or [Slope Bias]
scaling. This parameter is only visible if you select Specify via
dialog for the Output data type mode parameter.

Lock output scaling against changes by the autoscaling tool
Select to lock scaling of outputs. This parameter is only visible if
you select Specify via dialog for the Output data type mode
parameter.

Round integer calculations toward
Select the rounding mode for fixed-point look-up table calculations
that occur during simulation or execution of code generated from
the model.

Note that this option does not affect rounding of values of block
parameters, such as Table data. Simulink rounds such values to
the nearest representable integer value. To control the rounding of
a block parameter, enter an expression using a MATLAB rounding
function into the parameter’s edit field on the block dialog box.

Saturate on integer overflow
Select to have overflows saturate.

Examples

Suppose the Lookup Table block in the above model is configured to
use a vector of input values given by [-5:5], and table data given by
sinh([-5:5]). The following results are generated.

Lookup Method Input Output Comment

Interpolation-Extrapolation 1.4 2.156 N/A

5.2 83.59 N/A

2-406

Lookup Table

Lookup Method Input Output Comment

Interpolation-Use End
Values

1.4 2.156 N/A

5.2 74.2 The value for
sinh(5.0) was used.

Use Input Above 1.4 3.627 The value for
sinh(2.0) was used.

5.2 74.2 The value for
sinh(5.0) was used.

Use Input Below 1.4 1.175 The value for
sinh(1.0) was used.

-5.2 -74.2 The value for
sinh(-5.0) was used.

Use Input Nearest 1.4 1.175 The value for
sinh(1.0) was used.

Characteristics Direct Feedthrough Yes

Sample Time Inherited from driving block

Scalar Expansion No

Dimensionalized Yes

Zero Crossing No

See Also Lookup Table (2-D), Lookup Table (n-D)

2-407

Lookup Table (2-D)

Purpose Approximate two-dimensional function

Library Lookup Tables

Description The Lookup Table (2-D) block computes an approximation to some
function z=f(x,y) given x, y, z data points. The first (or left) input port
corresponds to the first table dimension, x.

The Row index input values parameter is a 1-by-m vector of x data
points, the Column index input values parameter is a 1-by-n vector
of y data points, and the Table data parameter is an m-by-n matrix of
z data points. Both the row and column vectors must be monotonically
increasing (i.e., the value of the next element in the vector is greater
than or equal to the value of the preceding element). However, these
vectors must be strictly monotonically increasing (i.e., the value of the
next element in the vector is greater than the value of the preceding
element) in the following cases:

• The input and output data types are both fixed-point.

• The input and output data types are different.

• The lookup method is not Interpolation-Extrapolation.

• The matrix of output values is complex.

• Minimum, maximum, and overflow logging is on.

The block generates output based on the input values using one of these
methods selected from the Look-up method parameter list:

• Interpolation-Extrapolation — This is the default method; it
performs linear interpolation and extrapolation of the inputs.

- If the inputs match row and column parameter values, the output
is the value at the intersection of the row and column.

- If the inputs do not match row and column parameter values, then
the block generates output by linearly interpolating between the
appropriate row and column values. If either or both block inputs

2-408

Lookup Table (2-D)

are less than the first or greater than the last row or column
values, the block extrapolates using the first two or last two points.

Note If the Look-up method parameter specifies
Interpolation-Extrapolation, Real-Time Workshop can generate
code for this block only if its input and output signals have the same
floating-point data type.

• Interpolation-Use End Values — This method performs linear
interpolation as described above but does not extrapolate outside the
end points of x and y. Instead, the end-point values are used.

• Use Input Nearest — This method does not interpolate or
extrapolate. Instead, the elements in x and y nearest the current
inputs are found. The corresponding element in z is then used as
the output.

• Use Input Below — This method does not interpolate or extrapolate.
Instead, the elements in x and y nearest and below the current
inputs are found. The corresponding element in z is then used as the
output. If there are no elements in x or y below the current inputs,
then the nearest elements are found.

• Use Input Above — This method does not interpolate or extrapolate.
Instead, the elements in x and y nearest and above the current
inputs are found. The corresponding element in z is then used as the
output. If there are no elements in x or y above the current inputs,
then the nearest elements are found.

Note Note that there is no difference among the Use Input Nearest,
Use Input Below, and Use Input Above methods when the input
x corresponds exactly to table breakpoints.

2-409

Lookup Table (2-D)

For information about creating a table with step transitions, see the
Lookup Table block reference pages.

To avoid parameter saturation errors, the automatic scaling script
autofixexp employs a special rule for the Lookup Table (2-D) block.
autofixexp modifies the scaling by using the output lookup values in
addition to the logged minimum and maximum simulation values. The
output lookup values are converted to the specified output data type.
This prevents the data from being saturated to different values.

Data Type
Support

The Lookup Table (2-D) block supports all data types supported by
Simulink, including fixed-point data types.

For a discussion on the data types supported by Simulink, see “Data
Types Supported by Simulink” in the Simulink documentation.

2-410

Lookup Table (2-D)

Parameters
and
Dialog
Box

The Main pane of the Lookup Table (2-D) block dialog appears as
follows:

Row index input values
The row values for the table, entered as a vector. The vector
values must increase monotonically.

Column index input values
The column values for the table, entered as a vector. The vector
values must increase monotonically.

Click the Edit button to open the Lookup Table Editor (see
“Lookup Table Editor” in the online Simulink documentation).

2-411

Lookup Table (2-D)

Table data
The table of output values. The matrix size must match the
dimensions defined by the Row and Column parameters.

Look-up method
Specify the lookup method. See Description for a discussion of
the options for this parameter.

Sample time (-1 for inherited)
Specify the time interval between samples. To inherit the sample
time, set this parameter to -1. See “Specifying Sample Time” in
the online documentation for more information.

The Data Types pane of the Lookup Table (2-D) block dialog appears
as follows:

2-412

Lookup Table (2-D)

Require all inputs to have same data type
Select to require all inputs to have the same data type.

Output data type mode
You can set the output signal to a built-in data type from this
drop-down list, or you can choose the output data type and scaling
to be the same as the input. Alternatively, you can choose to
inherit the output data type and scaling by backpropagation.
Lastly, if you choose Specify via dialog, the Output data
type, Output scaling value, and Lock output scaling against
changes by the autoscaling tool parameters become visible.

2-413

Lookup Table (2-D)

Output data type
Specify any data type, including fixed-point data types. This
parameter is only visible if you select Specify via dialog for
the Output data type mode parameter.

Output scaling value
Set the output scaling using binary point-only or [Slope Bias]
scaling. This parameter is only visible if you select Specify via
dialog for the Output data type mode parameter.

Lock output scaling against changes by the autoscaling tool
Select to lock scaling of outputs. This parameter is only visible if
you select Specify via dialog for the Output data type mode
parameter.

Round integer calculations toward
Select the rounding mode for fixed-point operations.

Note that block parameters such as Table data are always
rounded to the nearest representable value. To control the
rounding of a block parameter, enter an expression using a
MATLAB rounding function into the mask field.

Saturate on integer overflow
Select to have overflows saturate.

Examples In this example, the block parameters are defined as

Row index input values: [1 2]
Column index input values: [3 4]
Table data: [10 20; 30 40]

The first figure shows the block outputting a value at the intersection
of block inputs that match row and column values. The first input is
1 and the second input is 4. These values select the table value at the
intersection of the first row (row parameter value 1) and second column
(column parameter value 4).

2-414

Lookup Table (2-D)

In the second figure, the first input is 1.7 and the second is 3.4. These
values cause the block to interpolate between row and column values,
as shown in the table at the left. The value at the intersection (28)
is the output value.

2-415

Lookup Table (2-D)

Characteristics Direct Feedthrough Yes

Sample Time Specified in the Sample time
parameter

Scalar Expansion Yes, of one input if the other is a
vector

Dimensionalized Yes

Zero Crossing No

See Also Lookup Table, Lookup Table (n-D)

2-416

Lookup Table (n-D)

Purpose Approximate N-dimensional function

Library Lookup Tables

Description The Lookup Table (n-D) block evaluates a sampled representation of a
function in N variables by interpolating between samples to give an
approximate value for , even when the function
F is known only empirically. The block efficiently maps the block inputs
to the output value using interpolation on a table of values defined by
the block’s parameters. Interpolation methods supported are

• Flat (constant)

• Linear

• Natural (cubic) spline

You can apply any of these methods to 1-D, 2-D, 3-D, or higher
dimensional tables.

You define a set of output values as the Table data parameter and the
values that correspond to its rows, columns, and higher dimensions with
the Nth breakpoint set parameter. The block generates an output value
by comparing the block inputs with the breakpoint set parameters. The
first (top, or left) input identifies the first dimension (row) breakpoints,
the next breakpoint set identifies a column, and so on, as shown by
this figure.

If you are unfamiliar with how to construct N-dimensional arrays in
MATLAB, see “Multidimensional Arrays”.

The block generates output based on the input values:

2-417

Lookup Table (n-D)

• If the inputs match breakpoint parameter values, the output is
the table value at the intersection of the row, column, and higher
dimensions breakpoints.

• If the inputs do not match row and column parameter values, the
block generates output by interpolating between the appropriate
table values. If any of the block inputs are outside the ranges of their
respective breakpoint sets, the block limits the input values to the
breakpoint set’s range in that dimension. If extrapolation is enabled,
it extrapolates linearly or by using a cubic polynomial (if you selected
cubic spline extrapolation).

Note As an alternative, you can use the Interpolation Using
Prelookup block with the Prelookup block to have more flexibility
and potentially much higher performance for linear interpolations
in certain circumstances.

For noninterpolated table lookups, use the Direct Lookup Table (n-D)
block when the lookup operation is a simple array access, for example, if
you have an integer value k and you merely want the kth element of
a table, y = table(k).

Data Type
Support

The Lookup Table (n-D) block accepts signals of types double or single,
but for any given Lookup Table (n-D) block, the inputs must all be of
the same type. Table data and Breakpoint set parameters must be of
the same type as the inputs. The output data type is also set to the
input data type.

2-418

Lookup Table (n-D)

Parameters
and
Dialog
Box

Number of table dimensions
The number of dimensions that the Table data parameter is
to have. This determines the number of independent variables
for the table and hence the number of inputs to the block (see

2-419

Lookup Table (n-D)

descriptions for Explicit Number of dimensions and Use one
(vector) input port instead of N ports following).

First input (row) breakpoint set
The row values represented in the table, entered as a vector. The
vector values must increase monotonically. This field is always
visible.

Second (column) input breakpoint set
The column values for the table, entered as a vector. The vector
values must increase monotonically. This field is visible if the
Number of table dimensions value is 2, 3, 4, or More.

Third input breakpoint set
The values corresponding to the third dimension for the
table, entered as a vector. The vector values must increase
monotonically. This field is visible if the Number of table
dimensions is 3, 4, or More.

Fourth input breakpoint set
The values corresponding to the fourth dimension for the
table, entered as a vector. The vector values must increase
monotonically. This field is visible if the Number of table
dimensions is 4 or More.

Fifth..Nth breakpoint sets (cell array)
The cell array of values corresponding to the fifth, sixth, or
higher dimensions for the table, entered as a 1-D cell array of
vectors. For example, {[10:10:30], [0:10:100]} is a cell array
of two vectors that are used for the fifth and sixth dimensions’
breakpoint sets. The vector values must increase monotonically.
This field is visible if the Number of table dimensions is More.

Explicit number of dimensions
The number of table dimensions when the number is 5 or more.
This field is visible if the Number of table dimensions is More.
If you set the Explicit number of dimensions to 4 or fewer,
the block disregards any unnecessary breakpoint data sets that
you specified; however, the dimensionality of the Table data
parameter must match the Explicit number of dimensions.

2-420

Lookup Table (n-D)

Index search method
Choose Evenly Spaced Points, Linear Search, or Binary
Search (the default). Each search method has speed advantages
over the others in different circumstances. A suboptimal choice
of index search method can lead to slow performance in models
that rely heavily on lookup tables. If the breakpoint data is evenly
spaced, e.g., 10, 20, 30, ..., you can achieve the greatest speed
by selecting Evenly Spaced Points to directly calculate the
indices into the table. For irregularly spaced breakpoint sets, if
the input signals do not vary much from one time step to the next,
selecting Linear Search and Begin index searches using
previous index results at the same time will produce the best
performance. For irregularly spaced breakpoint sets with rapidly
varying input signals that jump more than one or two table
intervals per time step, selecting Binary Search gives the best
performance. Note that the Evenly Spaced Points algorithm
only makes use of the first two breakpoints in determining the
offset and spacing of the rest of the points.

Begin index searches using previous index results
Activating this option causes the block to initialize index searches
using the index found on the previous time step. This is a huge
performance improvement for the block when the input signals do
not change much with respect to its position in the table from one
time step to the next. When this option is deactivated, the linear
search and binary search methods can take significantly longer,
especially for large breakpoint data sets.

Use one (vector) input port instead of N ports
Instead of having one input port per independent variable, the
block is configured with just one input port that expects a signal
that is N elements wide for an N-dimensional table. This might
be useful in removing line clutter on a block diagram with large
numbers of tables.

Table data
The table of output values. To execute a model with this block,
the matrix size must match the dimensions defined by the N

2-421

Lookup Table (n-D)

breakpoint set parameter or by the Explicit number of
dimensions parameter when the number of dimensions exceeds
4. During block diagram editing, you can leave this field blank
because only the Number of table dimensions field is required
to set the number of ports on the block.

Interpolation method
None (flat), Linear, or Cubic Spline.

Extrapolation method
None (clip), Linear, or Cubic Spline.

Action for out of range input
None, Warning, or Error. An out-of-range condition during
simulation results in warning messages in the command window
if you select "Warning," and the simulation halts with an error
message if you select "Error."

Characteristics Direct Feedthrough Yes

Sample Time Inherited from driving blocks

Scalar Expansion No

Dimensionalized No

Zero Crossing No

See Also Lookup Table, Lookup Table (2-D), Lookup Table Dynamic

2-422

Lookup Table Dynamic

Purpose Approximate one-dimensional function using dynamically specified
table

Library Lookup Tables

Description The Lookup Table Dynamic block computes an approximation to some
function y=f(x) given x, y data vectors. The lookup method can use
interpolation, extrapolation, or the original values of the input.

The x data vector must be strictly monotonically increasing (i.e., the
value of the next element in the vector is greater than the value of the
preceding element) after conversion to the input’s fixed-point data
type. Note that due to quantization, the x data vector may be strictly
monotonic in doubles format, but not so after conversion to a fixed-point
data type.

Note Unlike the Lookup Table block, the Lookup Table Dynamic block
allows you to change the table data without stopping the simulation.
For example, you may want to automatically incorporate new table data
if the physical system you are simulating changes.

You define the lookup table by inputting the x and y table data to the
block as 1-by-n vectors. To help reduce the ROM used by the code
generated for this block, you can use different data types for the x table
data and the y table data. However, these restrictions apply:

• The y table data and the output vector must have the same sign, the
same bias, and the same fractional slope.

• The x table data and the x data vector must have the same sign, the
same bias, and the same fractional slope. Additionally, the precision
and range for the x data vector must be greater than or equal to the
precision and range for the x table data.

The block generates output based on the input values using one of these
methods selected from the Look-Up Method parameter list:

2-423

Lookup Table Dynamic

• Interpolation-Extrapolation — This is the default method; it
performs linear interpolation and extrapolation of the inputs.

- If a value matches the block’s input, the output is the corresponding
element in the output vector.

- If no value matches the block’s input, then the block performs
linear interpolation between the two appropriate elements of the
table to determine an output value. If the block input is less than
the first or greater than the last input vector element, then the
block extrapolates using the first two or last two points.

Note Real-Time Workshop cannot generate code for
this block if its Look-Up Method parameter specifies
Interpolation-Extrapolation.

• Interpolation-Use End Values — This method performs linear
interpolation as described above but does not extrapolate outside the
end points of the input vector. Instead, the end-point values are used.

• Use Input Nearest — This method does not interpolate or
extrapolate. Instead, the element in x nearest the current input is
found. The corresponding element in y is then used as the output.

• Use Input Below — This method does not interpolate or extrapolate.
Instead, the element in x nearest and below the current input is
found. The corresponding element in y is then used as the output.
If there is no element in x below the current input, then the nearest
element is found.

• Use Input Above — This method does not interpolate or extrapolate.
Instead, the element in x nearest and above the current input is
found. The corresponding element in y is then used as the output.
If there is no element in x above the current input, then the nearest
element is found.

2-424

Lookup Table Dynamic

Note Note that there is no difference among the Use Input Nearest,
Use Input Below, and Use Input Above methods when the input
x corresponds exactly to table breakpoints.

The table data is converted from doubles to the x data type offline using
round-to-nearest and saturation.

Data Type
Support

The Lookup Table Dynamic block accepts signals of any data type
supported by Simulink, including fixed-point data types.

Parameters
and
Dialog
Box

The Main pane of the Lookup Table Dynamic block dialog appears as
follows:

Look-Up Method
Specify the lookup method.

2-425

Lookup Table Dynamic

The Signal Data Types pane of the Lookup Table Dynamic block
dialog appears as follows:

Output data type and scaling
Specify the output data type and scaling via the dialog box, or
inherit the data type and scaling from the driving block or by
backpropagation. If you choose Specify via dialog, the Output
data type and Output scaling parameters appear.

Output data type
Set the output data type. This parameter is only visible if you
select Specify via dialog for the Output data type and
scaling parameter.

2-426

Lookup Table Dynamic

Output scaling
Set the output scaling using either binary point-only or [Slope
Bias] scaling. This parameter is only visible if you select Specify
via dialog for the Output data type and scaling parameter.

Lock output scaling against changes by the autoscaling tool
If you select this check box, the output scaling is locked.

Round toward
Rounding mode for the fixed-point output.

Saturate to max or min when overflows occur
If selected, fixed-point overflows saturate.

Examples For an example that illustrates the lookup methods supported by this
block, see the example included in the Lookup Table block reference
pages.

Characteristics Direct Feedthrough Yes

Scalar Expansion No

See Also Lookup Table, Lookup Table (2-D), Lookup Table (n-D)

2-427

Magnitude-Angle to Complex

Purpose Convert magnitude and/or a phase angle signal to complex signal

Library Math Operations

Description The Magnitude-Angle to Complex block converts magnitude and/or
phase angle inputs to a complex-valued output signal. The inputs must
be real-valued signals of type double. The angle input is assumed to be
in radians. The data type of the complex output signal is double.

The inputs can both be signals of equal dimensions, or one input can
be an array and the other a scalar. If the block has an array input, the
output is an array of complex signals. The elements of a magnitude
input vector are mapped to magnitudes of the corresponding complex
output elements. An angle input vector is similarly mapped to the
angles of the complex output signals. If one input is a scalar, it is
mapped to the corresponding component (magnitude or angle) of all
the complex output signals.

Data Type
Support

See the preceding block description.

2-428

Magnitude-Angle to Complex

Parameters
and
Dialog
Box

Input
Specifies the kind of input: a magnitude input, an angle input,
or both.

Angle (Magnitude)
If the input is an angle signal, specifies the constant magnitude
of the output signal. If the input is a magnitude, specifies the
constant phase angle in radians of the output signal.

Sample time (-1 for inherited)
Specify the time interval between samples. To inherit the sample
time, set this parameter to -1. See “Specifying Sample Time” in
the online documentation for more information.

2-429

Magnitude-Angle to Complex

Characteristics Direct Feedthrough Yes

Sample Time Inherited from driving block

Scalar Expansion Yes, of the input when the function
requires two inputs

Dimensionalized Yes

Zero Crossing No

2-430

Manual Switch

Purpose Switch between two inputs

Library Signal Routing

Description The Manual Switch block is a toggle switch that selects one of its
two inputs to pass through to the output. To toggle between inputs,
double-click the block (there is no dialog box). The selected input is
propagated to the output, while the unselected input is discarded. You
can set the switch before the simulation is started or throw it while the
simulation is executing to interactively control the signal flow. The
Manual Switch block retains its current state when the model is saved.

Data Type
Support

The Manual Switch block accepts real or complex signals of any data
type supported by Simulink, including fixed-point data types.

For a discussion on the data types supported by Simulink, see“Data
Types Supported by Simulink” in the Simulink documentation.

Parameters
and
Dialog
Box

None

Characteristics Direct Feedthrough Yes

Sample Time Inherited from driving block

Scalar Expansion N/A

Dimensionalized Yes

Zero Crossing No

2-431

Math Function

Purpose Perform mathematical function

Library Math Operations

Description The Math Function block performs numerous common mathematical
functions.

You can select one of the following functions from the Function
parameter list.

• exp

• log

• 10^u

• log10

• magnitude^2

• square

• sqrt

• pow

• conj

• reciprocal

• hypot

• rem

• mod

• transpose

• hermitian

The block output is the result of the operation of the function on the
input or inputs.

The name of the function appears on the block. Simulink automatically
draws the appropriate number of input ports.

2-432

Math Function

Use the Math Function block instead of the Fcn block when you want
vector or matrix output, because the Fcn block produces only scalar
output.

Data Type
Support

The following table shows which input data types are supported by each
of the functions of the Math Function block.

Function single double
built-in
integer fixed point

exp yes yes — —

log yes yes — —

10^u yes yes — —

log10 yes yes — —

magnitude^2 yes yes yes yes

square yes yes yes yes

sqrt yes yes yes yes

pow yes yes — —

conj yes yes yes yes

reciprocal yes yes yes yes

hypot yes yes — —

rem yes yes yes —

mod yes yes yes —

transpose yes yes yes yes

hermitian yes yes yes yes

All supported modes accept both real and complex inputs, except for
reciprocal and sqrt, which do not accept complex fixed-point inputs.
Also, sqrt does not accept fixed-point inputs that are negative or that
have nontrivial slope and nonzero bias. The output signal type of the

2-433

Math Function

block is real or complex, depending on the setting of the Output signal
type parameter.

Parameters
and
Dialog
Box

The Main pane of the Math Function block dialog appears as follows:

Function
Specify the mathematical function.

Output signal type
Select the output signal type of the Math Function block as real,
complex, or auto.

2-434

Math Function

Input Output Signal Type

Function Signal Auto Real Complex

exp, log,
10u, log10,
square,
sqrt, pow,
reciprocal,
conjugate,
transpose,
hermitian

real

complex

real

complex

real

error

complex

complex

magnitude
squared

real

complex

real

real

real

real

complex

complex

hypot, rem,
mod

real

complex

real

error

real

error

complex

error

Sample time (-1 for inherited)
Specify the time interval between samples. To inherit the sample
time, set this parameter to -1. See “Specifying Sample Time” in
the online documentation for more information.

The Signal Data Types pane of the Math Function block dialog
appears as follows:

2-435

Math Function

Note The parameters on this pane are only available when the function
chosen in the Function parameter supports fixed-point data types.

Output data type mode
Set the data type and scaling of the output to be a built-in data
type, the same as that of the first input, or to be inherited via
an internal rule or by backpropagation. Alternatively, choose
to specify the data type and scaling of the output through the
Output data type and Output scaling value parameters.

2-436

Math Function

Output data type
Set the output data type. This parameter is only visible if you
select Specify via dialog for the Output data type mode
parameter.

Output scaling value
Set the output scaling using either binary point-only or [Slope
Bias] scaling. This parameter is only visible if you select Specify
via dialog for the Output data type and scaling parameter.

Lock output scaling against changes by the autoscaling tool
If you select this check box, the output scaling is locked.

Round integer calculations toward
Select the rounding mode for fixed-point operations.

Saturate on integer overflow
If selected, fixed-point overflows saturate.

Characteristics Direct Feedthrough Yes

Sample Time Specified in the Sample time
parameter

Scalar Expansion Yes, of the input when the function
requires two inputs

Dimensionalized Yes

Zero Crossing No

2-437

MATLAB Fcn

Purpose Apply MATLAB function or expression to input

Library User-Defined Functions

Description The MATLAB Fcn block applies the specified MATLAB function or
expression to the input. The output of the function must match the
output dimensions of the block or an error occurs.

Here are some sample valid expressions for this block.

sin
atan2(u(1), u(2))
u(1)^u(2)

Note This block is slower than the Fcn block because it calls the
MATLAB parser during each integration step. Consider using built-in
blocks (such as the Fcn block or the Math Function block) instead, or
writing the function as an M-file or MEX-file S-function, then accessing
it using the S-Function block.

Data Type
Support

The MATLAB Fcn block accepts one complex or real input of type
double and generates real or complex output of type double, depending
on the setting of the Output signal type parameter.

2-438

MATLAB Fcn

Parameters
and
Dialog
Box

MATLAB function
The function or expression. If you specify a function only, it is not
necessary to include the input argument in parentheses.

Output dimensions
Dimensions of the signal output by this block. If the output
dimensions are to be the same as the dimensions of the input
signal, specify -1. Otherwise, enter the dimensions of the output
signal, e.g., 2 for a two-element vector. In either case, the output
dimensions must match the dimensions of the value returned by
the function or expression in the MATLAB function field.

2-439

MATLAB Fcn

Output signal type
The dialog allows you to select the output signal type of the
MATLAB Fcn as real, complex, or auto. A value of auto sets the
block’s output type to be the same as the type of the input signal.

Collapse 2-D results to 1-D
Outputs a 2-D array as a 1-D array containing the 2-D array’s
elements in column-major order.

Sample time (-1 for inherited)
Specify the time interval between samples. To inherit the sample
time, set this parameter to -1. See “Specifying Sample Time” in
the online documentation for more information.

Characteristics Direct Feedthrough Yes

Sample Time Inherited from driving block

Scalar Expansion N/A

Dimensionalized Yes

Zero Crossing No

2-440

Memory

Purpose Output input from previous time step

Library Discrete

Description The Memory block outputs its input from the previous time step,
applying a one integration step sample-and-hold to its input signal.

This sample model demonstrates how to display the step size used in
a simulation. The Sum block subtracts the time at the previous step,
generated by the Memory block, from the current time, generated by
the clock.

Note Avoid using the Memory block when integrating with ode15s or
ode113, unless the input to the block does not change.

Data Type
Support

The Memory block accepts real or complex signals of any data type
supported by Simulink, including fixed-point data types.

For a discussion on the data types supported by Simulink, see “Data
Types Supported by Simulink” in the Simulink documentation.

2-441

Memory

Parameters
and
Dialog
Box

Initial condition
The output at the initial integration step. This must be set to 0 if
the input data type is user-defined. Simulink does not allow the
initial output of this block to be inf or NaN.

Inherit sample time
Check this check box to cause the sample time to be inherited
from the driving block. If this option is not selected, the block’s
sample time depends on the type of solver used to simulate the
model. If the solver is a variable-step solver, the sample time is
continuous but fixed in minor time step ([0, 1]). If the solver is
a fixed-step solver, this [0, 1] sample time is converted to the
solver’s step size after sample time propagation.

Direct feedthrough of input during linearization
Causes the block to output its input during linearization and trim.
This sets the block’s mode to direct feedthrough.

2-442

Memory

Enabling this check box can cause a change in the ordering of
states in the model when using the functions linmod, dlinmod,
or trim. To extract this new state ordering, use the following
commands.

First compile the model using the following command, where
model is the name of the Simulink model.

[sizes, x0, x_str] = model([],[],[],'lincompile');

Next, terminate the compilation with the following command.

model([],[],[],'term');

The output argument, x_str, which is a cell array of the states
in the Simulink model, contains the new state ordering. When
passing a vector of states as input to the linmod, dlinmod, or trim
functions, the state vector must use this new state ordering.

Treat as a unit delay when linearizing with discrete sample time
Select this check box to linearize the Memory block to a unit delay
when the Memory block is driven by a signal with a discrete
sample time.

The State Properties pane of this block pertains to code generation
and has no effect on model simulation. See “Block States: Storing
and Interfacing” in the Real-Time Workshop documentation for more
information.

Characteristics Direct Feedthrough No, except when Direct
feedthrough of input during
linearization is enabled.

Sample Time Continuous, but inherited from
the driving block if you select the
Inherit sample time check box

2-443

Memory

Scalar Expansion Yes, of the Initial condition
parameter

Dimensionalized Yes

Zero Crossing No

2-444

Merge

Purpose Combine multiple signals into single signal

Library Signal Routing

Description The Merge block combines its inputs into a single output line whose
value at any time is equal to the most recently computed output of its
driving blocks. You can specify any number of inputs by setting the
block’s Number of inputs parameter.

Note Merge blocks facilitate creation of alternately executing
subsystems. See “Creating Alternately Executing Subsystems” for an
application example.

A Merge block does not accept signals whose elements have been
reordered. For example, in the following diagram, the Merge block does
not accept the output of the Selector block because the Selector block
interchanges the first and fourth elements of the vector signal.

If the Allow unequal port widths parameter is not selected, the block
accepts only inputs of equal dimensions and outputs a signal of the
same dimensions as the inputs. If you select the Allow unequal port
widths option, the block accepts scalars and vectors (but not matrices)

2-445

Merge

having differing numbers of elements. Further, the block allows you to
specify an offset for each input signal relative to the beginning of the
output signal. The width of the output signal is

max(w1+o1, w2+o2, ... wn+on)

where w1, ... wn are the widths of the input signals and o1, ... on
are the offsets for the input signals. For example, the Merge block in
the following diagram merges signals v1 and v2 to produce signal v3.

In this example, the offset of v1 is 0 and the offset of v2 is 2, resulting in
an output signal six elements wide. The Merge block maps the elements
of v1 to the first two elements of v3 and the elements of v2 to the last
four elements of v3.

You can specify an initial output value by setting the block’s Initial
output parameter. If you do not specify an initial output and one or
more of the driving blocks do, the Merge block’s initial output equals
the most recently evaluated initial output of the driving blocks.

Merging S-Function Outputs

The Merge block can merge a signal from an S-Function block only if
the memory used to store the S-Function block’s output is reusable.
Simulink displays an error message if you attempt to update or simulate
a model that connects a nonreusable port of an S-Function block to a
Merge block. See ssSetOutputPortOptimOpts for more information.

2-446

Merge

Muxing Signals to be Merged

Instead of connecting signals directly to a Merge block, you can connect
them via a Mux block as illustrated in the following example.

This example connects three amplifiers to a Merge block via a Mux
block. The top and bottom amplifiers trigger on a rising pulse; the
middle, on a falling pulse. The trigger signal connected to the bottom
amplifier has a phase delay of .5 s compared to the trigger signal
connected to the top amplifier. The output of the Merge block at each

2-447

Merge

time step equals that of the amplifier triggered at that time step.
Muxing the signals to be merged rather than connecting them directly
to the Merge block can result in a clearer diagram.

Data Type
Support

The Merge block accepts real or complex signals of any data type
supported by Simulink, including fixed-point data types.

For a discussion on the data types supported by Simulink, see“Data
Types Supported by Simulink” in the Simulink documentation.

Parameters
and
Dialog
Box

Number of inputs
The number of input ports to merge.

2-448

Merge

Initial output
Initial value of output. If unspecified, the initial output equals the
initial output, if any, of one of the driving blocks. Simulink does
not allow you to set the initial output of this block to inf or NaN.

Allow unequal port widths
Allows the block to accept inputs having different numbers of
elements.

Input port offsets
Vector specifying the offset of each input signal relative to the
beginning of the output signal.

Characteristics Direct Feedthrough Yes

Sample Time Inherited from the driving block

Scalar Expansion No

Dimensionalized Yes

Zero Crossing No

2-449

MinMax

Purpose Output minimum or maximum input value

Library Math Operations

Description The MinMax block outputs either the minimum or the maximum
element or elements of the inputs. You can choose the function to apply
by selecting one of the choices from the Function parameter list.

If the block has one input port, the input must be a scalar or a vector.
The block outputs a scalar equal to the minimum or maximum element
of the input vector.

If the block has multiple input ports, the nonscalar inputs must all have
the same dimensions. The block expands any scalar inputs to have the
same dimensions as the nonscalar inputs. The block outputs a signal
having the same dimensions as the input. Each output element equals
the minimum or maximum of the corresponding input elements.

Data Type
Support

The MinMax block accepts and outputs real signals of any data type
supported by Simulink, except Boolean. The MinMax block supports
fixed-point data types.

For a discussion on the data types supported by Simulink, see “Data
Types Supported by Simulink” in the Simulink documentation.

2-450

MinMax

Parameters
and
Dialog
Box

The Main pane of the MinMax block dialog appears as follows:

Function
Specify whether to apply the function min or max to the input.

Number of input ports
Specify the number of inputs to the block.

Enable zero crossing detection
Select to enable zero crossing detection to detect minimum and
maximum values. For more information, see Zero Crossing
Detection in the “How Simulink Works” chapter of the Using
Simulink documentation.

Sample time (-1 for inherited)
Specify the time interval between samples. To inherit the sample
time, set this parameter to -1. See “Specifying Sample Time” in
the online documentation for more information.

2-451

MinMax

The Signal Data Types pane of the MinMax block dialog appears as
follows:

Require all inputs to have same data type
Select this parameter to require that all inputs must have the
same data type.

Output data type mode
Specify the output data type and scaling by choosing a built-in
data type from the drop-down list, or inherit the data type and
scaling by an internal rule or by backpropagation. Lastly, if you
select Specify via dialog, the Output data type, Output

2-452

MinMax

scaling value, and Lock output scaling against changes by
the autoscaling tool parameters become visible.

Output data type
Specify any data type, including fixed-point data types. This
parameter is only visible if you select Specify via dialog for
the Output data type mode parameter.

Output scaling value
Set the output scaling using binary point-only or [Slope Bias]
scaling. This parameter is only visible if you select Specify via
dialog for the Output data type mode parameter.

Lock output scaling against changes by the autoscaling tool
Select to lock scaling of outputs. This parameter is only visible if
you select Specify via dialog for the Output data type mode
parameter.

Round integer calculations toward
Select the rounding mode for fixed-point operations.

Saturate on integer overflow
Select to have overflows saturate.

Characteristics Direct Feedthrough Yes

Sample Time Specified in the Sample time
parameter

Scalar Expansion Yes, of the inputs

Dimensionalized Yes

Zero Crossing Yes, if enabled.

2-453

MinMax Running Resettable

Purpose Determine minimum or maximum of signal over time

Library Math Operations

Description The MinMax Running Resettable block outputs the minimum or
maximum of all past inputs u. You specify whether the block outputs
the minimum or the maximum with the Function parameter.

The block can reset its state based on an external reset signal R. When
the reset signal R is TRUE, the block resets the output to the value of
the Initial condition parameter.

The input can be a scalar, vector, or matrix signal. If you specify a
scalar Initial condition parameter, the block expands the parameter
to have the same dimensions as a nonscalar input. The block outputs a
signal having the same dimensions as the input. Each output element
equals the running minimum or maximum of the corresponding input
elements.

Data Type
Support

The MinMax Running Resettable block accepts and outputs real signals
of any data type supported by Simulink, except Boolean. The MinMax
Running Resettable block supports fixed-point data types.

For a discussion on the data types supported by Simulink, see “Data
Types Supported by Simulink” in the Simulink documentation.

2-454

MinMax Running Resettable

Parameters
and
Dialog
Box

Function
Specify whether the block outputs the minimum or the maximum.

Initial condition
Initial condition.

Characteristics Direct Feedthrough Yes

Scalar Expansion Yes

2-455

Model

Purpose Include model as block in another model

Library Ports & Subsystems

Description The Model block allows you to include a model as a block in another
model. The Model block displays input ports and output ports
corresponding to the model’s top-level input and output ports. This
allows you to connect the included model to other blocks in the
containing model.

During simulation, Simulink invokes an S-function called the
simulation target to compute the model’s outputs. If the simulation
target does not exist at the beginning of a simulation or when you
update the model’s block diagram, Simulink generates the target from
the referenced model. If the target exists, Simulink checks whether
the included model has changed since the last time the target was
built. If so, Simulink regenerates the target to reflect changes in the
model. Simulink uses the same simulation target for all instances of
an included model whether in the same model or different model. See
“Referencing Models” for more information.

Data Type
Support

Determined by the root-level inputs and outputs of the model referenced
by the Model block.

2-456

Model

Parameters
and
Dialog
Box

Model Name (without the .mdl extensions)
Name of the model referenced by this block. This name must be a
valid MATLAB identifier. The model must exist on the MATLAB
path and the MATLAB path must contain no other model having
the same name.

Model arguments
Names of model arguments accepted by the model referenced
by this block (see “Parameterizing Model References” for more
information).

2-457

Model

Model argument values (for this instance)
Values to be passed as model arguments to the model referenced
by this block each time the model is invoked during a simulation.
Enter the values in this field as a comma-separated list in the
same order as the corresponding argument names appear in the
Model arguments field.

Characteristics Direct Feedthrough Depends on model referenced by this
block.

Scalar Expansion Depends on model referenced by this
block.

2-458

Model Info

Purpose Display revision control information in model

Library Model-Wide Utilities

Description The Model Info block displays revision control information about a
model as an annotation block in the model’s block diagram. The
following diagram illustrates use of a Model Info block to display
information about the vdp model.

A Model Info block can show revision control information embedded in
the model itself and/or information maintained by an external revision
control or configuration management system. A Model Info block’s
dialog allows you to specify the content and format of the text displayed
by the block.

2-459

Model Info

Data Type
Support

Not applicable.

Parameters
and
Dialog
Box

The Model Info block dialog box includes the following fields:

Editable text

Enter the text to be displayed by the Model Info block in this field. You
can freely embed variables of the form %<propname>, where propname is
the name of a model or revision control system property, in the entered
text. The value of the property replaces the variable in the displayed
text. For example, suppose that the current version of the model is
1.1. Then the entered text

Version %<ModelVersion>

appears as

2-460

Model Info

Version 1.1

in the displayed text. The model and revision control system properties
that you can reference in this way are listed in the Model properties
and Configuration manager properties fields.

Model properties

Lists revision control properties stored in the model. Selecting a
property and then selecting the adjacent arrow button enters the
corresponding variable in the Editable text field. For example,
selecting CreatedBy enters %<CreatedBy%> in the Editable text field.
See “Version Control Properties” for a description of the usage of the
properties specified in this field.

Configuration manager properties

This field appears only if you previously specified an external
configuration manager for this model on the MATLAB Preferences
dialog box for the model (see “Specifying the Source Control System”
in the online MATLAB documentation) or by setting the model’s
ConfigurationManager property. The field lists version control
information maintained by the external system that you can include in
the Model Info block. To include an item from the list, select it and then
click the adjacent arrow button.

Note The selected item does not appear in the Model Info block until
you check the model in or out of the repository maintained by the
configuration manager and you have closed and reopened the model.

2-461

Multiport Switch

Purpose Choose between multiple block inputs

Library Signal Routing

Description The Multiport Switch block chooses between a number of inputs. The
first (top, or left) input is called the control input, while the rest of the
inputs are called data inputs. The value of the control input determines
which data input is passed through to the output port.

If the control input is an integer value, then the specified data input
is passed through to the output. For example, suppose the Use
zero-based indexing parameter is not selected. If the control input
is 1, then the first data input is passed through to the output. If the
control input is 2, then the second data input is passed through to
the output, and so on. If the control input is not an integer value, the
block first truncates the value to an integer by rounding to floor. If the
truncated control input is less than 1 or greater than the number of
input ports, an out-of-bounds error is returned.

You specify the number of data inputs with the Number of input
ports parameter. The data inputs can be scalar or vector. The block
output is determined by these rules:

• If you specify only one data input and that input is a vector, the block
behaves as an "index selector," and not as a multi-port switch. The
block output is the vector element that corresponds to the value of
the control input.

• If you specify more than one data input, the block behaves like
a multi-port switch. The block output is the data input that
corresponds to the value of the control input. If at least one of the
data inputs is a vector, the block output is a vector. Any scalar inputs
are expanded to vectors.

• If the inputs are scalar, the output is a scalar.

The Index Vector block, also in the Signal Routing library, is another
implementation of the Multiport Switch block that has different default
parameter settings.

2-462

Multiport Switch

Data type
support

The control and data inputs of a Multiport Switch block can be signals
of any data type supported by Simulink, except Boolean. The Multiport
Switch block supports fixed-point data types.

The control inputs must be real. The data inputs can be real or complex.

For a discussion on the data types supported by Simulink, see “Data
Types Supported by Simulink” in the Simulink documentation.

Parameters
and
Dialog
Box

The Main pane of the Multiport Switch block dialog appears as follows:

Number of input ports
Specify the number of data inputs to the block.

Use zero based indexing
If selected, the block uses zero-based indexing. Otherwise, the
block uses one-based indexing.

2-463

Multiport Switch

Sample time (-1 for inherited)
Specify the time interval between samples. To inherit the sample
time, set this parameter to -1. See “Specifying Sample Time” in
the online documentation for more information.

The Signal Data Types pane of the Multiport Switch block dialog
appears as follows:

Require all data port inputs to have same data type
Select to require all data port inputs to have the same data type.

Output data type mode
You can choose to inherit the output data type and scaling by
backpropagation or by an internal rule. The internal rule causes
the output of the block to have the same data type and scaling as
the input with the larger positive range.

2-464

Multiport Switch

Round integer calculations toward
Select the rounding mode for fixed-point operations.

Saturate on integer overflow
Select to have overflows saturate.

Characteristics Direct Feedthrough Yes

Sample Time Specified in the Sample time
parameter

Scalar Expansion Yes

Dimensionalized Yes

Zero Crossing No

2-465

Mux

Purpose Combine several input signals into vector

Library Signal Routing

Description The Mux block combines its inputs into a single vector output. An input
can be a scalar or vector signal. All inputs should be of the same data
type and numeric type. The elements of the vector output signal take
their order from the top to bottom, or left to right, input port signals.

Note The Mux block allows you to connect signals of differing data and
numeric types and matrix signals to its inputs. In this case, the Mux
block outputs a bus signal combining the inputs. In other words, the
Mux block behaves like a Bus Creator block. Nevertheless, you should
use Bus Creator blocks in such cases to ensure that your model will
run in future releases of Simulink, which may not support the use of
Mux blocks as Bus Creators. If your model currently uses Mux blocks
as Bus Creators, you may want to consider replacing the Mux blocks
with equivalent Bus Creator blocks (see Mux blocks used to create bus
signals for more information).

The Mux block’s Number of Inputs parameter allows you to specify
input signal names and sizes as well as the number of inputs. You can
use any of the following formats to specify this parameter:

• Scalar

Specifies the number of inputs to the Mux block. When this format is
used, the block accepts scalar or vector signals of any size. Simulink
assigns each input the name signalN, where N is the input port
number.

• Vector

The length of the vector specifies the number of inputs. Each element
specifies the size of the corresponding input. A positive value
specifies that the corresponding port can accept only vectors of that

2-466

Mux

size. For example, [2 3] specifies two input ports of sizes 2 and 3,
respectively. If an input signal width does not match the expected
width, Simulink displays an error message. A value of -1 specifies
that the corresponding port can accept scalars or vectors of any size.

• Cell array

The length of the cell array specifies the number of inputs. The value
of each cell specifies the size of the corresponding input. A scalar
value N specifies a vector of size N. A value of -1 means that the
corresponding port can accept scalar or vector signals of any size.

• Signal name list

You can enter a list of signal names separated by commas. Simulink
assigns each name to the corresponding port and signal. For example,
if you enter position,velocity, the Mux block will have two inputs,
named position and velocity.

Note Simulink hides the name of a Mux block when you copy it from
the Simulink block library to a model.

Data Type
Support

The Mux block accepts real or complex signals of any data type
supported by Simulink, including fixed-point data types.

For a discussion on the data types supported by Simulink, see “Data
Types Supported by Simulink” in the Simulink documentation.

2-467

Mux

Parameters
and
Dialog
Box

Number of inputs
The number and size of inputs. You can enter a comma-separated
list of signal names for this parameter field.

Display option
The appearance of the block in the model.

Display Option
Appearance of Block in
Model

none Mux appears inside the block

signals Displays signal names next to
each port

bar Displays the block in a solid
foreground color

2-468

Outport

Purpose Create output port for subsystem or external output

Library Ports & Subsystems, Sinks

Description Outport blocks are the links from a system to a destination outside
the system.

Simulink assigns Outport block port numbers according to these rules:

• It automatically numbers the Outport blocks within a top-level
system or subsystem sequentially, starting with 1.

• If you add an Outport block, it is assigned the next available number.

• If you delete an Outport block, other port numbers are automatically
renumbered to ensure that the Outport blocks are in sequence and
that no numbers are omitted.

Outport Blocks in a Subsystem

Outport blocks in a subsystem represent outputs from the subsystem.
A signal arriving at an Outport block in a subsystem flows out of the
associated output port on that Subsystem block. The Outport block
associated with an output port on a Subsystem block is the block whose
Port number parameter matches the relative position of the output
port on the Subsystem block. For example, the Outport block whose
Port number parameter is 1 sends its signal to the block connected to
the topmost output port on the Subsystem block.

If you renumber the Port number of an Outport block, the block
becomes connected to a different output port, although the block
continues to send the signal to the same block outside the subsystem.

When you create a subsystem by selecting existing blocks, if more
than one Outport block is included in the grouped blocks, Simulink
automatically renumbers the ports on the blocks.

The Outport block name appears in the Subsystem icon as a port label.
To suppress display of the label, select the Outport block and choose
Hide Name from the Format menu.

2-469

Outport

Outport Blocks in a Conditionally Executed Subsystem

When an Outport block is in an enabled subsystem, you can specify what
happens to its output when the subsystem is disabled: it can be reset
to an initial value or held at its most recent value. The Output when
disabled pop-up menu provides these options. The Initial output
parameter is the value of the output before the subsystem executes and,
if the reset option is chosen, while the subsystem is disabled.

Outport Blocks in a Top-Level System

Outport blocks in a top-level system have two uses: to supply external
outputs to the workspace, which you can do by using either the
Configuration Parameters dialog box or the sim command, and to
provide a means for analysis functions to obtain output from the system.

• To supply external outputs to the workspace, use the Configuration
Parameters dialog box (see Exporting Output Data to the MATLAB
Workspace) or the sim command (see sim). For example, if a system
has more than one Outport block and the save format is array, the
following command

[t,x,y] = sim(...);

writes y as a matrix, with each column containing data for a different
Outport block. The column order matches the order of the port
numbers for the Outport blocks.

If you specify more than one variable name after the second (state)
argument, data from each Outport block is written to a different
variable. For example, if the system has two Outport blocks, to save
data from Outport block 1 to speed and the data from Outport block
2 to dist, you could specify this command:

[t,x,speed,dist] = sim(...);

• To provide a means for the linmod and trim analysis functions to
obtain output from the system (see “Linearizing Models”)

2-470

Outport

Data Type
Support

The Outport block accepts complex or real signals of any data type
supported by Simulink. An Outport block can also accept fixed-point
data types if it is not a root-level output port. The complexity and data
type of the block’s output are the same as those of its input. For a
discussion on the data types supported by Simulink, see “Data Types
Supported by Simulink” in the Simulink documentation.

The elements of a signal array connected to an Outport block can
be of differing complexity and data types except in the following
circumstance: If the output port is in a conditionally executed
subsystem and the initial output is specified, all elements of an input
array must be of the same complexity and data types.

Typical Simulink data type conversion rules apply to an output port’s
Initial output parameter. If the initial output value is in the range of
the block’s output data type, Simulink converts the initial output to the
output data type. If the specified initial output is out of the range of the
output data type, Simulink halts the simulation and signals an error.

2-471

Outport

Parameters
and
Dialog
Box

The Main pane of the Outport block dialog appears as follows:

Port number
Specify the port number of the Outport block.

Icon Display
Specify the information to be displayed on the icon of this Outport
block. The options are:

2-472

Outport

Port number Displays port number of this Outport
block.

Signal name Displays the name of the signal
connected to this Outport block (or
signals if a bus is connected to this
block).

Port name and
signal name

Displays both the port number and the
name or names of the signals connected
to this Outport block.

Output when disabled
This option is enabled only if the Outport resides in an Enabled
Subsystem. It specifies what happens to the block output when
the system is disabled.

Initial output
For conditionally executed subsystems, specify the block output
before the subsystem executes and while it is disabled. You can
specify [] if your model does not depend on the initial output of
the conditionally executed subsystem. Simulink does not allow
the initial output of this block to be inf or NaN.

The Signal Specification pane of the Output block dialog appears
as follows:

2-473

Outport

2-474

Outport

Specify properties via bus object
Select this option to use a bus object (see “Working with Data
Objects” and Simulink.Bus class in the online documentation) to
define the properties of a bus connected to this Outport block.

Bus object for validating input bus
Specifies the name of the bus object that defines the structure
that a bus must have to be connected to this Outport block. At
the beginning of a simulation or when you update the model’s
diagram, Simulink checks whether the bus connected to this block
has the specified structure. If not, Simulink displays an error
message.

Output as structure in parent model
Select this option if you want code generated from this model to
use a C structure to define the structure of the bus signal output
by this block.

Port dimensions (-1 for inherited)
Specifies the dimensions that a signal must have in order to be
connected to this Outport block. Valid values are:

-1 A signal of any dimensions can be connected
to this port.

N The signal connected to this port must be a
vector of size N.

[R C] The signal connected to this port must be a
matrix having R rows and C columns.

Sample time (-1 for inherited)
Specify the sample time of this Outport block. See “Specifying
Sample Time” in the online documentation for information on
specifying sample times. The output of this block changes at the
specified rate to reflect the value of its input.

Data type
Specify the data type of the signal output by this block. To output
any data type, set this parameter to auto.

2-475

Outport

Output data type
Specify any data type, including fixed-point data types. This
parameter is only visible if you select Specify via dialog for
the Data type parameter.

Output scaling value
Set the output scaling using binary point-only or [Slope Bias]
scaling. This parameter is only visible if you select Specify via
dialog for the Data type parameter.

Signal type
Specifies the numeric type of the signal output by this block. The
options are:

real This Outport block outputs a real-valued signal.
The signal connected to this block must be real.
If it is not, Simulink displays an error if you try
to update the diagram or simulate the model
that contains this block.

complex This Outport block outputs a complex signal.
The signal connected to this block must be
complex. If it is not, Simulink displays an error
if you try to update the diagram or simulate the
model that contains this block.

auto This block outputs the numeric type of the
signal that is connected to its input.

Sampling mode
Specify the sampling mode (Sample based or Frame based)
that the input signal must match. To accept any sampling
mode, set this parameter to auto. This parameter is intended
to support signal processing applications based on Simulink.
See the documentation for the buffer function provided by the
Signal Processing Toolbox or "Frame-Based Operations" in the
documentation for the Signal Processing Blockset for information
about frame-based signals.

2-476

Outport

Characteristics Sample Time Inherited from driving block

Dimensionalized Yes

2-477

Polynomial

Purpose Perform evaluation of polynomial coefficients on input values

Library Math Operations

Description The Polynomial block uses a coefficients parameter to evaluate a real
polynomial for the input value.

You define a set of polynomial coefficients in the form accepted by the
MATLAB polyval command. The block then calculates P(u) at each
time step for the input u. Inputs and coefficients must be real.

Data Type
Support

The Polynomial block accepts real signals of types double or single.
The Polynomial coefficients parameter must be of the same type as
the inputs. The output data type is set to the input data type.

Parameters
and
Dialog
Box

Polynomial coefficients

Values are in coefficients of a polynomial in MATLAB polyval form,
with the first coefficient representing xN, then decreasing in order until
the last coefficient, which represents the constant for the polynomial.
See polyval in the MATLAB documentation for more information.

2-478

Polynomial

Characteristics Direct Feedthrough Yes

Sample Time Inherited from driving block

Scalar Expansion No

Dimensionalized Yes

Zero Crossing No

2-479

Prelookup

Purpose Compute index and fraction for Interpolation Using Prelookup block

Library Lookup Tables

Description The Prelookup block is intended for use with the Interpolation Using
Prelookup block. The Prelookup block calculates the index and interval
fraction that specifies how its input value relates to the breakpoint
data set. You feed the resulting index and fraction values into an
Interpolation Using Prelookup block to interpolate an n-dimensional
table. This combination of blocks performs the equivalent operation that
a single instance of the Lookup Table (n-D) block performs. However,
the Prelookup and Interpolation Using Prelookup blocks offer greater
flexibility that can result in more efficient simulation performance.

To use this block, you must define a set of breakpoint values. In normal
use, this breakpoint data set corresponds to one dimension of the Table
data parameter in an Interpolation Using Prelookup block. The block
generates a pair of outputs for each input value by calculating the

• Index of the breakpoint set element that is less than or equal to the
input value

• Resulting fractional value that is a number 0 ≤ f < 1, representing
the input value’s normalized position between the index and the next
index value for in-range input

For example, if the breakpoint data set is

[0 5 10 20 50 100]

and the input value u is 55, the index is 4 and the fractional value is
0.1, denoted respectively as k and f on the block. Note that the index
value is zero-based.

2-480

Prelookup

Note The interval fraction can be negative or greater than 1 for
out-of-range input. See the documentation for the block’s Process out
of range input parameter for more information.

Data Type
Support

The Prelookup block accepts real signals of any data type supported by
Simulink, except Boolean. The Prelookup block supports fixed-point
data types.

For a discussion on the data types supported by Simulink, see “Data
Types Supported by Simulink” in the Simulink documentation.

2-481

Prelookup

Parameters
and
Dialog
Box

The Main pane of the Prelookup block dialog appears as follows:

Breakpoint data
The set of numbers to search. Specify a strictly monotonically
increasing vector that contains two or more elements.

Note At runtime, the Prelookup block converts the data type of
its Breakpoint data parameter to that of its input.

2-482

Prelookup

Click the Edit button to open the Lookup Table Editor (see
“Lookup Table Editor” in the Simulink documentation).

Index search method
Binary search, Evenly spaced points, or Linear search. Use
Linear search in combination with Begin index search using
previous index result for more efficient performance than
Binary search when the input values do not change much from
one time step to the next. For large breakpoint data sets, a linear
search can be very slow if the input value changes by more than a
few intervals from one time step to the next. Use Evenly spaced
points if the elements of the Breakpoint data parameter are
spaced apart evenly.

Begin index search using previous index result
Select this option if you want the block to start its search using
the index that was found at the previous time step. For inputs
that change slowly with respect to the interval size, you can
realize a large performance gain.

Output only the index
If this block is not being used to feed an Interpolation Using
Prelookup block, the interval fraction output can be dropped. In
this case, the block outputs only the resulting index value.

Process out of range input
Specifies how to handle out-of-range input. Options include:

• Clip to range

If the input is less than the first breakpoint, return the index of
the first breakpoint (i.e., 0) and 0 for the interval fraction. If
the input is greater than the last breakpoint, return the index
of the next-to-last breakpoint and 1 for the interval fraction.
For example, suppose the range is [1 2 3] and you select this
option. Then, if the input is 0.5, the index is 0 and the interval
fraction is 0; if the input is 3.5, the index is1 and the interval
fraction is 1.

2-483

Prelookup

• Linear extrapolation

If the input is less than the first breakpoint, return the
index of the first breakpoint (i.e., 0) and an interval fraction
representing the linear distance from the input to the first
breakpoint. If the input is greater than the last breakpoint,
return the index of the next-to-last breakpoint and an
interval fraction that represents the linear distance from the
next-to-last breakpoint to the input. For example, suppose the
range is [1 2 3] and you select this option. Then, if the input
is 0.5, the index is 0 and the interval fraction is -0.5; if the
input is 3.5, the index is 1 and the interval fraction is 1.5.

The Prelookup block supports Linear extrapolation only if
all of the following conditions apply:

— The block input and its interval fraction specify the same
floating-point data type.

— The data type of its index specifies a built-in integer.

Use last breakpoint for input at or above upper limit
Specifies how to index inputs that are greater than or equal to the
last breakpoint. If enabled when the block input equals the last
breakpoint, the block returns the index of the last element in the
breakpoint data set and 0 for the interval fraction. If disabled
in this situation, the block returns the index of the next-to-last
breakpoint and 1 for the interval fraction. Note that the index
value is zero-based.

This parameter is visible only if Output only the index is
unchecked and Process out of range input is Clip to range.
However, if Output only the index is checked and Process out
of range input is Clip to range, the block behaves as if this
parameter is enabled even though it is invisible.

2-484

Prelookup

Note If you enable the Use last breakpoint for input at or
above upper limit parameter for a Prelookup block, you must
also enable the Valid index input may reach last index
parameter for the Interpolation Using Prelookup block to which
it connects. This allows the blocks to use the same indexing
convention when accessing the last elements of their Breakpoint
data and Table data parameters.

Action for out of range input
Specifies whether to produce a warning or error message if the
input is out of range. The options are

• None — the default, no warning or error message

• Warning — display a warning message in the MATLAB
Command Window and continue the simulation

• Error — halt the simulation and display an error message in
the Simulation Diagnostics Viewer

Sample time
Specifies the time interval between samples. To inherit the
sample time, set this parameter to -1. See “Specifying Sample
Time” in the Simulink documentation for more information.

The Signal Data Types pane of the Prelookup block dialog appears
as follows:

2-485

Prelookup

Index data type mode
Specify how the data type of the index is designated. You can
choose a built-in integer data type from the list. If you choose
Specify via dialog, the Index data type parameter becomes
visible.

Index data type
Specify any integer data type, including integers created using a
fixed-point representation. The data type that you specify must
be capable of indexing all elements in the Breakpoint data

2-486

Prelookup

parameter. The Index data type parameter is visible only if
you select Specify via dialog for the Index data type mode
parameter.

Fraction data type mode
Specify how the data type of the interval fraction is designated.
You can choose a built-in floating-point data type from the list,
or you can specify that the data type is inherited through an
internal rule. If you choose Specify via dialog, the Fraction
data type, Fraction scaling value, and Lock output scaling
against changes by the autoscaling tool parameters become
visible.

Fraction data type
Specify any data type, including fixed-point data types. This
parameter is visible only if you select Specify via dialog for
the Fraction data type mode parameter.

Fraction scaling value
Specify the scaling of the interval fraction using either the [Slope
Bias] or the binary-point-only scaling representation. If using the
[Slope Bias] representation, the scaling must be trivial — i.e.,
the slope is 1 and the bias is 0. If using the binary-point-only
representation, the fixed power-of-two exponent must be less
than or equal to zero. This parameter is visible only if you
select Specify via dialog for the Fraction data type mode
parameter.

Lock output scaling against changes by the autoscaling tool
Select to lock scaling of outputs. This parameter is visible only
if you select Specify via dialog for the Fraction data type
mode parameter.

Round integer calculations toward
Select the rounding mode for fixed-point operations.

Block parameters such as Breakpoint data are always rounded
to the nearest representable value. To control the rounding of a

2-487

Prelookup

block parameter, enter an expression using a MATLAB rounding
function into the mask field.

Characteristics Direct Feedthrough Yes

Sample Time Specified in the Sample time
parameter

Scalar Expansion Yes

Dimensionalized Yes

Zero Crossing No

See Also Interpolation Using Prelookup

2-488

PreLookup Index Search (Obsolete)

Purpose First stage of high-performance constant or linear interpolation that
performs index search and interval fraction calculation for input on
breakpoint set

Library Lookup Tables

Description
Note The PreLookup Index Search block is currently supported, but
The MathWorks plans to remove this block in a future release. We
recommend you use the Prelookup block instead.

The PreLookup Index Search block is intended for use with the
Interpolation (n-D) Using PreLookup (Obsolete) block. The PreLookup
Index Search block calculates the index and interval fraction that
specifies how its input value relates to the breakpoint data set. You
feed the resulting (index, fraction) pair into an Interpolation (n-D)
Using PreLookup block to interpolate an n-dimensional table. This
combination of blocks performs the equivalent operation that a single
instance of the Lookup Table (n-D) block performs. But by using these
blocks instead, you can potentially increase the simulation performance
of models that use many interpolation blocks.

To use this block, you must define a set of breakpoint values. In normal
use, this breakpoint data set corresponds to one dimension of a Table
data parameter in an Interpolation (n-D) Using PreLookup block. The
block generates a pair of outputs for each input value by calculating the
index of the breakpoint set element that is less than or equal to the
input value and the resulting fractional value that is a number 0 ≤ f < 1
that represents the input value’s normalized position between the index
and the next index value for in-range input.

For example, if the breakpoint data is

[0 5 10 20 50 100]

and the input value u is 55, the (index, fraction) pair is (4, 0.1), denoted
as k and f on the block. Note that the index value is zero-based.

2-489

PreLookup Index Search (Obsolete)

Note The interval fraction can be negative or greater than 1 for
out-of-range input. See the documentation for the block’s Process out
of range input parameter for more information.

Data Type
Support

The PreLookup Index Search block accepts signals of types double or
single, but for any given block the inputs must all be of the same type.
The Breakpoint data parameter must be of the same type as the
inputs. The output data type is set to the input data type.

Parameters
and
Dialog
Box

Breakpoint data
The set of numbers to search.

2-490

PreLookup Index Search (Obsolete)

Index search method
Binary search, evenly spaced points, or linear search. Use linear
search in combination with Begin index search using previous
index result for higher performance than a binary search when
the input values do not change much from one time step to the
next. For large breakpoint sets, a linear search can be very slow if
the input value changes by more than a few intervals from one
time step to the next.

Begin index search using previous index result
Select this option if you want the block to start its search using
the index that was found on the previous time step. For inputs
that change slowly with respect to the interval size, you can
realize a large performance gain.

Output only the index
If this block is not being used to feed an Interpolation (n-D) Using
PreLookup block, the interval fraction output can be dropped and
the resulting index value output is either an int32 or uint32
instead.

Process out of range input
Specifies how to handle out-of-range input. Options include:

• Clip to Range

If the input is less than the first breakpoint, return the index of
the first breakpoint (i.e., 0) and 0 for the interval fraction. If the
input is greater than the last breakpoint, return the index of the
next-to-the-last breakpoint and 1 for the interval fraction. For
example, suppose the range is [1 2 3] and you select this option.
Then, if the input is 0.5, the block returns [0 0]; if the input is
3.5, the block returns [1 1].

• Linear Extrapolation

If the input is less than the first breakpoint, return the index
of the first breakpoint and an interval fraction representing the

2-491

PreLookup Index Search (Obsolete)

linear distance from the input to the first breakpoint. If the
input is greater than the last breakpoint, return the index of
the next-to-the-last breakpoint and an interval fraction that
represents the linear distance from the next-to-the-last breakpoint
to the input. For example, suppose the range is [1 2 3] and you
select this option. Then, if the input is 0.5, the block returns [0
-0.5]; if the input is 3.5, the block returns [1 1.5].

Action for out of range input
Specifies whether to produce a warning or error message if the
input is out of range. The options are None (the default, no
warning or error message), Warning (display a warning message
in the MATLAB command window and continue the simulation),
Error (halt the simulation and display an error message in the
Simulation Diagnostics Viewer).

Characteristics Direct Feedthrough Yes

Sample Time Inherited from driving blocks

Scalar Expansion Yes

Dimensionalized Yes

Zero Crossing No

See Also Interpolation (n-D) Using PreLookup (Obsolete)

2-492

Product

Purpose Multiply or divide inputs

Library Math Operations

Description The Product block performs multiplication or division of its inputs.

This block produces outputs using either element-wise or matrix
multiplication, depending on the value of the Multiplication
parameter. You specify the operations with the Number of inputs
parameter. Multiply(*) and divide(/) characters indicate the operations
to be performed on the inputs:

• If there are two or more inputs, then the number of characters must
equal the number of inputs. For example, "*/*" requires three
inputs. For this example, if the Multiplication parameter is set to
Element-wise, the block divides the elements of the first (top, or
left) input by the elements of the second (middle) input, and then
multiplies by the elements of the third (bottom, or right) input. In
this case, all nonscalar inputs to this block must have the same
dimensions.

If, however, the Multiplication parameter is set to Matrix, the block
output is the matrix product of the inputs marked "*" and the inverse
of inputs marked "/", with the order of operations following the entry
in the Number of inputs parameter. The dimensions of the inputs
must be such that the matrix product is defined.

Note To perform a dot product on input vectors, use the Dot Product
block.

• If only multiplication of inputs is required, then a numeric parameter
value equal to the number of inputs can be supplied instead of "*"
characters. This may be used in conjunction with either element-wise
or matrix multiplication.

2-493

Product

• If a single vector is input and the Multiplication parameter is set to
Element-wise, then a single "*" will cause the block to output the
scalar product of the vector elements. A single "/" will cause the block
to output the inverse of the scalar product of the vector elements.

• If a single matrix is input and the Multiplication parameter is set
to Element-wise, then a single "*" or "/" will cause the block to error
out. If, however, the Multiplication parameter is set to Matrix, then
a single "*" will cause the block to output the matrix unchanged, and
a single "/" will cause the block to output the inverse of the matrix.

The Product block first performs the specified multiply or divide
operations on the inputs, and then converts the results to the output
data type using the specified rounding and overflow modes.

Data Type
Support

The Product block accepts real or complex signals of any data type
supported by Simulink including fixed-point data types.

Note The Product block does not accept complex signals for inputs
marked "/", if you specify a fixed-point data type for any of its input or
output signals.

For a discussion on the data types supported by Simulink, see “Data
Types Supported by Simulink” in the Simulink documentation.

2-494

Product

Parameters
and
Dialog
Box

The Main pane of the Product dialog appears as follows:

Number of inputs
Enter the number of inputs or a combination of "*" and "/"
symbols. See Description above for a complete discussion of this
parameter.

Multiplication
Specify element-wise or matrix multiplication. See Description
above for a complete discussion of this parameter.

Sample time (-1 for inherited)
Specify the time interval between samples. To inherit the sample
time, set this parameter to -1. See “Specifying Sample Time” in
the online documentation for more information.

2-495

Product

The Signal Data Types pane of the Product dialog appears as follows:

Require all inputs to have same data type
Select this parameter to require that all inputs have the same
data type.

Output data type mode
Specify the output data type and scaling to be the same as the
first input, or inherit the data type and scaling by an internal

2-496

Product

rule or by backpropagation. You can also choose a built-in data
type from the drop-down list. Lastly, if you choose Specify via
dialog, the Output data type, Output scaling value, and
Lock output scaling against changes by the autoscaling
tool parameters become visible.

If you select Inherit via internal rule for this parameter,
Simulink chooses a combination of output scaling and data
type that requires the smallest amount of memory consistent
with accommodating the output range and maintaining the
output precision (and avoiding underflow in the case of division
operations). If the Device type parameter on the Hardware
Implementation pane of the Configuration Parameters
dialog is set to custom, Simulink chooses the data type without
regard to hardware constraints. Otherwise, Simulink chooses
the smallest available hardware data type capable of meeting
range, precision, and underflow constraints. For example, if the
block multiplies inputs of type int8 and int16 and custom is
specified as the device type, the output data type is sfix24. If
Unspecified (assume 32-bit generic) is specified, the output
data type is int32. If none of the word lengths provided by the
target hardware can accommodate the output range, Simulink
displays an error message in the Simulation Diagnostics Viewer.

Output data type
Specify any data type, including fixed-point data types. This
parameter is only visible if you select Specify via dialog for
the Output data type mode parameter.

Output scaling value
Set the output scaling using binary point-only or [Slope Bias]
scaling. This parameter is only visible if you select Specify via
dialog for the Output data type mode parameter.

Lock output scaling against changes by the autoscaling tool
Select to lock scaling of outputs. This parameter is only visible if
you select Specify via dialog for the Output data type mode
parameter.

2-497

Product

Round integer calculations toward
Select the rounding mode for fixed-point operations.

Saturate on integer overflow
Select to have overflows saturate.

Characteristics Direct Feedthrough Yes

Sample Time Specified in the Sample time
parameter

Scalar Expansion Yes

Dimensionalized Yes

Zero Crossing No

2-498

Product of Elements

Purpose Multiply or divide inputs

Library Math Operations

Description The Product of Elements block is an implementation of the Product
block. See Product for more information.

2-499

Probe

Purpose Output signal’s attributes, including width, dimensionality, sample
time, and/or complex signal flag

Library Signal Attributes

Description The Probe block outputs selected information about the signal on its
input. The block can output the input signal’s width, dimensionality,
sample time, and/or a flag indicating whether the input is a
complex-valued signal. The block has one input port. The number of
output ports depends on the information that you select for probing,
that is, signal dimensionality, sample time, and/or complex signal flag.
Each probed value is output as a separate signal on a separate output
port. The block accepts real or complex-valued signals of any built-in
data type. It outputs signals of type double. During simulation, the
block’s icon displays the probed data.

Data Type
Support

The Probe block accepts and outputs any data type supported by
Simulink, including fixed-point data types.

For a discussion on the data types supported by Simulink, see “Data
Types Supported by Simulink” in the Simulink documentation.

2-500

Probe

Parameters
and
Dialog
Box

The Main pane of the Probe block dialog appears as follows:

Probe width
Select to output the width, or number of elements, of the probed
signal.

Probe sample time
Select to output the sample time of the probed signal. The
output is a 2x1 vector that specifies the period and offset of the
sample time, respectively. See “Specifying Sample Time” for more
information.

Probe complex signal
Select to output 1 if the probed signal is complex; otherwise, 0.

Probe signal dimensions
Select to output the dimensions of the probed signal.

2-501

Probe

Detect framed signal
Select to output 1 if the probed signal is framed; otherwise, 0.

The Signal Data Types pane of the Probe block dialog appears as
follows:

Note The Probe block ignores the Data Type Override setting of
the Fixed-Point Settings interface.

Data type for width
Select the output data type for the width information.

Data type for sample time
Select the output data type for the sample time information.

2-502

Probe

Data type for signal complexity
Select the output data type for the complexity information.

Data type for signal dimensions
Select the output data type for the dimensions information.

Data type for signal frames
Select the output data type for the frames information.

Characteristics Direct Feedthrough Yes

Sample Time Inherited from driving block

Scalar Expansion Yes

Dimensionalized Yes

Zero Crossing No

2-503

Pulse Generator

Purpose Generate square wave pulses at regular intervals

Library Sources

Description The Pulse Generator block generates square wave pulses at regular
intervals. The block’s waveform parameters, Amplitude, Pulse
Width, Period, and Phase Delay, determine the shape of the output
waveform. The following diagram shows how each parameter affects
the waveform.

The Pulse Generator can emit scalar, vector, or matrix signals of any
real data type. To cause the block to emit a scalar signal, use scalars
to specify the waveform parameters. To cause the block to emit a
vector or matrix signal, use vectors or matrices, respectively, to specify
the waveform parameters. Each element of the waveform parameters
affects the corresponding element of the output signal. For example,
the first element of a vector amplitude parameter determines the
amplitude of the first element of a vector output pulse. All the waveform
parameters must have the same dimensions after scalar expansion. The
data type of the output is the same as the data type of the Amplitude
parameter.

The block’s Pulse type parameter allows you to specify whether
the block’s output is time-based or sample-based. If you select
sample-based, the block computes its outputs at fixed intervals that you

2-504

Pulse Generator

specify. If you select time-based, Simulink computes the block’s outputs
only at times when the output actually changes. This can result in
fewer computations being required to compute the block’s output over
the simulation time period.

Depending on the pulse’s waveform characteristics, the intervals
between changes in the block’s output can vary. For this reason, a
time-based Pulse Generator block is said to have a variable sample
time. Simulink uses yellow as the sample time color of such blocks (see
“Displaying Sample Time Colors” for more information).

Simulink cannot use a fixed solver to compute the output of a
time-based pulse generator. If you specify a fixed-step solver for models
that contain time-based pulse generators, Simulink computes a fixed
sample time for the time-based pulse generators. It then simulates the
time-based pulse generators as sample-based.

Note If you use a fixed-step solver and the Pulse type is time-based,
you must choose the step size such that the period, phase delay, and
pulse width (in seconds) are integer multiples of the step size. For
example, suppose that the period is 4 seconds, the pulse width is 75%
(i.e., 3 s), and the phase delay is 1 s. In this case, the computed sample
time is 1 s. Therefore, you must choose a fixed-step size that is 1 or that
divides 1 exactly (e.g., 0.25). You can guarantee this by setting the
fixed-step solver’s step size to auto on the Configuration Parameters
dialog box.

If you select time-based as the block’s pulse type, you must specify
the pulse’s phase delay and period in units of seconds. If you specify
sample-based, you must specify the block’s sample time in seconds,
using the Sample Time parameter, then specify the block’s phase
delay and period as integer multiples of the sample time. For example,
suppose that you specify a sample time of 0.5 second. And suppose you
want the pulse to repeat every two seconds. In this case, you would
specify 4 as the value of the block’s Period parameter.

2-505

Pulse Generator

Data Type
Support

The Pulse Generator block outputs real signals of any data type
supported by Simulink. The data type of the output signal is the same
as that of the Amplitude parameter.

For a discussion on the data types supported by Simulink, see “Data
Types Supported by Simulink” in the Simulink documentation.

2-506

Pulse Generator

Parameters
and
Dialog
Box

2-507

Pulse Generator

Opening this dialog box causes a running simulation to pause.
See Changing Source Block Parameters in the online Simulink
documentation for details.

Pulse type
The pulse type for this block: time-based or sample-based. The
default is time-based.

Time
Specifies whether to use simulation time or an external signal
as the source of values for the output signal’s time variable. If
you specify an external source, the block displays an input port
for connecting the source.

Amplitude
The pulse amplitude. The default is 1.

Period
The pulse period specified in seconds if the pulse type is
time-based or as number of sample times if the pulse type is
sample-based. The default is 2.

Pulse width
The duty cycle specified as the percentage of the pulse period that
the signal is on if time-based or as number of sample times if
sample-based. The default is 50 percent.

Phase delay
The delay before the pulse is generated specified in seconds if the
pulse type is time-based or as number of sample times if the pulse
type is sample-based. The default is 0 seconds.

Sample Time
The length of the sample time for this block in seconds. This
parameter appears only if the block’s pulse type is sample-based.
See “Specifying Sample Time” for more information.

Interpret vector parameters as 1-D
If you select this option and the other parameters are one-row or
one-column matrices, after scalar expansion, the block outputs

2-508

Pulse Generator

a 1-D signal (vector). Otherwise the output dimensionality is
the same as that of the other parameters. See “Determining
the Output Dimensions of Source Blocks” in the “Working with
Signals” chapter of the Using Simulink documentation.

Characteristics Sample Time Inherited

Scalar Expansion Yes, of parameters

Dimensionalized Yes

Zero Crossing No

2-509

Quantizer

Purpose Discretize input at specified interval

Library Discontinuities

Description The Quantizer block passes its input signal through a stair-step function
so that many neighboring points on the input axis are mapped to one
point on the output axis. The effect is to quantize a smooth signal into a
stair-step output. The output is computed using the round-to-nearest
method, which produces an output that is symmetric about zero.

y = q * round(u/q)

where y is the output, u the input, and q the Quantization interval
parameter.

Data Type
Support

The Quantizer block accepts and outputs real or complex signals of
type single or double.

Parameters
and
Dialog
Box

2-510

Quantizer

Quantization interval
The interval around which the output is quantized. Permissible
output values for the Quantizer block are n*q, where n is an
integer and q the Quantization interval. The default is 0.5.

Treat as gain when linearizing
Simulink by default treats the Quantizer block as unity gain when
linearizing. This is the large signal linearization case. If you clear
this box, the linearization routines assume the small signal case
and set the gain to zero.

Sample time (-1 for inherited)
Specify the sample time of this Outport block. See “Specifying
Sample Time” in the online documentation for information on
specifying sample times. The output of this block changes at the
specified rate to reflect the value of its input.

Characteristics Direct Feedthrough Yes

Sample Time Inherited from driving block

Scalar Expansion Yes, of parameter

Dimensionalized Yes

Zero Crossing No

2-511

Ramp

Purpose Generate constantly increasing or decreasing signal

Library Sources

Description The Ramp block generates a signal that starts at a specified time
and value and changes by a specified rate. The block’s Slope, Start
time, and Initial output parameters determine the characteristics
of the output signal. All must have the same dimensions after scalar
expansion.

Data Type
Support

The Ramp block outputs signals of type double.

Parameters
and
Dialog
Box

Opening this dialog box causes a running simulation to pause.
See Changing Source Block Parameters in the online Simulink
documentation for details.

2-512

Ramp

Slope
The rate of change of the generated signal. The default is 1.

Start time
The time at which the signal begins to be generated. The default
is 0.

Initial output
The initial value of the signal. The default is 0.

Interpret vector parameters as 1-D
If you select this option and the other parameters are one-row or
one-column matrices, after scalar expansion, the block outputs
a 1-D signal (vector). Otherwise, the output dimensionality is
the same as that of the other parameters. See “Determining
the Output Dimensions of Source Blocks” in the “Working with
Signals” chapter of the Using Simulink documentation.

Characteristics Sample Time Inherited from driven block

Scalar Expansion Yes

Dimensionalized Yes

Zero Crossing Yes

2-513

Random Number

Purpose Generate normally distributed random numbers

Library Sources

Description The Random Number block generates normally distributed random
numbers. The seed is reset to the specified value each time a simulation
starts.

By default, the sequence produced has a mean of 0 and a variance of 1,
although you can vary these parameters. The sequence of numbers is
repeatable and can be produced by any Random Number block with the
same seed and parameters. To generate a vector of random numbers
with the same mean and variance, specify the Initial seed parameter
as a vector.

To generate uniformly distributed random numbers, use the Uniform
Random Number block.

Avoid integrating a random signal, because solvers are meant to
integrate relatively smooth signals. Instead, use the Band-Limited
White Noise block.

All the block’s numeric parameters must be of the same dimension after
scalar expansion.

Data Type
Support

The Random Number block accepts and outputs signals of type double.

2-514

Random Number

Parameters
and
Dialog
Box

Opening this dialog box causes a running simulation to pause.
See Changing Source Block Parameters in the online Simulink
documentation for details.

Mean
The mean of the random numbers. The default is 0.

Variance
The variance of the random numbers. The default is 1.

Initial seed
The starting seed for the random number generator. The seed
must be 0 or a positive integer. The default is 0.

2-515

Random Number

Sample time
The time interval between samples. The default is 0, causing the
block to have continuous sample time. See “Specifying Sample
Time” in the online documentation for more information.

Interpret vector parameters as 1-D
If you select this option and the other parameters are one-row or
one-column matrices, after scalar expansion, the block outputs
a 1-D signal (vector). Otherwise, the output dimensionality is
the same as that of the other parameters. See “Determining
the Output Dimensions of Source Blocks” in the “Working with
Signals” chapter of the Using Simulink documentation.

Characteristics Sample Time Specified in the Sample time
parameter

Scalar Expansion Yes, of parameters

Dimensionalized Yes

Zero Crossing No

2-516

Rate Limiter

Purpose Limit rate of change of signal

Library Discontinuities

Description The Rate Limiter block limits the first derivative of the signal passing
through it. The output changes no faster than the specified limit. The
derivative is calculated using this equation.

u(i) and t(i) are the current block input and time, and y(i-1) and t(i-1)
are the output and time at the previous step. The output is determined
by comparing rate to the Rising slew rate and Falling slew rate
parameters:

• If rate is greater than the Rising slew rate parameter (R), the
output is calculated as

• If rate is less than the Falling slew rate parameter (F), the output
is calculated as

• If rate is between the bounds of R and F, the change in output is
equal to the change in input:

Data Type
Support

The Rate Limiter block accepts and outputs signals of any data type
supported by Simulink, except Boolean. The Rate Limiter block
supports fixed-point data types.

2-517

Rate Limiter

Parameters
and
Dialog
Box

Rising slew rate
Specify the limit of the derivative of an increasing input signal.
This parameter is tunable for fixed-point inputs.

Falling slew rate
Specify the limit of the derivative of a decreasing input signal.
This parameter is tunable for fixed-point inputs.

Sample time mode
Specify the sample time mode, continuous or inherited from
the driving block.

Initial condition
Set the initial output of the simulation. Simulink does not allow
you to set the initial condition of this block to inf or NaN.

2-518

Rate Limiter

Treat as gain when linearizing
Linearization commands in Simulink treat this block as a gain
in state space. Select this check box to cause the linearization
commands to treat the gain as 1; otherwise, the commands treat
the gain as 0.

Characteristics Direct Feedthrough Yes

Sample Time Continuous or inherited (specified in
the Sample time mode parameter)

Scalar Expansion Yes, of input and parameters

Dimensionalized Yes

Zero Crossing No

See Also Rate Limiter Dynamic

2-519

Rate Limiter Dynamic

Purpose Limit rising and falling rates of signal

Library Discontinuities

Description The Rate Limiter Dynamic block limits the rising and falling rates of
the signal.

The external signal up sets the upper limit on the rising rate of the
signal.

The external signal lo sets the lower limit on the falling rate of the
signal.

Note You cannot use a variable-step solver to simulate models that
contain this block. You must use a fixed-step solver.

Data Type
Support

The Rate Limiter Dynamic block accepts signals of any data type
supported by Simulink, including fixed-point data types.

Parameters
and
Dialog
Box

Characteristics Direct Feedthrough Yes

Scalar Expansion Yes

See Also Rate Limiter

2-520

Rate Transition

Purpose Handle transfer of data between blocks operating at different rates

Library Signal Attributes

Description The Rate Transition block transfers data from the output of a block
operating at one rate to the input of another block operating at a
different rate. The Rate Transition block’s parameters allows you to
specify options that trade data integrity and deterministic transfer for
faster response and/or lower memory requirements.

Note See “Data Transfer Problems” in the online Real-Time Workshop
documentation for a discussion of data integrity and deterministic data
transfer.

In particular, the block supports the following options:

• Deterministic transfer of data with data integrity between blocks
operating at different speeds at the cost of maximum latency of data
transfer

This is the default option.

• Nondeterministic data transfer with minimum latency and assured
data integrity but increased memory requirements

To specify this option, check the Ensure data integrity during
data transfer parameter and uncheck the Ensure deterministic
data transfer parameter.

• Minimum latency and target size at the cost of nondeterministic data
transfer and possible loss of data integrity

To specify this option, uncheck the Ensure data integrity
during data transfer and Ensure deterministic data transfer
parameters.

2-521

Rate Transition

The behavior of the Rate Transition block depends on the sample
times of the ports between which it is connected, the priorities of the
tasks corresponding to the source and destination sample times (see
“Sample time properties”), and whether the model specifies a fixed- or
variable-step solver. Updating the diagram causes a label to appear on
the block that indicates its behavior during simulation as follows:

Label Block Behavior

ZOH Acts as a zero-order hold

1/z Acts as a unit delay

Buf Copies input to output under semaphore control

Db_buf Copies input to output, using double buffers

Copy Unprotected copy of input to output

NoOp Does nothing

The behavior label lets you see at a glance the method that the Rate
Transition block uses to ensure safe transfer of data between tasks
operating at different rates. You can use Simulink’s sample-time colors
feature (see “Displaying Sample Time Colors”) to display the relative
rates that the block bridges. Consider, for example, the following
diagram.

2-522

Rate Transition

2

Out 2
Sample Time:0.1

1

Out 1
Sample Time:0.2

1/z

Slow −> Fast
Sine Wave 2

Sample Time:0.2

Sine Wave 1
Sample Time:0.1

2

Gain 2
Sample Time:−1

2

Gain 1
Sample Time:−1

ZOH

Fast −> Slow

Sample-time colors and the block behavior label allow you to see at a
glance that the Rate Transition block at the top of the diagram acts
as a zero-order hold in a fast-to-slow transition and the bottom Rate
Transition block acts as a unit delay in a slow-to-fast transition.

See “Sample Rate Transitions” in the online Real-Time Workshop
documentation for more information.

Note The Zero-Order Hold and Unit Delay blocks also enable transfer
of data between blocks operating at different rates. However, you should
use the Rate Transition block for this purpose because it offers a wider
range of options and is easier to use.

Data Type
Support

The Rate Transition block accepts signals of any data type supported
by Simulink, including fixed-point data types.

For a discussion on the data types supported by Simulink, see “Data
Types Supported by Simulink” in the Simulink documentation.

2-523

Rate Transition

Parameters
and
Dialog
Box

Ensure data integrity during data transfer
Selecting this option results in generation of code that ensures
the integrity of data transferred by the Rate Transition block.
If you select this option and the transfer is nondeterministic
(see Ensure deterministic data transfer option below), the
generated code uses double-buffering to prevent the fast block
from interrupting the data transfer. Otherwise the generated
code uses a copy operation to effect the data transfer. The copy
operation consumes less memory than double-buffering but is
also interruptible and hence can lead to loss of data during

2-524

Rate Transition

nondeterministic data transfers. Thus, you should select this
option if you want the generated code to operate both with
maximum responsiveness (i.e., nondeterministically) and assured
data integrity. See “Rate Transition Block Options” in the online
Real-Time Workshop documentation for more information.

Ensure deterministic data transfer (maximum delay)
Selecting this option causes code generation to generate code
that transfers data at the sample rate of the slower block, i.e.,
deterministically. If this option is not selected, data transfers
occur as soon as new data is available from the source block and
the receiving block is ready to receive the data. This avoids the
need to delay transfers, thus ensuring that the system operates
with maximum responsiveness. However, it also means that
transfers can occur unpredictably, which is undesirable in some
applications. See “Rate Transition Block Options” in the online
Real-Time Workshop documentation for more information.

Initial conditions
This parameter applies only to Slow to fast transitions. It
specifies the Rate Transition’s initial output at the beginning of a
transition when there is not yet any output from the slow block
connected to the Rate Transition block’s input. Simulink does not
allow the initial output of this block to be inf or NaN.

Output port sample time
Specifies the output rate to which the input rate is converted.
The default value (-1) specifies that the output rate is inherited
from the block to which the Rate Transition block’s output
port is connected. See “Specifying Sample Time” in the online
documentation for information on how to specify the output rate.

2-525

Rate Transition

Characteristics Direct Feedthrough No for slow-to-fast transitions that
are protected, i.e., for which you
have checked the Ensure data
integrity during data transfer
option; otherwise, yes.

Sample Time This block supports
discrete-to-discrete and
discrete-to-continuous transitions.

Scalar Expansion Yes, of input.

Dimensionalized Yes

Zero Crossing No

2-526

Real-Imag to Complex

Purpose Convert real and/or imaginary inputs to complex signal

Library Math Operations

Description The Real-Imag to Complex block converts real and/or imaginary inputs
to a complex-valued output signal.

The inputs can both be arrays (vectors or matrices) of equal dimensions,
or one input can be an array and the other a scalar. If the block has an
array input, the output is a complex array of the same dimensions.
The elements of the real input are mapped to the real parts of the
corresponding complex output elements. The imaginary input is
similarly mapped to the imaginary parts of the complex output signals.
If one input is a scalar, it is mapped to the corresponding component
(real or imaginary) of all the complex output signals.

The input signals and real or imaginary output parameter can be of any
data type supported by Simulink, except Boolean. The Real-Imag to
Complex block supports fixed-point data types. The output is of the
same type as the input or parameter that determines the output.

For a discussion on the data types supported by Simulink, see“Data
Types Supported by Simulink” in the Simulink documentation.

Data Type
Support

See the preceding description.

2-527

Real-Imag to Complex

Parameters
and
Dialog
Box

Input
Specifies the kind of input: a real input, an imaginary input, or
both.

Real (Imag) part
If the input is a real-part signal, this parameter specifies the
constant imaginary part of the output signal. If the input is the
imaginary part, this parameter specifies the constant real part
of the output signal. Note that the title of this field changes to
reflect its usage.

Sample time (-1 for inherited)
Specify the time interval between samples. To inherit the sample
time, set this parameter to -1. See “Specifying Sample Time” in
the online documentation for more information.

2-528

Real-Imag to Complex

Characteristics Direct Feedthrough Yes

Sample Time Inherited from driving block

Scalar Expansion Yes, of the input when the function
requires two inputs

Dimensionalized Yes

Zero Crossing No

2-529

Relational Operator

Purpose Perform specified relational operation on inputs

Library Logic and Bit Operations

Description The Relational Operator block performs the specified comparison of
its two inputs.

You select the relational operator connecting the two inputs with the
Relational Operator parameter. The block updates to display the
selected operator. The supported operations are given below. In each
case, the first input corresponds to the top (or left) input port and the
second input to the bottom (or right) input port.

Operation Description

== TRUE if the first input is equal to the second input

~= TRUE if the first input is not equal to the second input

< TRUE if the first input is less than the second input

<= TRUE if the first input is less than or equal to the
second input

>= TRUE if the first input is greater than or equal to the
second input

> TRUE if the first input is greater than the second input

You can specify inputs as scalars, arrays, or a combination of a scalar
and an array:

• For scalar inputs, the output is a scalar.

• For array inputs, the output is an array of the same dimensions,
where each element is the result of an element-by-element
comparison of the input arrays.

• For mixed scalar/array inputs, the output is an array, where each
element is the result of a comparison between the scalar and the
corresponding array element.

2-530

Relational Operator

The input with the smaller positive range is converted to the data type
of the other input offline using round-to-nearest and saturation. This
conversion is performed prior to comparison.

The output data type is specified with the Output data type mode
and Output data type parameters. The output equals 1 for TRUE
and 0 for FALSE.

Note The output data type selected should represent zero exactly. Data
types that satisfy this condition include signed and unsigned integers
and any floating-point data type.

Data Type
Support

The Relational Operator block accepts real or complex signals of any
data type supported by Simulink, including fixed-point data types. One
input can be real and the other complex if the operator is == or !=.

For a discussion on the data types supported by Simulink, see “Data
Types Supported by Simulink” in the Simulink documentation.

2-531

Relational Operator

Parameters
and
Dialog
Box

The Main pane of the Relational Operator block appears as follows:

Relational Operator
Designate the relational operator used to compare the two inputs.

Enable zero crossing detection
Select to enable zero crossing detection. For more information, see
Zero Crossing Detection in the “How Simulink Works” chapter of
the Using Simulink documentation.

Sample time (-1 for inherited)
Specify the time interval between samples. To inherit the sample
time, set this parameter to -1. See “Specifying Sample Time” in
the online documentation for more information.

The Signal Data Types pane of the Relational Operator block appears
as follows:

2-532

Relational Operator

Require all inputs to have same data type
Select to require inputs to have the same data type.

Output data type mode
Select a method for specifying the output data type. Options are:

2-533

Relational Operator

Option Description

Boolean Specifies the output data type as boolean.

Logical Use the Implement logic signals as
boolean data model configuration parameter
(see “Implement logic signals as boolean data
(vs. double)”) to specify the output data type.

Note This option is intended to support
models created before the Boolean option
became available. Use one of the other options,
preferably Boolean, for new models.

Specify via
dialog

Selecting this option causes the block’s dialog
box to display an Output data type field (see
below). Use this field to specify the block’s
output data type.

Output data type
Specify the output data type. You should only use data types that
represent zero exactly. Data types that satisfy this condition
include signed and unsigned integers and any floating-point data
type. This parameter appears only if you select Specify via
dialog for the Output data type mode parameter.

Characteristics Direct Feedthrough Yes

Sample Time Specified in the Sample time
parameter

Scalar Expansion Yes, of inputs

Dimensionalized Yes

Zero Crossing Yes, if enabled.

2-534

Relay

Purpose Switch output between two constants

Library Discontinuities

Description The Relay block allows its output to switch between two specified
values. When the relay is on, it remains on until the input drops below
the value of the Switch off point parameter. When the relay is off, it
remains off until the input exceeds the value of the Switch on point
parameter. The block accepts one input and generates one output.

The Switch on point value must be greater than or equal to the
Switch off point. Specifying a Switch on point value greater than
the Switch off point value models hysteresis, whereas specifying
equal values models a switch with a threshold at that value.

Data Type
Support

The Relay block accepts real or complex signals of any data type
supported by Simulink. The Relay block supports fixed-point data types.

For a discussion on the data types supported by Simulink, see “Data
Types Supported by Simulink” in the Simulink documentation.

2-535

Relay

Parameters
and
Dialog
Box

The Main pane of the Relay block dialog appears as follows:

Switch on point
The “n” threshold for the relay. The Switch on point parameter
is converted to the input data type offline using round-to-nearest
and saturation.

2-536

Relay

Switch off point
The “off” threshold for the relay. The Switch off point parameter
is converted to the input data type offline using round-to-nearest
and saturation.

Output when on
The output when the relay is on.

Output when off
The output when the relay is off.

Enable zero crossing detection
Select to enable zero crossing detection to detect switch-on
and switch-off points. For more information, see Zero Crossing
Detection in the “How Simulink Works” chapter of the Using
Simulink documentation.

Sample time (-1 for inherited)
Specify the time interval between samples. To inherit the sample
time, set this parameter to -1. See “Specifying Sample Time” in
the online documentation for more information.

The Signal Data Types pane of the Relay block dialog appears as
follows:

2-537

Relay

Output data type mode
Specify the output data type and scaling to be the same as the
inputs, or inherit the data type and scaling by backpropagation.
Lastly, if you choose Specify via dialog, the Output data
type, Output scaling value, and Parameter Scaling
parameters become visible.

2-538

Relay

Output data type
Specify any data type, including fixed-point data types. This
parameter is only visible if you select Specify via dialog for
the Output data type mode parameter.

Output scaling value
Set the output scaling using binary point-only or [Slope Bias]
scaling. This parameter is only visible if you select Specify via
dialog for the Output data type mode parameter, and is only
enabled if you select Use specified scaling for the Parameter
Scaling parameter.

Parameter scaling mode

• Use Specified Scaling — This mode allows you to specify
the output scaling in the Output scaling value parameter.

• Best Precision: Vector-wise — This mode produces a
common binary point for each element of the output vector
based on the best precision for the largest value of the vector.

This parameter is only visible if you select Specify via dialog
for the Output data type mode parameter.

Characteristics Direct Feedthrough Yes

Sample Time Specified in the Sample time
parameter

Scalar Expansion Yes

Dimensionalized Yes

Zero Crossing Yes, if enabled.

2-539

Repeating Sequence

Purpose Generate arbitrarily shaped periodic signal

Library Sources

Description The Repeating Sequence block outputs a periodic scalar signal having
a waveform that you specify. You can specify any waveform, using
the block dialog’s Time values and Output values parameters.
The Times value parameter specifies a vector of sample times. The
Output values parameter specifies a vector of signal amplitudes
at the corresponding sample times. Together, the two parameters
specify a sampling of the output waveform at points measured from the
beginning of the interval over which the waveform repeats (i.e., the
signal’s period). For example, by default, the Time values and Output
values parameters are both set to [0 2]. This default setting specifies
a sawtooth waveform that repeats every 2 seconds from the start of
the simulation and has a maximum amplitude of 2. The Repeating
Sequence block uses linear interpolation to compute the value of the
waveform between the specified sample points.

Data Type
Support

The Repeating Sequence block outputs real signals of type double.

2-540

Repeating Sequence

Parameters
and
Dialog
Box

Opening this dialog box causes a running simulation to pause.
See Changing Source Block Parameters in the online Simulink
documentation for details.

Time values
A vector of monotonically increasing time values. The default is
[0 2].

Output values
A vector of output values. Each corresponds to the time value in
the same column. The default is [0 2].

Characteristics Sample Time Continuous

Scalar Expansion No

Dimensionalized No

Zero Crossing No

2-541

Repeating Sequence

See Also Repeating Sequence Interpolated, Repeating Sequence Stair

2-542

Repeating Sequence Interpolated

Purpose Output discrete-time sequence and repeat, interpolating between data
points

Library Sources

Description The Repeating Sequence Interpolated block outputs a discrete-time
sequence and then repeats it. Between data points, the block uses the
method specified by the Look-Up Method parameter to determine
the output.

Data Type
Support

The Repeating Sequence Interpolated block accepts signals of any data
type supported by Simulink, including fixed-point data types.

2-543

Repeating Sequence Interpolated

Parameters
and
Dialog
Box

The Main pane of the Repeating Sequence Interpolated block dialog
appears as follows:

Vector of output values
Column vector containing output values of the discrete time
sequence.

Vector of time values
Column vector containing time values. The time values must be a
strictly increasing and the vector must have the same size as the
vector of output values.

2-544

Repeating Sequence Interpolated

Look-Up Method
Specify the lookup method to determine the output between data
points.

Sample time (-1 for inherited)
Specify the time interval between samples. To inherit the sample
time, set this parameter to -1. See “Specifying Sample Time” in
the online documentation for more information.

The Signal Data Types pane of the Repeating Sequence Interpolated
block dialog appears as follows:

Output data type and scaling
Select a method for specify the output data type. The options are:

• Specify via dialog

2-545

Repeating Sequence Interpolated

• Inherit via back propagation

The first option allows you to specify the output data type
and scaling (see below). The second option allows Simulink to
determine the output data type and scaling based on the block’s
connections to other blocks.

Output data type
Enter an expression that specifies the block’s output data type,
such as uint(8) or sfix(16).

Output scaling
Specify the slope or slope and bias factors used to scale the block’s
output. This option appears only if you specify a fixed-point data
type as the output data type of this block.

Lock output scaling against changes by the autoscaling tool
Check to lock output scaling for this block. This option appears
only if you specify a fixed-point data type as the output data type
of this block.

Characteristics Sample Time Specified in the Sample time
parameter

Scalar Expansion Yes

See Also Repeating Sequence, Repeating Sequence Stair

2-546

Repeating Sequence Stair

Purpose Output and repeat discrete time sequence

Library Sources

Description The Repeating Sequence Stair block outputs and repeats a discrete
time sequence.

You can specify the stair sequence with the Vector of output values
parameter. For example, the vector can be specified as [3 1 2 4 1]',
producing the stair sequence shown in the plot.

Data Type
Support

The Repeating Sequence Stair block accepts signals of any data type
supported by Simulink, including fixed-point data types.

2-547

Repeating Sequence Stair

Parameters
and
Dialog
Box

The Main pane of the Repeating Sequence Stair block dialog appears
as follows:

Vector of output values
Vector containing values of the repeating stair sequence.

Sample time (-1 for inherited)
Specify the time interval between samples. To inherit the sample
time, set this parameter to -1. See “Specifying Sample Time” in
the online documentation for more information.

The Signal Data Types pane of the Repeating Sequence Stair block
dialog appears as follows:

2-548

Repeating Sequence Stair

Output data type and scaling
Select a method for specify the output data type. The options are:

• Specify via dialog

• Inherit via back propagation

The first option allows you to specify the output data type
and scaling (see below). The second option allows Simulink to
determine the output data type and scaling based on the block’s
connections to other blocks.

Output data type
Enter an expression that specifies the block’s output data type,
such as uint(8) or sfix(16).

2-549

Repeating Sequence Stair

Output scaling
Specify the slope or slope and bias factors used to scale the block’s
output. This option appears only if you specify a fixed-point data
type as the output data type of this block.

Lock output scaling against changes by the autoscaling tool
Check to lock output scaling for this block. This option appears
only if you specify a fixed-point data type as the output data type
of this block.

Characteristics Sample Time Specified in the Sample time
parameter

Scalar Expansion No

See Also Repeating Sequence, Repeating Sequence Interpolated

2-550

Reshape

Purpose Change dimensionality of signal

Library Math Operations

Description The Reshape block changes the dimensionality of the input signal
to a dimensionality that you specify, using the block’s Output
dimensionality parameter. For example, you can use the block to
change an N-element vector to a 1-by-N or N-by-1 matrix signal, and
vice versa.

The Output dimensionality parameter lets you select any of the
following output options.

Output
Dimensionality Description

1-D array Converts a matrix (2-D array) to a vector
(1-D array) array signal. The output vector
consists of the first column of the input matrix
followed by the second column, etc. (This
option leaves a vector input unchanged.)

Column vector Converts a vector or matrix input signal to a
column matrix, i.e., an M-by-1 matrix, where
M is the number of elements in the input
signal. For matrices, the conversion is done in
column-major order.

2-551

Reshape

Output
Dimensionality Description

Row vector Converts a vector or matrix input signal to
a row matrix, i.e., a 1-by-N matrix where
N is the number of elements in the input
signal. For matrices, the conversion is done in
column-major order.

Customize Converts the input signal to an output signal
whose dimensions you specify, using the
Output dimensions parameter. The value
of the Output dimensions parameter can
be a one- or two-element vector. A value of
[N] outputs a vector of size N. A value of [M
N] outputs an M-by-N matrix. The number of
elements of the input signal must match the
number of elements specified by the Output
dimensions parameter. For matrices, the
conversion is done in column-major order.

Data Type
Support

The Reshape block accepts and outputs signals of any data type
supported by Simulink, including fixed-point data types.

For a discussion on the data types supported by Simulink, see “Data
Types Supported by Simulink” in the Simulink documentation.

2-552

Reshape

Parameters
and
Dialog
Box

Output dimensionality
The dimensionality of the output signal.

Output dimensions
Specifies a custom output dimensionality. This option is
enabled only if you select Customize as the value of the Output
dimensionality parameter.

Characteristics Direct Feedthrough Yes

Sample Time Inherited from driving block

Scalar Expansion N/A

Dimensionalized Yes

Zero Crossing No

2-553

Rounding Function

Purpose Apply rounding function to signal

Library Math Operations

Description The Rounding Function block applies a rounding function to the input
signal to produce the output signal.

You can select one of the following rounding functions from the
Function list:

• floor

Rounds each element of the input signal to the nearest integer value
towards minus infinity.

• ceil

Rounds each element of the input signal to the nearest integer
towards positive infinity.

• round

Rounds each element of the input signal to the nearest integer.

• fix

Rounds each element of the input signal to the nearest integer
towards zero.

The name of the selected function appears on the block.

The input signal can be a scalar, vector, or matrix signal having real-
or complex-valued elements of type double. The output signal has the
same dimensions, data type, and numeric type as the input. Each
element of the output signal is the result of applying the selected
rounding function to the corresponding element of the input signal.

Use the Rounding Function block instead of the Fcn block when you
want vector or matrix output, because the Fcn block can produce only
scalar output.

2-554

Rounding Function

Data Type
Support

The Rounding Function block accepts and outputs real signals of type
double or single.

Parameters
and
Dialog
Box

Function
The rounding function.

Sample time (-1 for inherited)
Specify the time interval between samples. To inherit the sample
time, set this parameter to -1. See “Specifying Sample Time” in
the online documentation for more information.

Characteristics Direct Feedthrough Yes

Sample Time Inherited from driving block

Scalar Expansion N/A

Dimensionalized Yes

Zero Crossing No

2-555

Saturation

Purpose Limit range of signal

Library Discontinuities

Description The Saturation block imposes upper and lower bounds on a signal.
When the input signal is within the range specified by the Lower
limit and Upper limit parameters, the input signal passes through
unchanged. When the input signal is outside these bounds, the signal is
clipped to the upper or lower bound.

When the Lower limit and Upper limit parameters are set to the
same value, the block outputs that value.

Data Type
Support

The Saturation block accepts real signals of any data type supported by
Simulink, except Boolean. The Saturation block supports fixed-point
data types. The output data type is the same as the input data type.

For a discussion on the data types supported by Simulink, see “Data
Types Supported by Simulink” in the Simulink documentation.

2-556

Saturation

Parameters
and
Dialog
Box

Upper limit
Specify the upper bound on the input signal. When the input
signal to the Saturation block is above this value, the output of
the block is clipped to this value.

The Upper limit parameter is converted to the input data type
offline using round-to-nearest and saturation.

Lower limit
Specify the lower bound on the input signal. When the input
signal to the Saturation block is below this value, the output of
the block is clipped to this value.

The Lower limit parameter is converted to the input data type
offline using round-to-nearest and saturation.

2-557

Saturation

Treat as gain when linearizing
Linearization commands in Simulink treat this block as a gain
in state space. Select this parameter to cause the linearization
commands to treat the gain as 1; otherwise, the commands treat
the gain as 0.

Enable zero crossing detection
Select to enable zero crossing detection. For more information, see
“Zero-Crossing Detection” in the “How Simulink Works” chapter
of the Using Simulink documentation.

Sample time (-1 for inherited)
Specify the time interval between samples. To inherit the sample
time, set this parameter to -1. See “Specifying Sample Time” in
the online documentation for more information.

Characteristics Direct Feedthrough Yes

Sample Time Specified in the Sample time parameter

Scalar Expansion Yes, of parameters and input

Dimensionalized Yes

Zero Crossing Yes, if enabled.

See Also Saturation Dynamic

2-558

Saturation Dynamic

Purpose Bound range of input

Library Discontinuities

Description The Saturation Dynamic block bounds the range of the input signal to
upper and lower saturation values. The input signal outside of these
limits saturates to one of the bounds where

• The input below the lower limit is set to the lower limit.

• The input above the upper limit is set to the upper limit.

The input for the upper limit is the up port, and the input for the lower
limit is the lo port.

Data Type
Support

The Saturation Dynamic block accepts signals of any data type
supported by Simulink, including fixed-point data types.

Parameters
and
Dialog
Box

Characteristics Direct Feedthrough Yes

Scalar Expansion Yes

See Also Saturation

2-559

Scope, Floating Scope, Signal Viewer Scope

Purpose Display signals generated during simulation

Library Sinks

Description The Scope block displays its input with respect to simulation time.
The Scope block can have multiple axes (one per port); all axes have a
common time range with independent y-axes. The Scope allows you to
adjust the amount of time and the range of input values displayed. You
can move and resize the Scope window and you can modify the Scope’s
parameter values during the simulation.

When you start a simulation, Simulink does not open Scope windows,
although it does write data to connected Scopes. As a result, if you
open a Scope after a simulation, the Scope’s input signal or signals
will be displayed.

If the signal is continuous, the Scope produces a point-to-point plot. If
the signal is discrete, the Scope produces a stair-step plot.

The Scope provides toolbar buttons that enable you to zoom in on
displayed data, display all the data input to the Scope, preserve axis
settings from one simulation to the next, limit data displayed, and save
data to the workspace. The toolbar buttons are labeled in this figure,
which shows the Scope window as it appears when you open a Scope
block.

2-560

Scope, Floating Scope, Signal Viewer Scope

Note Do not use Scope blocks inside library blocks that you create.
Instead, provide the library blocks with output ports to which scopes
can be connected to display internal data.

Displaying Multiple Signals on a Single Axis

The Simulink Scope block and Scope viewer differ in their ability to
display multiple signals on a single axis. The Scope block can display
only a single signal per axis. If the signal is an array, the Scope block
displays each element as a separate trace color-coded to distinguish it
from other elements. The Scope viewer can display multiple signals
on a single axis. The Scope viewer displays each signal as a separate,
color-coded trace. The viewer assigns a color to each trace in the
following order: blue, red, magenta, cyan, yellow, green. If the axis
contains more than six signals, the viewer cycles through the available
colors. If a signal contains multiple elements, the viewer displays each
element as a separate trace having the color assigned to the signal.
In this case, the viewer uses different line styles to distinguish the
elements.

2-561

Scope, Floating Scope, Signal Viewer Scope

Displaying Signal Arrays

When displaying a vector or matrix signal on the same axis, the Scope
block assign colors and the Scope viewer line styles to each signal
element:

Signal Element Scope Block Scope Viewer

1 yellow

2 magenta

3 cyan

4 red

5 green

6 dark blue

If the signal contains more elements than the available colors or line
styles, the Scope block and viewer cycle through the colors and line
styles, respectively.

Y-Axis Limits

You set y-limits by right-clicking an axis and choosing Axes Properties.
The following dialog box appears.

2-562

Scope, Floating Scope, Signal Viewer Scope

Y-min
Enter the minimum value for the y-axis.

Y-max
Enter the maximum value for the y-axis.

Title
Enter the title of the plot. You can include a signal label in
the title by typing %<SignalLabel> as part of the title string
(%<SignalLabel> is replaced by the signal label).

Time Offset

This figure shows the Scope block displaying the output of the vdp
model. The simulation was run for 40 seconds. Note that this scope
shows the final 20 seconds of the simulation. The Time offset field
displays the time corresponding to 0 on the horizontal axis. Thus, you
have to add the offset to the fixed time range values on the x-axis to
get the actual time.

2-563

Scope, Floating Scope, Signal Viewer Scope

Autoscaling the Scope Axes

This figure shows the same output after you click the Autoscale toolbar
button, which automatically scales both axes to display all stored
simulation data. In this case, the y-axis was not scaled because it was
already set to the appropriate limits.

2-564

Scope, Floating Scope, Signal Viewer Scope

If you click the Autoscale button while the simulation is running, the
axes are autoscaled based on the data displayed on the current screen,
and the autoscale limits are saved as the defaults. This enables you to
use the same limits for another simulation.

Note Simulink does not buffer the data that it displays on a floating
Scope. It can therefore scale the contents of a floating Scope only when
data is being displayed, i.e., when a simulation is running. When a
simulation is not running, Simulink disables (grays) the Zoom button
on the toolbar of a floating Scope to indicate that it cannot scale its
contents.

2-565

Scope, Floating Scope, Signal Viewer Scope

Zooming

You can zoom in on data in both the x and y directions at the same time,
or in either direction separately. The zoom feature is not active while
the simulation is running.

To zoom in on data in both directions at the same time, make sure you
select the leftmost Zoom toolbar button. Then, define the zoom region
using a bounding box. When you release the mouse button, the Scope
displays the data in that area. You can also click a point in the area you
want to zoom in on.

If the scope has multiple y-axes, and you zoom in on one set of x-y axes,
the x-limits on all sets of x-y axes are changed so that they match,
because all x-y axes must share the same time base (x-axis).

This figure shows a region of the displayed data enclosed within a
bounding box.

2-566

Scope, Floating Scope, Signal Viewer Scope

����������	
����
�	����

This figure shows the zoomed region, which appears after you release
the mouse button.

2-567

Scope, Floating Scope, Signal Viewer Scope

To zoom in on data in just the x direction, click the middle Zoom
toolbar button. Define the zoom region by positioning the pointer at one
end of the region, pressing and holding down the mouse button, then
moving the pointer to the other end of the region. This figure shows
the Scope after you define the zoom region, but before you release the
mouse button.

2-568

Scope, Floating Scope, Signal Viewer Scope

When you release the mouse button, the Scope displays the magnified
region. You can also click a point in the area you want to zoom in on.

Zooming in the y direction works the same way except that you click the
rightmost Zoom toolbar button before defining the zoom region. Again,
you can also click a point in the area you want to zoom in on.

Note Simulink does not buffer the data that it displays on a floating
scope. It therefore cannot zoom the contents of a floating scope. To
indicate this, Simulink disables (grays) the Zoom button on the toolbar
of a floating scope.

2-569

Scope, Floating Scope, Signal Viewer Scope

Saving the Axes Settings

The Save axes settings toolbar button enables you to store the current
x- and y-axis settings so you can apply them to the next simulation. If
you select the Save axes settings button on the toolbar of the Scope
block’s display

the block specifies its current y-limits as the values of the Y-min and
Y-max parameters (see “Y-Axis Limits” on page 2-562). Similarly, the
block specifies its current x-axis limits as the value of the Time range
parameter (see “General Parameters Pane” on page 2-572).

Scope Parameters

The Scope Parameters dialog box lets you change axis limits, set the
number of axes, time range, tick labels, sampling parameters, and
saving options. To display the dialog, select the Parameters button on
the toolbar of the Scope block’s display

or by double-clicking on the Scope viewer’s display. The appearance of
the dialog box depends on whether the scope is a Scope block or a Scope
viewer created by the Signal and Scope Manager. If the scope is a Scope
block, this dialog appears.

2-570

Scope, Floating Scope, Signal Viewer Scope

The dialog box has two panes: General and Data history. See the
next topic for information on the General parameters pane. See “Data
History Parameters Pane” on page 2-578 for information on the Data
history parameters pane.

If the scope is a Scope viewer, this dialog box appears.

2-571

Scope, Floating Scope, Signal Viewer Scope

The dialog box has three panes: General, History, and Performance.
See the next topic for information on the General parameters pane.
See “History Pane” on page 2-580 for information on the History
parameters pane. See “Performance Parameters Pane” on page 2-579
for information on the Performance parameters pane.

General Parameters Pane

You can set the axis parameters, time range, and tick labels in the
General pane.

Number of axes
Set the number of y-axes in this data field. With the exception
of the floating scope, there is no limit to the number of axes the
Scope block can contain. All axes share the same time base
(x-axis), but have independent y-axes. Note that the number of
axes is equal to the number of input ports.

2-572

Scope, Floating Scope, Signal Viewer Scope

Time range
Change the x-axis limits by entering a number or auto in the
Time range field. Entering a number of seconds causes each
screen to display the amount of data that corresponds to that
number of seconds. Enter auto to set the x-axis to the duration of
the simulation. Do not enter variable names in these fields.

Tick labels
Specifies whether to label axes tics. The options are:

all Label tics on the outside of all axes

inside Place tic labels inside all axes (available
only on scope viewers)

bottom-axis only Place tic labels outside the bottom (or
only) axes

none Do not label tics (available only on Scope
blocks)

Note The next three options appear only for the dialog box for a Scope
viewer.

Scroll

When this option is selected, the scope continuously scrolls the
displayed signals to the left so as to keep as much of them in view as
will fit on the screen at any one time. When this option is not selected,
the scope draws a screenful of data from left to right until the screen is
full, erases the screen and draws the next screenful of data, and so on,
until the end of simulation time. Note that the effects of this option are
discernible only when drawing is slow, for example, when the model is
very large or has a very small step size.

Data Markers

Displays a marker at each data point on the scope viewer screen.

2-573

Scope, Floating Scope, Signal Viewer Scope

Legends

Displays a legend on the scope that indicates the line style used to
display each signal.

2-574

Scope, Floating Scope, Signal Viewer Scope

Floating scope
This option appears only on the General parameters pane for
the Scope block.

Selecting this option turns a Scope block into a floating scope. A
floating scope is a Scope block that can display the signals carried
on one or more lines. You can create a Floating Scope block in a
model either by copying a Scope block from the Simulink Sinks
library into a model and selecting this option or, more simply, by
copying the Floating Scope block from the Sinks library into the
model window. The Floating Scope block has the Floating scope
parameter selected by default.

To use a floating scope during a simulation, first open the scope.
To display the signals carried on a line, select the line. Hold down
the Shift key while clicking another line to select multiple lines.
It might be necessary to click the Autoscale data button on the
floating scope’s toolbar to find the signal and adjust the axes to the
signal values. Or you can use the floating scope’s Signal Selector
(see “The Signal Selector” in the online Simulink documentation)

2-575

Scope, Floating Scope, Signal Viewer Scope

to select signals for display. To display a floating scope’s Signal
Selector, first start the simulation of your model with the floating
scope open. Then right-click your mouse in the floating scope and
select Signal Selection from the pop-up menu that appears.

You can have more than one floating scope in a model, but
only one set of axes in one scope can be active at a given time.
Active floating scopes show the active axes by making them blue.
Selecting or deselecting lines affects the active floating scope only.
Other floating scopes continue to display the signals that you
selected when they were active. In other words, inactive floating
scopes are locked, in that their signal displays cannot change.

To specify display of a signal on one of the axes of a multiaxis
floating scope, click the axis. Simulink draws a blue border
around the axis.

2-576

Scope, Floating Scope, Signal Viewer Scope

Then click the signal you want to display in the block diagram or
the Signal Selector. When you run the model, the selected signal
appears in the selected axis.

If you plan to use a floating scope during a simulation, you should
disable signal storage reuse. See "Signal storage reuse" in “
Optimization Pane” for more information.

Sampling
To specify a decimation factor, enter a number in the data field to
the right of the Decimation choice. To display data at a sampling
interval, select the Sample time choice and enter a number in
the data field.

2-577

Scope, Floating Scope, Signal Viewer Scope

Data History Parameters Pane

The Data History parameters pane appears only on the Parameters
dialog box for the Scope block. The pane appears as follows.

This pane lets you control the amount of data that the Scope stores and
displays. You can also choose to save data to the workspace in this pane.
You apply the current parameters and options by clicking the Apply or
OK button. The values that appear in these fields are the values that
are used in the next simulation.

Limit data points to last
You can limit the number of data points saved to the workspace by
selecting the Limit data points to last check box and entering
a value in its data field. The Scope relies on its data history for
zooming and autoscaling operations. If the number of data points
is limited to 1,000 and the simulation generates 2,000 data points,
only the last 1,000 are available for regenerating the display.

2-578

Scope, Floating Scope, Signal Viewer Scope

Save data to workspace
You can automatically save the data collected by the Scope at the
end of the simulation by selecting the Save data to workspace
check box. If you select this option, the Variable name and
Format fields become active.

Variable name
Enter a variable name in the Variable name field. The specified
name must be unique among all data logging variables being
used in the model. Other data logging variables are defined on
other Scope blocks, To Workspace blocks, and simulation return
variables such as time, states, and outputs. Being able to save
Scope data to the workspace means that it is not necessary to send
the same data stream to both a Scope block and a To Workspace
block.

Format
Data can be saved in one of three formats: Array, Structure, or
Structure with time. Use Array only for a Scope with one set of
axes. For Scopes with more than one set of axes, use Structure if
you do not want to store time data and use Structure with time
if you want to store time data.

Performance Parameters Pane

The Performance parameters pane appears only on the Parameters
dialog box for the Scope viewer. The pane appears as follows.

2-579

Scope, Floating Scope, Signal Viewer Scope

This pane lets you control how frequently Simulink refreshes the Scope
viewer. Reducing the refresh rate can speed up the simulation in some
cases. The pane contains the following controls.

Refresh Period
This list control lets you select the units in which the refresh
period is expressed. Options are either seconds or frames where a
frame is the width of the scope’s screen in seconds, i.e., it equals
the value of the scope’s Time range parameter.

Refresh Slider
Drag the slider button to the right to increase the refresh period
and hence decrease the refresh rate.

Freeze Button
Click the button to freeze (stop refreshing) or unfreeze the Scope
viewer.

History Pane

The History parameters pane appears only on the Parameters dialog
box for the Scope viewer.

2-580

Scope, Floating Scope, Signal Viewer Scope

This pane lets you control the amount of data that the Scope viewer
stores and displays. You can also choose to save data to the workspace
in this pane. You apply the current parameters and options by clicking
the Apply or OK button. The values that appear in these fields are the
values that are used in the next simulation.

Limit data points to last
You can limit the number of data points saved to the workspace by
selecting the Limit data points to last check box and entering
a value in its data field. The Scope relies on its data history for
zooming and autoscaling operations. If the number of data points
is limited to 1,000 and the simulation generates 2,000 data points,
only the last 1,000 are available for regenerating the display.

Save to model signal logging object
Check this option to save data displayed on the scope viewer
at the end of the simulation. Simulink saves the data in the
Simulink.ModelDataLogs object used to log data for the model
(see “Logging Signals” for more information). For this option to

2-581

Scope, Floating Scope, Signal Viewer Scope

take effect, you must also enable signal logging for the model
as a whole, i.e., you must check the Signal logging option on
the Data Import/Export pane of the model’s Configuration
Parameters dialog box.

Logging Name
Specifies the name under which to store the viewer’s data in the
model’s Simulink.ModelDataLogs object. The name must be
different from the log names specified by other signal viewers or
for other signals, subsystems, or model references logged in the
model’s Simulink.ModelDataLogs object.

Printing the Contents of a Scope Window

To print the contents of a Scope window, open the Print dialog box by
clicking the Print icon, the leftmost icon on the Scope toolbar.

Creating an Editable Figure from a Scope Block

To create a figure that looks identical to the Scope window but can be
annotated using the Plot Editing Tools, use the simplot command. Only
Scope blocks that save data to the MATLAB workspace from the Data
history pane are compatible with this command. For example, on the
Data history pane for the Scope block in vdp.mdl, check the Save
data to workspace option and select Structure with time from
the Format list. After running the simulation, a figure can be created
with the command

simplot(ScopeData)

Data Type
Support

The Scope block accepts real signals of any data type supported by
Simulink, including fixed-point data types. The Scope block accepts
homogeneous vectors.

For a discussion on the data types supported by Simulink, see “Data
Types Supported by Simulink” in the Simulink documentation.

2-582

Scope, Floating Scope, Signal Viewer Scope

Characteristics Sample Time Inherited from driving block or can be set

States 0

2-583

Selector

Purpose Select input elements from vector or matrix signal

Library Signal Routing

Description The Selector block generates as output selected elements of an input
vector or matrix.

A Selector block accepts either vector or matrix signals as input. Set the
Input type parameter to the type of signal (Vector or Matrix) that the
block should accept in your model. The parameter dialog box and the
block’s appearance change to reflect the type of input that you select.
The way the block determines the elements to select differs slightly,
depending on the type of input.

Vector Input

If the input type is vector, a Selector block outputs a vector of selected
elements specified by element indices. The meaning of the indices
depends on the setting of the Index mode parameter. If the setting is
One-based (the default), the index of the first input element is 1, the
second 2, and so on. If the setting is Zero-based, the index of the first
element is 0, the second element 1, and so on.

The block determines the indices of the elements to select either from
the block’s Elements parameter or from an external signal. Set the
Source of element indices parameter to the source (Internal, i.e.,
parameter value, or External) that you prefer. If you select External,
the block adds an input port for the external index signal.

In either case, the elements to be selected must be specified as a vector
unless only one element or a range of elements is being selected. For
example, this model shows the Selector block and the output for an input
vector of [2 4 6 8 10] and an Elements parameter value of [5 1 3].

2-584

Selector

If the block is large enough, it displays the ordering of input vector
elements graphically.

If Use index as starting value is checked, Elements must specify
the starting index of a range of elements that starts at the specified
index and whose length is specified by Output port dimensions. For
example, suppose that you want the block to select elements 2 through
4 from a six-element input vector. You could do this by selecting
the Use index as starting value option, setting the Output port
dimensions to 3, and setting Elements to 2.

If you select External as the source for element indices, the block adds
an input port for the element indices signal. The signal should specify
the elements to be selected in the same way they are specified, using
the Elements parameter.

If the input type is vector, you must specify the width of the input signal
or -1, using the Input port width parameter. If you specify a width
greater than 0, the width of the input signal must equal the specified
width. Otherwise, the block reports an error. If you specify a width of
-1, the block accepts a vector signal of any width.

Matrix Input

If the input type is matrix, the Selector block outputs a matrix of
elements selected from the input matrix. The block determines the row
and column indices of the elements to select either from its Rows and
Columns parameters or from external signals. Set the block’s Source
of row indices and Source of column indices to the source that you
prefer (Internal or External). If you set either source to External, the
block adds an input port for the external indices signal. If you set both
sources to External, the block adds two input ports.

2-585

Selector

In either case, the indices of the row and columns to be selected must
be specified as vectors (or a scalar if only one row or column is to be
selected or you select the Use index as starting value option) of
one-based or zero-based indices, depending on the setting of the Index
mode parameter.

For example, if the Index mode is One-based (the default), the Rows
expression [2 1] and the Columns expression [1 3] specify output of
a 2-by-2 matrix whose first row contains the first and third elements of
the input matrix’s second row and whose second row contains the first
and third elements of the input matrix’s first row.

Data Type
Support

The data port of the Selector block accepts signals of any signal type
and any data type supported by Simulink, including fixed-point data
types. The data port accepts mixed-type signal vectors. The index port
accepts only built-in data types. The elements of the output vector have
the same type as the corresponding selected input elements.

For a discussion on the data types supported by Simulink, see“Data
Types Supported by Simulink” in the Simulink documentation.

2-586

Selector

Parameters
and
Dialog
Box

The parameter dialog box appears as follows when you select vector
input mode.

Input type
The type of the input signal: Vector or Matrix.

Index mode
Specifies the indexing mode: One-based or Zero-based. If
One-based is selected, an index of 1 specifies the first element of
the input vector, 2, the second element, and so on. If Zero-based
is selected, an index of 0 specifies the first element of the input
vector, 1, the second element, and so on.

2-587

Selector

Source of element indices
The source of the indices specifying the elements to select, either
Internal, i.e., the Elements parameter, or External, i.e., an
input signal.

Elements
The elements to be included in the output vector.

Input port width
The number of elements in the input vector.

Use index as starting value
Specifies that the value in the Elements field or the external
index source is the starting index of a range of elements whose
length is the same as the length specified in the Output port
dimensions field (see next option).

Output port dimensions
This field appears only if you check Use index as starting
value. It specifies the width of the block’s output signal.

The dialog box appears as follows when you select matrix input mode.

2-588

Selector

Input type
The type of the input signal: Vector or Matrix.

Index mode
Specifies the indexing mode: One-based or Zero-based. If
One-based is selected, an index of 1 specifies the first row (or
column) of the input matrix, 2, the second row, and so on. If
Zero-based is selected, an index of 0 specifies the first row (or
column) of the input matrix, 0, the second row, and so on.

2-589

Selector

Source of row indices
The source of the indices specifying the rows to select from the
input matrix, either Internal, i.e., the Rows parameter, or
External, i.e., an input signal.

Rows
Indices of the rows from which to select elements to be included in
the output matrix.

Source of column indices
The source of the indices specifying the columns to select from the
input matrix, either Internal, i.e., the Columns parameter, or
External, i.e., an input signal.

Columns
Indices of the columns from which to select elements to be
included in the output matrix.

Use index as starting value
Specifies that the values in the Row and Column fields or external
index sources specify the starting row and column indexes of a
range of elements whose length is the same as the dimensions
specified in the Output port dimensions field (see next option).

Output port dimensions
This field appears only if you check Use index as starting
value. It specifies the dimensions of the block’s output signal as
a two-element vector: [R C].

Characteristics Sample Time Inherited from driving block

Dimensionalized Yes

2-590

S-Function

Purpose Include S-function in model

Library User-Defined Functions

Description The S-Function block provides access to S-functions from a block
diagram. The S-function named as the S-function name parameter
can be a Level-1 M-file or a Level-1 or Level-2 C MEX-file S-function
(see Overview of S-Functions in Writing S-Functions for information on
how to create S-functions).

Note Use the M-File S-Function block to include a Level-2 M-file
S-function in a block diagram.

The S-Function block allows additional parameters to be passed directly
to the named S-function. The function parameters can be specified
as MATLAB expressions or as variables separated by commas. For
example,

A, B, C, D, [eye(2,2);zeros(2,2)]

Note that although individual parameters can be enclosed in brackets,
the list of parameters must not be enclosed in brackets.

The S-Function block displays the name of the specified S-function
and the number of input and output ports specified by the S-function.
Signals connected to the inputs must have the dimensions specified
by the S-function for the inputs.

Data Type
Support

Depends on the implementation of the S-Function block.

2-591

S-Function

Parameters
and
Dialog
Box

S-function name
The S-function name.

S-function parameters
Additional S-function parameters. See the preceding block
description for information on how to specify the parameters.

S-function modules
This parameter applies only if this block represents a C MEX-file
S-function and you intend to use the Real-Time Workshop
to generate code from the model containing the block. See
“Specifying Additional Source Files for an S-Function” in the
Real-Time Workshop online documentation for information on
using this parameter.

2-592

S-Function

Characteristics Direct Feedthrough Depends on contents of S-function

Sample Time Depends on contents of S-function

Scalar Expansion Depends on contents of S-function

Dimensionalized Depends on contents of S-function

Zero Crossing No

2-593

S-Function Builder

Purpose Create S-function from C code that you provide

Library User-Defined Functions

Description The S-Function Builder block creates a C MEX-file S-function from
specifications and C source code that you provide. See “Building
S-Functions Automatically” for detailed instructions on using the
S-Function Builder block to generate an S-function.

Instances of the S-Function Builder block also serve as wrappers for
generated S-functions in Simulink models. When simulating a model
containing instances of an S-Function Builder block, Simulink invokes
the generated S-function associated with each instance to compute the
instance’s output at each time step.

Note The S-Function Builder block does not support masking.
However, you can mask a Subsystem block that contains an S-Function
Builder block. See “Creating Masked Subsystems” in the Simulink
documentation for more information.

Data Type
Support

The S-Function Builder can accept and output complex, 1-D or 2-D
signals of any data type supported by Simulink.

For a discussion on the data types supported by Simulink, see “Data
Types Supported by Simulink” in the Simulink documentation.

Parameters
and
Dialog
Box

See “S-Function Builder Dialog Box” in the online documentation for
information on using the S-Function Builder block’s parameter dialog
box.

2-594

Shift Arithmetic

Purpose Shift bits and/or binary point of signal

Library Logic and Bit Operations

Description The Shift Arithmetic block can be used to shift the bits or the binary
point of a signal, or both.

For example, the effects of binary point shifts two places to the right and
two places to the left on an input of data type sfix(8) are shown below.

Shift Operation Binary Value
Decimal
Value

No shift (original number) 11001.011 -6.625

Binary point shift right by two places 1100101.1 -26.5

Binary point shift left by two places 110.01011 -1.65625

This block performs arithmetic bit shifts on signed numbers. Therefore,
the most significant bit is recycled for each bit shift. The effects of bit
shifts two places to the right and two places to the left on an input of
data type sfix(8) follow.

Shift Operation Binary Value
Decimal
Value

No shift (original number) 11001.011 -6.625

Bit shift right by two places 11110.010 -1.75

Bit shift left by two places 00101.100 5.5

Data Type
Support

The Shift Arithmetic block accepts signals of any data type supported
by Simulink, including fixed-point data types, except boolean type.

2-595

Shift Arithmetic

Parameters
and
Dialog
Box

Number of bits to shift right
The number of places the bits of the input signal is shifted. A
positive value indicates a shift right, while a negative value
indicates a shift left.

Number of places by which binary point shifts right
The number of places the binary point of the input signal is
shifted. A positive value indicates a shift right, while a negative
value indicates a shift left.

Characteristics Direct Feedthrough Yes

Sample Time Inherited

Scalar Expansion Yes

2-596

Sign

Purpose Indicate sign of input

Library Math Operations

Description The Sign block indicates the sign of the input:

• The output is 1 when the input is greater than zero.

• The output is 0 when the input is equal to zero.

• The output is -1 when the input is less than zero.

Data Type
Support

The Sign block accepts real or complex signals of any data type
supported by Simulink, including fixed-point data types. The output is
a signed data type with the same number of bits as the input, and with
nominal scaling (a slope of one and a bias of zero).

For a discussion on the data types supported by Simulink, see“Data
Types Supported by Simulink” in the Simulink documentation.

Parameters
and
Dialog
Box

2-597

Sign

Enable zero crossing detection
Select to enable zero crossing detection. For more information, see
“Zero-Crossing Detection” in the “How Simulink Works” chapter
of the Using Simulink documentation.

Sample time (-1 for inherited)
Specify the time interval between samples. To inherit the sample
time, set this parameter to -1. See “Specifying Sample Time” in
the online documentation for more information.

Characteristics Direct Feedthrough Yes

Sample Time Specified in the Sample time
parameter

Scalar Expansion N/A

Dimensionalized Yes

Zero Crossing Yes, if enabled.

2-598

Signal Builder

Purpose Create and generate interchangeable groups of signals whose
waveforms are piecewise linear

Library Sources

Description The Signal Builder block allows you to create interchangeable groups of
piecewise linear signal sources and use them in a model. See “Working
with Signal Groups” in the “Working with Signals” chapter of the Using
Simulink documentation.

Data Type
Support

The Signal Builder block outputs a scalar or array of real signals of
type double.

Parameters
and
Dialog
Box

The Signal Builder block has the same dialog box as that of a Subsystem
block. To display the dialog box, select Subsystem Parameters from
the block’s context menu.

Characteristics Sample Time Continuous

Scalar Expansion Yes, of parameters

Dimensionalized Yes

Zero Crossing Yes

2-599

Signal Conversion

Purpose Convert signal to new type without altering signal values

Library Signal Attributes

Description The Signal Conversion block converts a signal from one type to another.
The block’s Output parameter lets you select the type of conversion
to be performed.

Data Type
Support

The Signal Conversion block accepts virtual or nonvirtual signals of
any data type.

Parameters
and
Dialog
Box

Output
Specifies the type of conversion to be performed. The options are:

• Contiguous copy

2-600

Signal Conversion

Converts a muxed signal whose elements occupy discontiguous areas
of memory to a vector signal whose elements occupy contiguous areas
of memory. The block does this by allocating a contiguous area of
memory for the elements of the muxed signal and copying the values
from the discontiguous areas (represented by the block’s input) to
the contiguous areas (represented by the block’s output) at each
time step.

• Bus copy

Outputs a copy of the bus connected to the block’s input.

• Virtual bus

Converts a nonvirtual bus to a virtual bus. This option enables you to
combine an originally nonvirtual bus with a virtual bus.

• Nonvirtual bus

Converts a virtual bus to a nonvirtual bus as in the following example.

Terminator
Signal

Conversion
1

Constant1

1

Constant

Note The virtual bus to be converted to a nonvirtual bus must be
defined by a bus object, i.e., an instance of Simulink.Bus class. See the
Bus Creator block for more information.

Override optimizations and always copy signal
This option is enabled only for Contiguous copy conversion.
Unless you select this option, Simulink eliminates the block from

2-601

Signal Conversion

the compiled model as an optimization, if the elements of the
input signal occupy contiguous areas of memory.

Characteristics Sample Time Inherited

Scalar Expansion n/a

Dimensionalized n/a

Zero Crossing No

2-602

Signal Generator

Purpose Generate various waveforms

Library Sources

Description The Signal Generator block can produce one of four different waveforms:
sine wave, square wave, sawtooth wave, and random wave. The signal
parameters can be expressed in Hertz (the default) or radians per
second. This figure shows each signal displayed on a Scope using
default parameter values.

2-603

Signal Generator

A negative Amplitude parameter value causes a 180-degree phase
shift. You can generate a phase-shifted wave at other than 180 degrees

2-604

Signal Generator

in a variety of ways, including connecting a Clock block signal to a
MATLAB Fcn block and writing the equation for the particular wave.

You can vary the output settings of the Signal Generator block while
a simulation is in progress. This is useful to determine quickly the
response of a system to different types of inputs.

The block’s Amplitude and Frequency parameters determine the
amplitude and frequency of the output signal. The parameters must
be of the same dimensions after scalar expansion. If the Interpret
vector parameters as 1-D option is off, the block outputs a signal of
the same dimensions as the Amplitude and Frequency parameters
(after scalar expansion). If the Interpret vector parameters as 1-D
option is on, the block outputs a vector (1-D) signal if the Amplitude
and Frequency parameters are row or column vectors, i.e. single row
or column 2-D arrays. Otherwise, the block outputs a signal of the same
dimensions as the parameters.

Data Type
Support

The Signal Generator block outputs a scalar or array of real signals
of type double.

2-605

Signal Generator

Parameters
and
Dialog
Box

Opening this dialog box causes a running simulation to pause.
See "Changing Source Block Parameters" in the online Simulink
documentation for details.

Wave form
The wave form: a sine wave, square wave, or sawtooth wave. The
default is a sine wave. This parameter cannot be changed while
a simulation is running.

Time
Specifies whether to use simulation time as the source of values
for the waveform’s time variable or an external signal. If you
specify an external time source, the block displays an input port
for the time source.

2-606

Signal Generator

Amplitude
The signal amplitude. The default is 1.

Frequency
The signal frequency. The default is 1.

Units
The signal units: Hertz or radians/sec. The default is Hertz.

Interpret vector parameters as 1-D
If selected, column or row matrix values for the Amplitude
and Frequency parameters result in a vector output signal.
See “Determining the Output Dimensions of Source Blocks”
in the “Working with Signals” chapter of the Using Simulink
documentation. This option is not available when an external
signal specifies time. In this case, if the Amplitude and
Frequency parameters are column or row matrix values, the
output is a 1-D vector.

Characteristics Sample Time Continuous

Scalar Expansion Yes, of parameters

Dimensionalized Yes

Zero Crossing No

2-607

Signal Specification

Purpose Specify desired dimensions, sample time, data type, numeric type, and
other attributes of signal

Library Signal Attributes

Description The Signal Specification block allows you to specify the attributes of
the signal connected to its input and output ports. If the specified
attributes conflict with the attributes specified by the blocks connected
to its ports, Simulink displays an error when it compiles the model,
for example, at the beginning of a simulation. If no conflict exists,
Simulink eliminates the Signal Specification block from the compiled
model. In other words, the Signal Specification block is a virtual block.
It exists only to specify the attributes of a signal and plays no role in
the simulation of the model.

You can use the Signal Specification block to ensure that the actual
attributes of a signal meet desired attributes. For example, suppose
that you and a colleague are working on different parts of the same
model and you use Signal Specification blocks to connect your part of
the model with your colleague’s. Now, if your colleague changes the
attributes of a signal without informing you, the attributes entering the
corresponding Signal Specification block do not match and Simulink
reports an appropriate error.

The Signal Specification block can also be used to ensure correct
propagation of signal attributes throughout a model. The capability
of allowing many attributes to be propagated from block to block in
Simulink is very powerful. However, because blocks may not specify
some or all of the attributes of the signals they accept or output, it
is possible to create models that don’t have enough information to
correctly propagate attributes around the model. For these cases, the
Signal Specification block is a good way of providing the information
Simulink needs. Using the Signal Specification block also helps speed
up model compilation when blocks are missing signal attributes.

2-608

Signal Specification

Data Type
Support

The Signal Specification block accepts real or complex signals of any
data type supported by Simulink, including fixed-point data types. The
input data type must match the data type specified by the Data type
parameter.

For a discussion on the data types supported by Simulink, see “Data
Types Supported by Simulink” in the Simulink documentation.

Parameters
and
Dialog
Box

Dimensions
Specify the dimension’s of the block’s input and output signals.
Valid values are

2-609

Signal Specification

• -1--Inherited from the block to which it is connected

• n--Vector signal of width n

• [m n]--Matrix signal having m rows and n columns

Sample Time
Specify the sample time at which the block is updated. Valid
values are

• -1--inherited from the block to which it is connected

• period >= 0

• [period, offset]

• [0, -1]

• [-1, -1]

where period is the sample rate and offset is the offset of the
sample period from time zero. See “Specifying Sample Time” in
the online documentation for more information.

Data type
Specify the data type of the input and output signals. To let
Simulink determine the data type, set this parameter to auto.

Output data type
Specify any data type, including fixed-point data types. This
parameter is only visible if you select Specify via dialog for
the Data type parameter.

Output scaling value
Set the output scaling using binary point-only or [Slope Bias]
scaling. This parameter is only visible if you select Specify via
dialog for the Data type parameter.

2-610

Signal Specification

Signal type
Specify the numeric type (real or complex) of the input and
output signal. To let Simulink determine the numeric type, set
this parameter to auto.

Sampling mode
Specify the sampling mode (sample-based or frame-based) of
this block. To let Simulink determine the sampling mode, set this
parameter to auto.

Characteristics Direct Feedthrough Yes

Sample Time Specified by the block’s Sample Time
parameter.

Scalar Expansion No

Dimensionalized Yes

Zero Crossing No

2-611

Sine

Purpose Implement sine wave in fixed-point using lookup table approach that
exploits quarter wave symmetry

Library Lookup Tables

Description The Sine block is an implementation of the Sine and Cosine block. See
Sine and Cosine for more information.

2-612

Sine and Cosine

Purpose Implement sine and/or cosine wave in fixed point using lookup table
approach that exploits quarter wave symmetry

Library Lookup Tables (Sine block or Cosine block)

Description The Sine and Cosine block implements a sine and/or cosine wave in fixed
point using a lookup table method that exploits quarter wave symmetry.

The Sine and Cosine block can output the following functions of the
input signal, depending upon what you select for the Output formula
parameter:

•

•

•

• and

You define the number of lookup table points in the Number of data
points for lookup table parameter. The block implementation is most
efficient when you specify the lookup table data points to be (2^n)+1,
where n is an integer.

Use the Output word length parameter to specify the word length of
the fixed-point output data type. The fraction length of the output is
the output word length minus 2.

Data Type
Support

The Sine and Cosine block accepts signals of any data type supported
by Simulink, including fixed-point data types. The output of the block
is a fixed-point data type.

2-613

Sine and Cosine

Parameters
and
Dialog
Box

Output formula
Select the signal(s) to output.

Number of data points for lookup table
Specify the number of data points to retrieve from the lookup
table. The implementation is most efficient when you specify the
lookup table data points to be (2^n)+1, where n is an integer.

Output word length
Specify the word length for the fixed-point data type of the output
signal. The fraction length of the output is the output word length
minus 2.

2-614

Sine and Cosine

Characteristics Direct Feedthrough Yes

Scalar Expansion N/A

2-615

Sine Wave

Purpose Generate sine wave

Library Sources

Description The Sine Wave block provides a sinusoid. The block can operate in
either time-based or sample-based mode.

Time-Based Mode

The output of the Sine Wave block is determined by

Time-based mode has two submodes: continuous mode or discrete mode.
The value of the Sample time parameter determines whether the block
operates in continuous mode or discrete mode:

• 0 (the default) causes the block to operate in continuous mode.

• >0 causes the block to operate in discrete mode.

See “Specifying Sample Time” in the online documentation for more
information.

Using the Sine Wave Block in Continuous Mode

A Sample time parameter value of 0 causes the block to operate in
continuous mode. When operating in continuous mode, the Sine Wave
block can become inaccurate due to loss of precision as time becomes
very large.

Using the Sine Wave Block in Discrete Mode

A Sample time parameter value greater than zero causes the block
to behave as if it were driving a Zero-Order Hold block whose sample
time is set to that value.

Using the Sine Wave block in this way allows you to build models with
sine wave sources that are purely discrete, rather than models that are
hybrid continuous/discrete systems. Hybrid systems are inherently
more complex and as a result take longer to simulate.

2-616

Sine Wave

The Sine Wave block in discrete mode uses an incremental algorithm
rather than one based on absolute time. As a result, the block can be
useful in models intended to run for an indefinite length of time, such
as in vibration or fatigue testing.

The incremental algorithm computes the sine based on the value
computed at the previous sample time. This method makes use of the
following identities:

These identities can be written in matrix form:

Since t is constant, the following expression is a constant:

Therefore the problem becomes one of a matrix multiplication of the
value of sin(t) by a constant matrix to obtain sin(t+ t).

Discrete mode reduces but does not eliminate accumulation of roundoff
errors. This is because the computation of the block’s output at each
time step depends on the value of the output at the previous time step.

Sample-Based Mode

Sample-based mode uses the following formula to compute the output of
the Sine Wave block.

where

• A is the amplitude of the sine wave.

2-617

Sine Wave

• p is the number of time samples per sine wave period.

• k is a repeating integer value that ranges from 0 to p-1.

• o is the offset (phase shift) of the signal.

• b is the signal bias.

In this mode, Simulink sets k equal to 0 at the first time step and
computes the block’s output, using the preceding formula. At the next
time step, Simulink increments k and recomputes the output of the
block. When k reaches p, Simulink resets k to 0 before computing the
block’s output. This process continues until the end of the simulation.

The sample-based method of computing the block’s output does not
depend on the result of the previous time step to compute the result at
the current time step. It therefore avoids roundoff error accumulation.
However, it has one potential drawback. If the block is in a conditionally
executed subsystem and the conditionally executed subsystem pauses
and then resumes execution, the output of the Sine Wave block might no
longer be in sync with the rest of the simulation. Thus, if the accuracy
of your model requires that the output of conditionally executed Sine
Wave blocks remain in sync with the rest of the model, you should use
time-based mode for computing the output of the conditionally executed
blocks.

Parameter Dimensions

The block’s numeric parameters must be of the same dimensions
after scalar expansion. If the Interpret vector parameters as
1-D option is off, the block outputs a signal of the same dimensions
and dimensionality as the parameters. If the Interpret vector
parameters as 1-D option is on and the numeric parameters are row or
column vectors (i.e., single row or column 2-D arrays), the block outputs
a vector (1-D array) signal; otherwise, the block outputs a signal of the
same dimensionality and dimensions as the parameters.

Data Type
Support

The Sine Wave block accepts and outputs real signals of type double.

2-618

Sine Wave

Parameters
and
Dialog
Box

2-619

Sine Wave

Opening this dialog box causes a running simulation to pause.
See "Changing Source Block Parameters" in the online Simulink
documentation for details.

Sine type
Type of sine wave generated by this block, either time- or
sample-based. Some of the other options presented by the Sine
Wave dialog box depend on whether you select time-based or
sample-based as the value of Sine type parameter.

Time
Specifies whether to use simulation time as the source of values
for the sine wave’s time variable or an external source. If you
specify an external time source, the block displays an input port
for the time source.

Amplitude
The amplitude of the signal. The default is 1.

Bias
Constant value added to the sine to produce the output of this
block.

Frequency
The frequency, in radians/second. The default is 1 rad/s. This
parameter appears only if you choose time-based as the Sine
type of the block.

Samples per period
Number of samples per period. This parameter appears only if
you choose sample-based as the Sine type of the block.

Phase
The phase shift, in radians. The default is 0 radians. This
parameter appears only if you choose time-based as the Sine
type of the block.

2-620

Sine Wave

Number of offset samples
The offset (discrete phase shift) in number of sample times. This
parameter appears only if you choose sample-based as the Sine
type of the block.

Sample time
The sample period. The default is 0. If the sine type is
sample-based, the sample time must be greater than 0. See
“Specifying Sample Time” in the online documentation for more
information.

Interpret vector parameters as 1-D
If selected, column or row matrix values for the Sine Wave block’s
numeric parameters result in a vector output signal; otherwise,
the block outputs a signal of the same dimensionality as the
parameters. If this option is not selected, the block always
outputs a signal of the same dimensionality as the block’s numeric
parameters. See “Determining the Output Dimensions of Source
Blocks” in the “Working with Signals” chapter of the Using
Simulink documentation. This option is not available when an
external signal specifies time. In this case, if the block’s numeric
parameters are column or row matrix values, the output is a 1-D
vector.

Characteristics Sample Time Specified in the Sample time
parameter

Scalar Expansion Yes, of parameters

Dimensionalized Yes

Zero Crossing No

2-621

Sine Wave Function

Purpose Generate sine wave, using external signal as time source

Library Math Operations

Description This block is the same as the Sine Wave block with its Time parameter
set to Use external source. See the documentation for the Sine Wave
block for more information.

2-622

Slider Gain

Purpose Vary scalar gain using slider

Library Math Operations

Description The Slider Gain block allows you to vary a scalar gain during a
simulation using a slider. The block accepts one input and generates
one output.

Data Type
Support

Data type support for the Slider Gain block is the same as that for the
Gain block (see Gain).

Parameters
and
Dialog
Box

Low
The lower limit of the slider range. The default is 0.

High
The upper limit of the slider range. The default is 2.

The edit fields indicate (from left to right) the lower limit, the current
value, and the upper limit. You can change the gain in two ways: by
manipulating the slider, or by entering a new value in the current value
field. You can change the range of gain values by changing the lower
and upper limits. Close the dialog box by clicking the Close button.

If you click the slider’s left or right arrow, the current value changes
by about 1% of the slider’s range. If you click the rectangular area to
either side of the slider’s indicator, the current value changes by about
10% of the slider’s range.

2-623

Slider Gain

To apply a vector or matrix gain to the block input, consider using the
Gain block.

Characteristics Direct Feedthrough Yes

Sample Time Inherited from driving block

Scalar Expansion Yes, of the gain

States 0

Dimensionalized Yes

Zero Crossing No

2-624

State-Space

Purpose Implement linear state-space system

Library Continuous

Description The State-Space block implements a system whose behavior is defined
by

where x is the state vector, u is the input vector, and y is the output
vector. The matrix coefficients must have these characteristics, as
illustrated in the following diagram:

• A must be an n-by-n matrix, where n is the number of states.

• B must be an n-by-m matrix, where m is the number of inputs.

• C must be an r-by-n matrix, where r is the number of outputs.

• D must be an r-by-m matrix.

The block accepts one input and generates one output. The input vector
width is determined by the number of columns in the B and D matrices.
The output vector width is determined by the number of rows in the C
and D matrices.

Simulink converts a matrix containing zeros to a sparse matrix for
efficient multiplication.

Specifying the Absolute Tolerance for the Block’s States

By default Simulink uses the absolute tolerance value specified in the
Configuration Parameters dialog box (see “Solver Pane”) to solve the

2-625

State-Space

states of the State-Space block. If this value does not provide sufficient
error control, specify a more appropriate value in the Absolute
tolerance field of the State-Space block’s dialog box. The value that
you specify is used to solve all the block’s states.

Data Type
Support

A State-Space block accepts and outputs real signals of type double.

Parameters
and
Dialog
Box

2-626

State-Space

A, B, C, D
The matrix coefficients.

Initial conditions
The initial state vector. Simulink does not allow the initial
conditions of this block to be inf or NaN.

Absolute tolerance
Absolute tolerance used to solve the block’s states. You can enter
auto or a numeric value. If you enter auto, Simulink determines
the absolute tolerance (see “Solver Pane”). If you enter a numeric
value, Simulink uses the specified value to solve the block’s states.
Note that a numeric value overrides the setting for the absolute
tolerance in the Configuration Parameters dialog box.

Characteristics Direct Feedthrough Only if D ≠ 0

Sample Time Continuous

Scalar Expansion Yes, of the initial conditions

States Depends on the size of A

Dimensionalized Yes

Zero Crossing No

2-627

Step

Purpose Generate step function

Library Sources

Description The Step block provides a step between two definable levels at a
specified time. If the simulation time is less than the Step time
parameter value, the block’s output is the Initial value parameter
value. For simulation time greater than or equal to the Step time, the
output is the Final value parameter value.

The block’s numeric parameters must be of the same dimensions
after scalar expansion. If the Interpret vector parameters as
1-D option is off, the block outputs a signal of the same dimensions
and dimensionality as the parameters. If the Interpret vector
parameters as 1-D option is on and the numeric parameters are row or
column vectors (i.e., single row or column 2-D arrays), the block outputs
a vector (1-D array) signal; otherwise, the block outputs a signal of the
same dimensionality and dimensions as the parameters.

Data Type
Support

The Step block outputs real signals of type double.

2-628

Step

Parameters
and
Dialog
Box

Opening this dialog box causes a running simulation to pause.
See "Changing Source Block Parameters" in the online Simulink
documentation for details.

Step time
The time, in seconds, when the output jumps from the Initial
value parameter to the Final value parameter. The default is 1
second.

Initial value
The block output until the simulation time reaches the Step time
parameter. The default is 0.

2-629

Step

Final value
The block output when the simulation time reaches and exceeds
the Step time parameter. The default is 1.

Sample time
Sample rate of step. See “Specifying Sample Time” in the online
documentation for more information.

Interpret vector parameters as 1-D
If selected, column or row matrix values for the Step block’s
numeric parameters result in a vector output signal; otherwise,
the block outputs a signal of the same dimensionality as the
parameters. If this option is not selected, the block always
outputs a signal of the same dimensionality as the block’s numeric
parameters. See “Determining the Output Dimensions of Source
Blocks” in the “Working with Signals” chapter of the Using
Simulink documentation.

Enable zero crossing detection
Select to enable zero crossing detection to detect step times. For
more information, see “Zero-Crossing Detection” in the “How
Simulink Works” chapter of the Using Simulink documentation.

Characteristics Sample Time Specified in the Sample time
parameter

Scalar Expansion Yes, of parameters

Dimensionalized Yes

Zero Crossing Yes, if enabled.

2-630

Stop Simulation

Purpose Stop simulation when input is nonzero

Library Sinks

Description The Stop Simulation block stops the simulation when the input is
nonzero.

The simulation completes the current time step before terminating.
If the block input is a vector, any nonzero vector element causes the
simulation to stop.

You can use this block in conjunction with the Relational Operator block
to control when the simulation stops. For example, this model stops the
simulation when the input signal reaches 10.

The Stop block cannot be used to pause the simulation. To create a
block that pauses the simulation, see “Creating Pause Blocks” in the
Assertion block reference page.

Data Type
Support

The Stop Simulation block accepts real signals of type double or
Boolean.

Parameters
and
Dialog
Box

2-631

Stop Simulation

Characteristics Sample Time Inherited from driving block

Dimensionalized Yes

2-632

Subsystem, Atomic Subsystem, CodeReuse Subsystem

Purpose Represent system within another system

Library Ports & Subsystems

Description A Subsystem block represents a subsystem of the system that contains
it. The Subsystem block can represent a virtual subsystem or a true
(atomic) subsystem, depending on the value of its Treat as atomic
unit parameter. An Atomic Subsystem block is a Subsystem block that
has its Treat as atomic unit parameter selected by default.

You create a subsystem in these ways:

• Copy the Subsystem (or Atomic Subsystem) block from the Ports
& Subsystems library into your model. You can then add blocks to
the subsystem by opening the Subsystem block and copying blocks
into its window.

• Select the blocks and lines that are to make up the subsystem using a
bounding box, then choose Create Subsystem from the Edit menu.
Simulink replaces the blocks with a Subsystem block. When you
open the block, the window displays the blocks you selected, adding
Inport and Outport blocks to reflect signals entering and leaving
the subsystem.

The number of input ports drawn on the Subsystem block’s icon
corresponds to the number of Inport blocks in the subsystem. Similarly,
the number of output ports drawn on the block corresponds to the
number of Outport blocks in the subsystem.

See “Creating Subsystems” for more information about subsystems.

Data Type
Support

For a discussion on the data types supported by Simulink, see “Data
Types Supported by Simulink” in the Simulink documentation.

See Inport for information on the data types accepted by a subsystem’s
input ports. See Outport for information on the data types output by a
subsystem’s output ports.

2-633

Subsystem, Atomic Subsystem, CodeReuse Subsystem

Parameters
and
Dialog
Box

Show port labels
Causes Simulink to display the labels of the subsystem’s ports
in the subsystem’s icon.

Read/Write permissions
Controls user access to the contents of the subsystem. You can
select any of the following values.

2-634

Subsystem, Atomic Subsystem, CodeReuse Subsystem

Permissions Description

ReadWrite User can open and modify the contents of
the subsystem.

ReadOnly User can open but not modify the
subsystem. If the subsystem resides in a
block library, a user can create and open
links to the subsystem and can make
and modify local copies of the subsystem
but cannot change the permissions or
modify the contents of the original library
instance.

NoReadOrWrite User cannot open or modify the subsystem.
If the subsystem resides in a library, a
user can create links to the subsystem in
a model but cannot open, modify, change
permissions, or create local copies of the
subsystem.

Name of error callback function
Name of a function to be called if an error occurs while Simulink is
executing the subsystem. Simulink passes two arguments to the
function: the handle of the subsystem and a string that specifies
the error type. If no function is specified, Simulink displays a
generic error message if executing the subsystem causes an error.

Permit hierarchical resolution
Specifies whether to resolve names of workspace variables
referenced by this subsystem. The options are

• All

Resolve all names of workspace variables used by this subsystem,
including those used to specify block parameter values and Simulink
data objects (for example, Simulink.Signal objects).

2-635

Subsystem, Atomic Subsystem, CodeReuse Subsystem

• ExplicitOnly

Resolve only names of workspace variables used to specify block
parameter values, data store memory (where no block exists), signals,
and states marked as “must resolve”).

• None

Do not resolve any workspace variable names.

Treat as atomic unit
Causes Simulink to treat the subsystem as a unit when
determining the execution order of block methods. For example,
when it needs to compute the output of the subsystem, Simulink
invokes the output methods of all the blocks in the subsystem
before invoking the output methods of other blocks at the same
level as the subsystem block. If this option is not selected,
Simulink treats all blocks in the subsystem as being at the same
level in the model hierarchy as the subsystem when determining
block method execution order. This can cause execution of
methods of blocks in the subsystem to be interleaved with
execution of methods of blocks outside the subsystem. See “Atomic
Subsystems” for more information.

Minimize algebraic loop occurrences
This option appears only if the subsystem is atomic. If selected,
this option tries to eliminate any algebraic loops that include
the subsystem (see “Eliminating Algebraic Loops” in the online
Simulink documentation for more information).

Propagate execution context across subsystem boundary
This option appears only if the subsystem is conditionally
executed.

2-636

Subsystem, Atomic Subsystem, CodeReuse Subsystem

If selected, this option enables execution context propagation
across this subsystem’s boundary (see “Propagating Execution
Contexts” in the online Simulink documentation). Simulink
disables this option by default.

Warn if function-call inputs are context-specific
This option appears only if the subsystem is a function-call
subsystem.

The option is effective only if the Context-dependent inputs
diagnostic on the Configuration Parameters > Connectivity
dialog box is set to Use local settings. In this case, if this
option is checked, Simulink displays a warning if it has to compute
any of this function-call subsystem’s inputs directly or indirectly
during execution of a function-call (see the "Function-call systems"
examples in the Simulink "Subsystem Semantics" library for
examples of such function-call subsystems.

Sample time
Specifies the sample time of this subsystem if it is atomic, i.e., its
Treat as atomic unit option is selected. The sample time that
you specify must be one of the following:

• Inherited Sample Time (-1), the default

• Constant Sample Time (inf)

• Periodic ([Ts 0])

Use this parameter to specify whether all blocks in this subsystem
must run at the same rate or can run at different rates. If the
blocks in the subsystem can run at different rates, specify the
subsystem’s sample time as inherited (-1). If all blocks must run

2-637

Subsystem, Atomic Subsystem, CodeReuse Subsystem

at the same rate, specify the sample time corresponding to this
rate as the value of the subsystem’s Sample time parameter. If
any of the blocks in the subsystem specify a different sample time
(other than -1 or inf), Simulink displays an error message when
you update or simulate the model. For example, suppose all the
blocks in the subsystem must run 5 times a second. To ensure
this, specify the sample time of the subsystem as 0.2. In this
example, if any of the blocks in the subsystem specify a sample
time other than 0.2, -1, or inf, Simulink displays an error when
you update or simulate the model.

Real-Time Workshop system code (Real-Time Workshop license
required)

Specifies the code format to be generated for an atomic
(nonvirtual) subsystem.

If You Want Real-Time
Workshop to...

Select...

Choose the optimal format
for you based on the type and
number of instances of the
subsystem that exist in the
model

Auto

Inline the subsystem
unconditionally

Inline

Generate a separate,
non-reentrant function with
no arguments, and optionally
place the subsystem code in a
separate file

Function

Generates a function with
arguments that allows the
subsystem’s code to be shared
by other instances of it in the
model

Reusable function

2-638

Subsystem, Atomic Subsystem, CodeReuse Subsystem

When this option is set to Function or Reusable function, two
additional options appear — Real-Time Workshop function
name options and Real-Time Workshop file name options.

For more information on using these options, see “Nonvirtual
Subsystem Code Generation Options” in the Real-Time Workshop
documentation.

Real-Time Workshop function name options (Real-Time Workshop
license required)

Specifies how Real-Time Workshop is to name the function it
generates for the subsystem.

If You Want Real-Time Workshop
to...

Select...

Assign a unique function name
using the default naming convention,
model_subsystem(), where model is the
name of the model and subsystem is the
name of the subsystem (or that of an
identical one when code is being reused)

Auto

Use the subsystem name as the function
name

Use subsystem
name

Assign a unique, valid C or C++ function
name that you specify

User specified

If you specify Use subsystem name and the subsystem is a library
block, Real-Time Workshop names the function (and filename)
with the name of the library block, regardless of the names used
for that subsystem in the model.

If you select User specified, a Real-Time Workshop function
name option appears.

2-639

Subsystem, Atomic Subsystem, CodeReuse Subsystem

Real-Time Workshop function name (Real-Time Workshop license
required)

Specifies a unique, valid C or C++ function name for subsystem
code.

Real-Time Workshop file name options (Real-Time Workshop
license required)

Specifies how Real-Time Workshop is to name the separate file for
the function it generates for the subsystem.

If You Want Real-Time Workshop
to...

Select...

Generate the function code within the
module generated from the subsystem’s
parent system, or, if the subsystem’s
parent is the model itself, within the file
model.c or model.cpp

Auto

Generate a separate file and name it
with the name of the subsystem or
library block

Use subsystem
name

Generate a separate file and name it
with the function name you specify for
Real-Time Workshop function name
options

Use function name

Assign a unique, valid C or C++ function
name that you specify

User specified

If you specify Use subsystem name, the subsystem filename is
mangled if the model contains Model blocks, or if a model reference
target is being generated for the model. In these situations,
the filename for the subsystem consists of the subsystem name
prefixed by the model name.

If you select User specified, the option Real-Time Workshop
filename (no extension) option appears.

2-640

Subsystem, Atomic Subsystem, CodeReuse Subsystem

Real-Time Workshop file name (no extension) (Real-Time
Workshop license required)

Specifies how Real-Time Workshop is to name the file for the
function it generates for the subsystem. The filename that
you specify does not have to be unique. However, avoid giving
non-unique names that result in cyclic dependencies (for example,
sys_a.h includes sys_b.h, sys_b.h includes sys_c.h, and
sys_c.h includes sys_a.h).

Function with separate data (Real-Time Workshop Embedded Coder
license required)

Appears if you select Function for the Real-Time Workshop
system code option. If checked, Real-Time Workshop Embedded
Coder generates subsystem function code in which the internal
data for an atomic subsystem is separated from its parent model
and is owned by the subsystem. As a result, the generated
code for the atomic subsystem is easier to trace and test. The
data separation also tends to reduce the size of data structures
throughout the model.

When you select this option, three memory section options for
data appear: Memory section for constants, Memory section
for internal data, and Memory section for parameters.

For details on how to generate modular function code for an
atomic subsystem, see “Nonvirtual Subsystem Modular Function
Code Generation” in the Real-Time Workshop Embedded Coder
documentation.

For details on how to apply memory sections to atomic subsystems,
see “Applying Memory Sections to Atomic Subsystems” in the
Real-Time Workshop Embedded Coder documentation.

Memory sections for initialize/terminate functions (Real-Time
Workshop Embedded Coder license required)
Memory sections for execution functions

Appear if you select Function for the Real-Time Workshop
system code option. The value you specify for each of these

2-641

Subsystem, Atomic Subsystem, CodeReuse Subsystem

options indicates how the Real-Time Workshop Embedded coder
is to apply memory sections to the subsystem’s initialization,
termination, and execution functions. These options can be useful
for overriding the model’s memory section settings for the given
subsystem.

The list of possible values varies depending on if and what package
of memory sections you have set for the model’s configuration (see
“Memory Sections Pane” in the Real-Time Workshop Embedded
Coder documentation). If you have not configured the model with
a package, Inherit from model is the only value that appears.
Otherwise, the list includes Default and all memory sections
the model’s package contains.

If You Want Real-Time Workshop
Embedded Coder to...

Select...

Apply the root model’s memory
sections to the subsystem’s function
code

Inherit from model

Not apply memory sections to the
subsystem’s system code, overriding
any model-level specification

Default

Apply one of the model’s memory
sections to the subsystem

The memory section of
interest

For details on how to apply memory sections to atomic subsystems,
see “Applying Memory Sections to Atomic Subsystems” in the
Real-Time Workshop Embedded Coder documentation.

Memory sections for constants (Real-Time Workshop Embedded
Coder license required)
Memory sections for internal data
Memory sections for parameters

Appear if you select Function for the Real-Time Workshop
system code option. The value you specify for each of these

2-642

Subsystem, Atomic Subsystem, CodeReuse Subsystem

options indicates how the Real-Time Workshop Embedded Coder
is to apply memory sections to the subsystem’s data. These
options can be useful for overriding the model’s memory section
settings for the given subsystem.

The list of possible values varies depending on if and what package
of memory sections you have set for the model’s configuration (see
“Memory Sections Pane” in the Real-Time Workshop Embedded
Coder documentation). If you have not configured the model with
a package, Inherit from model is the only value that appears.
Otherwise, the list includes Default and all memory sections
the model’s package contains.

If You Want Real-Time Workshop
Embedded Coder to...

Select...

Apply the root model’s memory
sections to the subsystem’s data

Inherit from model

Not apply memory sections to the
subsystem’s data, overriding any
model-level specification

Default

Apply one of the model’s memory
sections to the subsystem

The memory section of
interest

For details on how to apply memory sections to atomic subsystems,
see “Applying Memory Sections to Atomic Subsystems” in the
Real-Time Workshop Embedded Coder documentation.

Characteristics Sample Time Depends on the blocks in the subsystem

Dimensionalized Depends on the blocks in the subsystem

Zero Crossing Yes, for enable and trigger ports if
present

2-643

Sum, Add, Subtract, Sum of Elements

Purpose Add or subtract inputs

Library Math Operations

Description The Sum block performs addition or subtraction on its inputs. This
block can add or subtract scalar, vector, or matrix inputs. It can also
collapse the elements of a single input vector.

You specify the operations of the block with the List of signs parameter.
Plus (+), minus (-), and spacer (|) characters indicate the operations to
be performed on the inputs:

• If there are two or more inputs, then the number of + and - characters
must equal the number of inputs. For example, “+-+” requires three
inputs and configures the block to subtract the second (middle) input
from the first (top) input, and then add the third (bottom) input.

All nonscalar inputs must have the same dimensions. Scalar inputs
will be expanded to have the same dimensions as the other inputs.

• A spacer character creates extra space between ports on the block’s
icon.

• If only addition of all inputs is required, then a numeric parameter
value equal to the number of inputs can be supplied instead of “+”
characters.

• If only one vector is input, then a single “+” or “-” will collapse the
vector using the specified operation.

The Sum block first converts the input data type(s) to the output
data type using the specified rounding and overflow modes, and then
performs the specified operations.

Data Type
Support

The Sum block accepts real or complex signals of any data type
supported by Simulink, including fixed-point data types. The inputs
may be of different data types unless you select the Require all inputs
to have same data type parameter.

2-644

Sum, Add, Subtract, Sum of Elements

For a discussion on the data types supported by Simulink, see “Data
Types Supported by Simulink” in the Simulink documentation.

Parameters
and
Dialog
Box

The Main pane of the Sum block dialog appears as follows:

Icon shape
Designate the icon shape of the block.

List of signs
Enter as many plus (+) and minus (-) characters as there are
inputs. Addition is the default operation, so if you only want to
add the inputs, enter the number of input ports. For a single
vector input, “+” or “-” will collapse the vector using the specified
operation.

2-645

Sum, Add, Subtract, Sum of Elements

You can manipulate the positions of the input ports on the block
by inserting spacers (|) between the signs in the List of signs
parameter. For example, “++|--” creates an extra space between
the second and third input ports.

Sample time (-1 for inherited)
Specify the time interval between samples. To inherit the sample
time, set this parameter to -1. See “Specifying Sample Time” in
the online documentation for more information.

The Signal Data Types pane of the Sum block dialog appears as
follows:

2-646

Sum, Add, Subtract, Sum of Elements

Require all inputs to have same data type
Select this parameter to require that all inputs must have the
same data type.

Output data type mode
Specify the output data type and scaling to be the same as the
first input, or inherit the data type and scaling from an internal
rule or by backpropagation. You can also choose a built-in data
type from the drop-down list. Lastly, if you choose Specify via
dialog, the Output data type, Output scaling value, and

2-647

Sum, Add, Subtract, Sum of Elements

Lock output scaling against changes by the autoscaling
tool parameters become visible.

Output data type
Specify any data type, including fixed-point data types. This
parameter is only visible if you select Specify via dialog for
the Output data type mode parameter.

Output scaling value
Set the output scaling using binary point-only or [Slope Bias]
scaling. This parameter is only visible if you select Specify via
dialog for the Output data type mode parameter.

Lock output scaling against changes by the autoscaling tool
Select to lock scaling of outputs. This parameter is only visible if
you select Specify via dialog for the Output data type mode
parameter.

Round integer calculations toward
Select the rounding mode for fixed-point operations.

Saturate on integer overflow
Select to have overflows saturate.

Characteristics Direct Feedthrough Yes

Sample Time Specified in the Sample time
parameter

Scalar Expansion Yes

States 0

Dimensionalized Yes

Zero Crossing No

2-648

Switch

Purpose Switch output between first input and third input based on value of
second input

Library Signal Routing

Description The Switch block passes through the first (top, or left) input or the third
(bottom, or right) input based on the value of the second (middle) input.
The first and third inputs are called data inputs. The second input
is called the control input.

You select the conditions under which the first input is passed with
the Criteria for passing first input parameter. You can make the
block check whether the control input is greater than or equal to the
threshold value, purely greater than the threshold value, or nonzero. If
the control input meets the condition set in the Criteria for passing
first input parameter, then the first input is passed. Otherwise, the
third input is passed.

Note If the data inputs to the switch are buses, the element names of
both buses must be the same to ensure that the output bus has the
same element names no matter which input bus is selected. You can
ensure that your model meets this requirement by using a bus object to
define the buses with the model’s Element name mismatch diagnostic
set to error. See “Connectivity Diagnostics” for more information.

Data Type
Support

The data and control inputs of a Switch block accept real or complex
signals of any data type supported by Simulink, including fixed-point
data types.

For a discussion on the data types supported by Simulink, see “Data
Types Supported by Simulink” in the Simulink documentation.

2-649

Switch

Parameters
and
Dialog
Box

The Main pane of the Switch block dialog appears as follows:

Criteria for passing first input
Select the conditions under which the first input is passed. You
can make the block check whether the control input is greater
than or equal to the threshold value, purely greater than the
threshold value, or nonzero. If the control input meets the
condition set in this parameter, then the first input is passed.
Otherwise, the third input is passed.

Threshold
Assign the switch threshold that determines which input is
passed to the output.

2-650

Switch

Enable zero crossing detection
Select to enable zero crossing detection. For more information, see
Zero Crossing Detection in the “How Simulink Works” chapter of
the Using Simulink documentation.

Sample time (-1 for inherited)
Specify the time interval between samples. To inherit the sample
time, set this parameter to -1. See “Specifying Sample Time” in
the online documentation for more information.

The Signal Data Types pane of the Switch block dialog appears as
follows:

Require all data port inputs to have same data type
Select to require all data inputs to have the same data type.

2-651

Switch

Output data type mode
Choose to inherit the output data type and scaling by
backpropagation or by an internal rule. The internal rule causes
the output of the block to have the same data type and scaling as
the input with the larger positive range.

Round integer calculations toward
Select the rounding mode for fixed-point operations.

Saturate on integer overflow
Select to have overflows saturate.

Characteristics Direct Feedthrough Yes

Sample Time Specified in the Sample time
parameter

Scalar Expansion Yes

Dimensionalized Yes

Zero Crossing Yes, if enabled

See Also Multiport Switch

2-652

Switch Case

Purpose Implement C-like switch control flow statement

Library Ports & Subsystems

Description The following shows a completed Simulink C-like switch control flow
statement in the subsystem of the Switch Case block.

A Switch Case block receives a single input, which it uses to form case
conditions that determine which subsystem to execute. Each output
port case condition is attached to a Switch Case Action subsystem. The
cases are evaluated top down starting with the top case. If a case value
(in brackets) corresponds to the actual value of the input, its Switch
Case Action subsystem is executed.

The preceding switch control flow statement can be represented by
the following pseudocode:

switch (u1) {
case [u1=1]:
body_1;
break;

2-653

Switch Case

case [u1=2 or u1=3]:
body_23;
break;

default:
bodydefault;

}

You construct a Simulink switch control flow statement like the
example shown as follows:

1 Place a Switch Case block in the current system and attach the input
port labeled u1 to the source of the data you are evaluating.

2 Open the Block Parameters dialog of the Switch Case block and
enter as follows:

a Enter the Case conditions field with the individual cases.

Each case can be an integer or set of integers specified with
MATLAB cell notation. See the Case conditions field in the
"Parameters and Dialog Box" section of this reference.

b Select the Show default case check box to show a default case
output port on the Switch Case block.

If all other cases are false, the default case is taken.

3 Create a Switch Case Action subsystem for each case port you added
to the Switch Case block.

These consist of subsystems with Action Port blocks inside them.
When you place the Action Port block inside a subsystem, the
subsystem becomes an atomic subsystem with an input port labeled
Action.

4 Connect each case output port and the default output port of the
Switch Case block to the Action port of an Action subsystem.

2-654

Switch Case

Each connected subsystem becomes a case body. This is indicated by
the change in label for the Switch Case Action subsystem block and
the Action Port block inside of it to the name case{}.

During simulation of a switch control flow statement, the Action
signals from the Switch Case block to each Switch Case Action
subsystem turn from solid to dashed.

5 In each Switch Case Action subsystem, enter the Simulink logic
appropriate to the case it handles. All blocks in a Switch Case Action
Subsystem must run at the same rate as the driving Switch Case
block. You can achieve this by setting each block’s sample time
parameter to be either inherited (-1) or the same value as the Switch
Case block’s sample time.

Note As demonstrated in the preceding pseudocode example, cases for
the Switch Case block contain an implied break after their Switch Case
Action subsystems are executed. There is no fall-through behavior for
the Simulink switch control flow statement as found in standard C
switch statements.

Data Type
Support

Input to the port labeled u1 of a Switch Case block can be a scalar value
of any data type supported by Simulink except Boolean. The input to
u1 can also be a fixed-point data type. Noninteger inputs are truncated.
For a discussion on the data types supported by Simulink, see “Data
Types Supported by Simulink” in the Simulink documentation.

Data outputs are action signals to Switch Case Action subsystems that
are created with Action Port blocks and subsystems.

2-655

Switch Case

Parameters
and
Dialog
Box

Case conditions
Case conditions are specified using MATLAB cell notation where
each cell is a case condition consisting of integers or arrays of
integers. In the preceding dialog example, entering {1,[7,9,4]}
specifies that output port case[1] is run when the input value is 1,
and output port case[7 9 4] is run when the input value is 7, 9, or 4.

You can use colon notation to specify a range of case conditions.
For example, entering {[1:5]} specifies that output port case[1 2
3 4 5] is run when the input value is 1, 2, 3, 4, or 5.

Depending on block size, cases with long lists of conditions are
displayed in shortened form in the Switch Case block, using a
terminating ellipsis (...).

2-656

Switch Case

Show default case
If you select this check box, the default output port appears as
the last case on the Switch Case block. This case is run when
the input value does not match any of the case values specified
in the Case conditions field.

Enable zero crossing detection
Select to enable use of zero crossing detection. For more
information, see “Zero-Crossing Detection” in the “How Simulink
Works” chapter of the Using Simulink documentation.

Sample time (-1 for inherited)
Specify the time interval between samples. To inherit the sample
time, set this parameter to -1. See “Specifying Sample Time” in
the online documentation for more information.

Characteristics Direct Feedthrough Yes

Sample Time Inherited from driving block

Scalar Expansion No

Dimensionalized No

Zero Crossing Yes, if enabled

2-657

Switch Case Action Subsystem

Purpose Represent subsystem whose execution is triggered by Switch Case block

Library Ports & Subsystems

Description This block is a Subsystem block that is preconfigured to serve as a
starting point for creating a subsystem whose execution is triggered by
a Switch Case block.

Note All blocks in a Switch Case Action Subsystem must run at the
same rate as the driving Switch Case block. You can achieve this by
setting each block’s sample time parameter to be either inherited (-1) or
the same value as the Switch Case block’s sample time.

For more information, see the Switch Case block and “Modeling Control
Flow Logic” in the “Creating a Model” chapter of the Using Simulink
documentation.

2-658

Tapped Delay

Purpose Delay scalar signal multiple sample periods and output all delayed
versions

Library Discrete

Description The Tapped Delay block delays its input by the specified number of
sample periods, and outputs all the delayed versions.

This block provides a mechanism for discretizing a signal in time, or
resampling the signal at a different rate. You specify the time between
samples with the Sample time parameter. You specify the number of
delays with the Number of delays parameter. A value of -1 instructs
the block to inherit the number of delays by backpropagation. Each
delay is equivalent to the z-1 discrete-time operator, which is represented
by the Unit Delay block.

The block accepts one scalar input and generates an output for each
delay. The input must be a scalar. You specify the order of the output
vector with the Order output vector starting with parameter list.
Oldest orders the output vector starting with the oldest delay version
and ending with the newest delay version. Newest orders the output
vector starting with the newest delay version and ending with the
oldest delay version.

The block output for the first sampling period is specified by the Initial
condition parameter. Careful selection of this parameter can minimize
unwanted output behavior.

Data Type
Support

The Tapped Delay block accepts signals of any data type supported by
Simulink, including fixed-point data types.

2-659

Tapped Delay

Parameters
and
Dialog
Box

Initial condition
Specify the initial output of the simulation. The Initial
condition parameter is converted from a double to the input data
type offline using round-to-nearest and saturation. Simulink does
not allow you to set the initial condition of this block to inf or NaN.

Sample time
Specify the time interval between samples. To inherit the sample
time, set this parameter to -1. See “Specifying Sample Time” in
the online documentation for more information.

Number of delays
Specify the number of discrete-time operators.

2-660

Tapped Delay

Order output vector starting with
Specify whether the oldest delay version is output first, or the
newest delay version is output first.

Include current input in output vector
Select to include the current input in the output vector.

Characteristics Direct Feedthrough Yes, when Include current input in
output vector parameter is checked.
No otherwise.

Sample Time Specified in the Sample time
parameter

Scalar Expansion Yes, of initial conditions

2-661

Terminator

Purpose Terminate unconnected output port

Library Sinks

Description The Terminator block can be used to cap blocks whose output ports
are not connected to other blocks. If you run a simulation with blocks
having unconnected output ports, Simulink issues warning messages.
Using Terminator blocks to cap those blocks avoids warning messages.

Data Type
Support

The Terminator block accepts real or complex signals of any data type
supported by Simulink, including fixed-point data types.

For a discussion on the data types supported by Simulink, see“Data
Types Supported by Simulink” in the Simulink documentation.

Parameters
and
Dialog
Box

Characteristics Sample Time Inherited from driving block

Dimensionalized Yes

2-662

Time-Based Linearization

Purpose Generate linear models in base workspace at specific times

Library Model-Wide Utilities

Description This block calls linmod or dlinmod to create a linear model for the
system when the simulation clock reaches the time specified by the
Linearization time parameter. No trimming is performed. The
linear model is stored in the base workspace as a structure, along with
information about the operating point at which the snapshot was taken.
Multiple snapshots are appended to form an array of structures.

The name of the structure used to save the snapshots is the name of
the model appended by _Timed_Based_Linearization, for example,
vdp_Timed_Based_Linearization. The structure has the follow fields:

Field Description

a The A matrix of the linearization

b The B matrix of the linearization

c The C matrix of the linearization

d The D matrix of the linearization

StateName Names of the model’s states

OutputName Names of the model’s output ports

InputName Names of the model’s input ports

OperPoint A structure that specifies the operating point
of the linearization. The structure specifies the
operating point time (OperPoint.t). The states
(OperPoint.x) and inputs (OperPoint.u) fields
are not used.

Ts The sample time of the linearization for a discrete
linearization

Use the Trigger-Based Linearization block if you need to generate linear
models conditionally.

2-663

Time-Based Linearization

You can use state and simulation time logging to extract the model
states and inputs at operating points. For example, suppose that you
want to get the states of the f14 demo model at linearization times of
2 seconds and 5 seconds.

1 Open the model and drag an instance of this block from the
Model-Wide Utilities library and drop the instance into the model.

2 Open the block’s parameter dialog box and set the Linearization
time to 2 and 5.

3 Open the model’s Configuration Parameters dialog box.

4 Select the Data Import/Export pane.

5 Check States and Time on the Save to Workspace control panel

6 Select OK to confirm the selections and close the dialog box.

7 Simulate the model.

At the end of the simulation, the following variables appear in the
MATLAB workspace: f14_Timed_Based_Linearization, tout,
and xout.

8 Get the indices to the operating point times by entering the following
at the MATLAB command line:

ind1 = find(f14_Timed_Based_Linearization(1).OperPoint.t==tout);

ind2 = find(f14_Timed_Based_Linearization(1).OperPoint.t==tout);

9 Get the state vectors at the operating points.

x1 = xout(ind1,:);
x2 = xout(ind2,:);

Data Type
Support

Not applicable.

2-664

Time-Based Linearization

Parameters
and
Dialog
Box

Linearization time
Time at which you want the block to generate a linear model.
Enter a vector of times if you want the block to generate linear
models at more than one time step.

Sample time (of linearized model)
Specify a sample time to create discrete-time linearizations of the
model (see “Discrete-Time System Linearization” on page 3-6).

Characteristics Sample Time Specified in the Sample time
parameter

Dimensionalized No

See Also Trigger-Based Linearization

2-665

To File

Purpose Write data to file

Library Sinks

Description The To File block writes its scalar or vector input to a matrix in a
MAT-file. This block does not accept matrix input signals if both
dimensions of the input signal are greater than one. The block writes
one column for each time step: the first row is the simulation time;
the remainder of the column is the input data, one data point for each
element in the input vector. The matrix has this form.

The From File block can use data written by a To File block without
any modifications. However, the form of the matrix expected by the
From Workspace block is the transposition of the data written by the To
File block.

The block writes the data as well as the simulation time after the
simulation is completed. Its icon shows the name of the specified output
file.

Block parameters control when and how much data the To File block
writes:

• The Decimation parameter allows you to write data at every nth
sample, where n is the decimation factor. The default decimation, 1,
writes data at every time step.

• The Sample time parameter allows you to specify a sampling
interval at which to collect points. This parameter is useful when
you are using a variable-step solver where the interval between
time steps might not be the same. The default value of -1 causes
the block to inherit the sample time from the driving block when

2-666

To File

determining the points to write. See “Specifying Sample Time” in the
online documentation for more information.

For variable-step solvers, the Output options found on the Data
Import/Export pane of the Configuration Parameters dialog box
determine the original amount of data available to the To File block. For
example, if you need to ensure that data is saved at identical time points
over multiple simulations, select the Produce specified output only
option in the Configuration Parameters dialog box and enter the desired
time vector. The To File block begins with this specified time vector
and further limits the amount of data written to the file based on its
block parameters.

The To File block generates an uncompressed MAT-file. If you open
and save this file, it will be smaller because MATLAB compresses the
saved file. If the file exists at the time the simulation starts, the block
overwrites its contents.

Data Type
Support

The To File block accepts real signals of type double.

2-667

To File

Parameters
and
Dialog
Box

Filename
The fully qualified pathname or filename of the MAT-file in which
to store the output. On UNIX, the pathname may start with a tilde
(~) character signifying your home directory. The default filename
is untitled.mat. If you specify an unqualified filename, Simulink
stores the file in the MATLAB working directory. (To determine
the working directory, type pwd at the MATLAB command line.)

Variable name
The name of the matrix contained in the named file.

Decimation
A decimation factor. The default value is 1.

2-668

To File

Sample time
The sample period and offset at which to collect points. See
“Specifying Sample Time” in the online documentation for more
information.

Characteristics Sample Time Specified in the Sample time
parameter

Dimensionalized Yes

2-669

To Workspace

Purpose Write data to workspace

Library Sinks

Description The To Workspace block writes its input to the workspace. The block
writes its output to an array or structure that has the name specified by
the block’s Variable name parameter. The Save format parameter
determines the output format.

Array

Selecting this option causes the To Workspace block to save the
input as an N-dimensional array where N is one more than the
number of dimensions of the input signal. For example, if the input
signal is a 1-D array (i.e., a vector), the resulting workspace array is
two-dimensional. If the input signal is a 2-D array (i.e., a matrix), the
array is three-dimensional.

The way samples are stored in the array depends on whether the input
signal is a scalar or vector or a matrix. If the input is a scalar or a vector,
each input sample is output as a row of the array. For example, suppose
that the name of the output array is simout. Then, simout(1,:)
corresponds to the first sample, simout(2,:) corresponds to the second
sample, etc. If the input signal is a matrix, the third dimension of
the workspace array corresponds to the values of the input signal at
specified sampling point. For example, suppose again that simout is
the name of the resulting workspace array. Then, simout(:,:,1) is the
value of the input signal at the first sample point; simout(:,:,2) is the
value of the input signal at the second sample point; etc.

Block parameters control when and how much data the To Workspace
block writes:

• The Limit data points to last parameter indicates how many
sample points to save. If the simulation generates more data points
than the specified maximum, the simulation saves only the most
recently generated samples. To capture all the data, set this value
to inf.

2-670

To Workspace

• The Decimation parameter allows you to write data at every nth
sample, where n is the decimation factor. The default decimation, 1,
writes data at every time step.

• The Sample time parameter allows you to specify a sampling
interval at which to collect points. This parameter is useful when
you are using a variable-step solver where the interval between
time steps might not be the same. The default value of -1 causes
the block to inherit the sample time from the driving block when
determining the points to write. See “Specifying Sample Time” in the
online documentation for more information.

For variable-step solvers, the Output options found on the Data
Import/Export pane of the Configuration Parameters dialog box
determine the original amount of data available to the To Workspace
block. For example, if you need to ensure that data is written at
identical time points over multiple simulations, select the Produce
specified output only option in the Configuration Parameters
dialog box and enter the desired time vector. The To Workspace block
begins with this specified time vector and further limits the amount of
data written to the workspace based on its block parameters.

During the simulation, the block writes data to an internal buffer.
When the simulation is completed or paused, that data is written to
the workspace. Its icon shows the name of the array to which the data
is written.

Structure

This format consists of a structure with three fields: time, signals, and
blockName. The time field is empty. The blockName field contains the
name of the To Workspace block. The signals field contains a structure
with three fields: values, dimensions, and label. The values field
contains the array of signal values. The dimensions field specifies the
dimensions of the values array. The label field contains the label of
the input line.

2-671

To Workspace

Structure with Time

This format is the same as Structure except that the time field contains
a vector of simulation time steps.

Note This format does not support frame-based signals. Use Array or
Structure format instead.

Using Saved Data with a From Workspace Block

Use the Structure with Time format to save sample-based data if you
intend to use a From Workspace block to play back the data in another
simulation.

Examples

In a simulation where the start time is 0, the Limit data points to
last is 100, the Decimation is 1, and the Sample time is 0.5. The To
Workspace block collects a maximum of 100 points, at time values of 0,
0.5, 1.0, 1.5, ..., seconds. Specifying a Decimation value of 1 directs the
block to write data at each step.

In a similar example, the Limit data points to last is 100 and the
Sample time is 0.5, but the Decimation is 5. In this example, the
block collects up to 100 points, at time values of 0, 2.5, 5.0, 7.5, ...,
seconds. Specifying a Decimation value of 5 directs the block to write
data at every fifth sample. The sample time ensures that data is written
at these points.

In another example, all parameters are as defined in the first example
except that the Limit data points to last is 3. In this case, only the
last three sample points collected are written to the workspace. If the
simulation stop time is 100, data corresponds to times 99.0, 99.5, and
100.0 seconds (three points).

Data Type
Support

The To Workspace block can save real or complex inputs of any data
type supported by Simulink, including fixed-point data types, to the
MATLAB workspace.

2-672

To Workspace

For a discussion on the data types supported by Simulink, see “Data
Types Supported by Simulink” in the Simulink documentation.

Parameters
and
Dialog
Box

Variable name
The name of the array that holds the data.

Limit data points to last
The maximum number of input samples to be saved. The default
is inf samples.

2-673

To Workspace

Decimation
A decimation factor. The default is 1.

Sample time
The sample time at which to collect points. See “Specifying
Sample Time” in the online documentation for more information.

Save format
Format in which to save simulation output to the workspace. The
default is structure.

Log fixed-point data as a fi object
Select to log fixed-point data to the MATLAB workspace as a
Simulink Fixed-Point fi object. Otherwise, fixed-point data is
logged to the workspace as double.

Characteristics Sample Time Specified in the Sample time parameter

Dimensionalized Yes

2-674

Transfer Fcn

Purpose Model linear system by transfer function

Library Continuous

Description The Transfer Fcn block models a linear system by a transfer function of
the Laplace-domain variable s. The block can model both single-input
single-output (SISO) and single-input multiple output (SIMO) systems.

This block assumes that the transfer function has the following form

where u and y are the system’s input and outputs, respectively, nn
and nd are the number of numerator and denominator coefficients,
respectively. num and den contain the coefficients of the numerator and
denominator in descending powers of s. The order of the denominator
must be greater than or equal to the order of the numerator. This block
also assumes that the transfer functions for the outputs of a multiple
output system have the same denominator and that the numerators of
the transfer functions have the same order.

To model a single-output system, enter a vector containing the system
transfer function’s numeric coefficients in the Numerator coefficient
field in the block’s parameter dialog box. Enter a vector containing
the transfer function’s denominator coefficients in the Denominator
coefficient field. In this case, the input and output of the block are
scalar time-domain signals.

To model a multiple-output system, enter a matrix in the Numerator
coefficient field where each row of the matrix contains the numerator
coefficients of a transfer function that determines one of the block’s
outputs. Enter a vector containing the denominator coefficients common
to the system’s transfer functions in the Denominator coefficient
field. In this case, the block’s input is a scalar and the block’s output
is a vector each of whose elements is an output of the system modeled
by the block.

2-675

Transfer Fcn

Initial conditions are preset to zero. If you need to specify initial
conditions, convert to state-space form using tf2ss and use the
State-Space block. The tf2ss utility provides the A, B, C, and D
matrices for the system. For more information, type help tf2ss or
consult the Control System Toolbox documentation.

Transfer Fcn Display

The numerator and denominator are displayed on the Transfer Fcn
block depending on how they are specified:

• If each is specified as an expression, a vector, or a variable enclosed in
parentheses, the icon shows the transfer function with the specified
coefficients and powers of s. If you specify a variable in parentheses,
the variable is evaluated. For example, if you specify Numerator as
[3,2,1] and Denominator as (den) where den is [7,5,3,1], the
block looks like this:

• If each is specified as a variable, the block shows the variable name
followed by (s). For example, if you specify Numerator as num and
Denominator as den, the block looks like this:

Specifying the Absolute Tolerance for the Block’s States

By default Simulink uses the absolute tolerance value specified in the
Configuration Parameters dialog box (see “Absolute tolerance”)
to solve the states of the Transfer Fcn block. If this value does not
provide sufficient error control, specify a more appropriate value in the

2-676

Transfer Fcn

Absolute tolerance field of the Transfer Fcn block’s dialog box. The
value that you specify is used to solve all the block’s states.

Data Type
Support

The Transfer Fcn block accepts and outputs signals of type double.

Parameters
and
Dialog
Box

Numerator coefficient
The row vector of numerator coefficients. A matrix with multiple
rows can be specified to generate multiple output. The default
is [1].

Denominator coefficient
The row vector of denominator coefficients. The default is [1 1].

2-677

Transfer Fcn

Absolute tolerance
Absolute tolerance used to solve the block’s states. You can enter
auto or a numeric value. If you enter auto, Simulink determines
the absolute tolerance (see “Specifying Variable-Step Solver Error
Tolerances”). If you enter a numeric value, Simulink uses the
specified value to solve the block’s states. Note that a numeric
value overrides the setting for the absolute tolerance in the
Configuration Parameters dialog box.

Characteristics Direct Feedthrough Only if the lengths of the Numerator
and Denominator parameters are
equal

Sample Time Continuous

Scalar Expansion No

States Length of Denominator -1

Dimensionalized Yes, in the sense that the block expands
scalar input into vector output when the
transfer function numerator is a matrix.
See the preceding block description.

Zero Crossing No

2-678

Transfer Fcn Direct Form II

Purpose Implement Direct Form II realization of transfer function

Library Additional Math & Discrete / Additional Discrete

Description The Transfer Fcn Direct Form II block implements a Direct Form
II realization of the transfer function specified by the Numerator
coefficients and the Denominator coefficients excluding lead
parameters. The block only supports single input-single output transfer
functions.

The block automatically selects the data types and scalings of the
output, the coefficients, and any temporary variables.

Data Type
Support

The Transfer Fcn Direct Form II block accepts signals of any data type
supported by Simulink, including fixed-point data types.

2-679

Transfer Fcn Direct Form II

Parameters
and
Dialog
Box

2-680

Transfer Fcn Direct Form II

Numerator coefficients
Specify the numerator coefficients.

Denominator coefficients excluding lead
Specify the denominator coefficients, excluding the leading
coefficient, which must be 1.0.

Initial condition
Set the initial condition.

Round toward
Rounding mode for the fixed-point output.

Saturate to max or min when overflows occur
If selected, fixed-point overflows saturate.

Characteristics Direct Feedthrough Yes

Scalar Expansion Yes, of initial conditions

See Also Transfer Fcn Direct Form II Time Varying

2-681

Transfer Fcn Direct Form II Time Varying

Purpose Implement time varying Direct Form II realization of transfer function

Library Additional Math & Discrete / Additional Discrete

Description The Transfer Fcn Direct Form II Time Varying block implements a
Direct Form II realization of the specified transfer function. The block
only supports single input-single output transfer functions.

The signal entering the input port labeled Den No Lead contains the
denominator coefficients of the transfer function. The full denominator
should have a leading coefficient of one, however it should be excluded
from the input signal. For example, a denominator of [1 -1.7 0.72]
would be represented by a signal with the value [-1.7 0.72]. The signal
entering the input port labeled Num contains the numerator coefficients.
The data types of the numerator and denominator coefficients can be
different, however, the length of the numerator vector and the full
denominator vector must be the same. Pad the numerator vector with
zeros, if needed.

The block automatically selects the data types and scalings of the
output, the coefficients, and any temporary variables.

Data Type
Support

The Transfer Fcn Direct Form II Time Varying block accepts signals of
any data type supported by Simulink, including fixed-point data types.

2-682

Transfer Fcn Direct Form II Time Varying

Parameters
and
Dialog
Box

Initial condition
Set the initial condition.

2-683

Transfer Fcn Direct Form II Time Varying

Round toward
Rounding mode for the fixed-point output.

Saturate to max or min when overflows occur
If selected, fixed-point overflows saturate.

Characteristics Direct Feedthrough Yes

Scalar Expansion Yes, of initial conditions

See Also Transfer Fcn Direct Form II

2-684

Transfer Fcn First Order

Purpose Implement discrete-time first order transfer function

Library Discrete

Description The Transfer Fcn First Order block implements a discrete-time first
order transfer function of the input. The transfer function has a unity
DC gain.

Data Type
Support

The Transfer Fcn First Order block accepts signals of any data type
supported by Simulink, including fixed-point data types.

Parameters
and
Dialog
Box

Pole (in Z plane)
Set the pole.

2-685

Transfer Fcn First Order

Initial condition for previous output
Set the initial condition for the previous output.

Round toward
Rounding mode for the fixed-point output.

Saturate to max or min when overflows occur
If selected, fixed-point overflows saturate.

Characteristics Direct Feedthrough Yes

Scalar Expansion Yes, of initial conditions

2-686

Transfer Fcn Lead or Lag

Purpose Implement discrete-time lead or lag compensator

Library Discrete

Description The Transfer Fcn Lead or Lag block implements a discrete-time
lead or lag compensator of the input. The instantaneous gain of the
compensator is one, and the DC gain is equal to (1-z)/(1-p), where z is
the zero and p is the pole of the compensator.

The block implements a lead compensator when 0 < z < p < 1, and
implements a lag compensator when 0 < p < z < 1.

Data Type
Support

The Transfer Fcn Lead or Lag block accepts signals of any data type
supported by Simulink, including fixed-point data types.

2-687

Transfer Fcn Lead or Lag

Parameters
and
Dialog
Box

Pole of compensator (in Z plane)
Set the pole.

Zero of compensator (in Z plane)
Set the zero.

Initial condition for previous output
Set the initial condition for the previous output.

2-688

Transfer Fcn Lead or Lag

Initial condition for previous input
Set the initial condition for the previous input.

Round toward
Rounding mode for the fixed-point output.

Saturate to max or min when overflows occur
If selected, fixed-point overflows saturate.

Characteristics Direct Feedthrough Yes

Scalar Expansion Yes, of initial conditions

2-689

Transfer Fcn Real Zero

Purpose Implement discrete-time transfer function that has real zero and no pole

Library Discrete

Description The Transfer Fcn Real Zero block implements a discrete-time transfer
function that has a real zero and effectively has no pole.

Data Type
Support

The Transfer Fcn Real Zero block accepts signals of any data type
supported by Simulink, including fixed-point data types.

Parameters
and
Dialog
Box

Zero (in Z plane)
Set the zero.

2-690

Transfer Fcn Real Zero

Initial condition for previous input
Set the initial condition for the previous input.

Round toward
Rounding mode for the fixed-point output.

Saturate to max or min when overflows occur
If selected, fixed-point overflows saturate.

Characteristics Direct Feedthrough Yes

Scalar Expansion Yes, of initial conditions

2-691

Transport Delay

Purpose Delay input by given amount of time

Library Continuous

Description The Transport Delay block delays the input by a specified amount of
time. It can be used to simulate a time delay.

At the start of the simulation, the block outputs the Initial output
parameter until the simulation time exceeds the Time delay
parameter, when the block begins generating the delayed input. The
Time delay parameter must be nonnegative.

The block stores input points and simulation times during a simulation
in a buffer whose initial size is defined by the Initial buffer size
parameter. If the number of points exceeds the buffer size, the block
allocates additional memory and Simulink displays a message after
the simulation that indicates the total buffer size needed. Because
allocating memory slows down the simulation, define this parameter
value carefully if simulation speed is an issue. For long time delays,
this block might use a large amount of memory, particularly for
dimensionalized input.

When output is required at a time that does not correspond to the
times of the stored input values, the block interpolates linearly
between points. When the delay is smaller than the step size, the block
extrapolates from the last output point, which can produce inaccurate
results. Because the block does not have direct feedthrough, it cannot
use the current input to calculate its output value. To illustrate this
point, consider a fixed-step simulation with a step size of 1 and the
current time at t = 5. If the delay is 0.5, the block needs to generate a
point at t = 4.5. Because the most recent stored time value is at t = 4,
the block performs forward extrapolation.

The Transport Delay block does not interpolate discrete signals.
Instead, it returns the discrete value at the required time.

This block differs from the Unit Delay block, which delays and holds the
output on sample hits only.

2-692

Transport Delay

Using linmod to linearize a model that contains a Transport Delay
block can be troublesome. For more information about ways to avoid
the problem, see "Linearizing Models" in the “Analyzing Simulation
Results” chapter of the Using Simulink documentation.

Data Type
Support

The Transport Delay block accepts and outputs real signals of type
double.

Parameters
and
Dialog
Box

2-693

Transport Delay

Time delay
The amount of simulation time that the input signal is delayed
before being propagated to the output. The value must be
nonnegative.

Initial output
Specifies the output of the block at simulation time 0.

Initial buffer size
The initial memory allocation for the number of points to store.

Use fixed buffer size
Specifies use of a fixed-size buffer to save input data from previous
time steps. The Initial buffer size parameter specifies the
buffer’s size. If the buffer is full, new data replaces data already
in the buffer. Simulink uses linear extrapolation to estimate the
output value if it is not in the buffer. This option can save memory
if the input data is linear. If the input is not linear, this option
may yield inaccurate results.

Note ERT or GRT code generation uses a fixed-size buffer even if
you do not select this check box.

Direct feedthrough of input during linearization
Causes the block to output its input during linearization and trim.
This sets the block’s mode to direct feedthrough.

Enabling this check box can cause a change in the ordering of
states in the model when using the functions linmod, dlinmod,
or trim. To extract this new state ordering, use the following
commands.

First compile the model using the following command, where
model is the name of the Simulink model.

[sizes, x0, x_str] = model([],[],[],'lincompile');

2-694

Transport Delay

Next, terminate the compilation with the following command.

model([],[],[],'term');

The output argument, x_str, which is a cell array of the states
in the Simulink model, contains the new state ordering. When
passing a vector of states as input to the linmod, dlinmod, or trim
functions, the state vector must use this new state ordering.

Pade order (for linearization)
The order of the Pade approximation for linearization routines.
The default value is 0, which results in a unity gain with no
dynamic states. Setting the order to a positive integer n adds n
states to your model, but results in a more accurate linear model
of the transport delay.

Characteristics Direct Feedthrough No

Sample Time Continuous

Scalar Expansion Yes, of input and all parameters except
Initial buffer size

Dimensionalized Yes

Zero Crossing No

2-695

Trigger

Purpose Add trigger port to subsystem or function-call model

Library Ports & Subsystems

Description Adding a Trigger block to a subsystem or a model allows its execution
to be triggered by an external signal. You can configure the Trigger
block to enable a change in the value of the external signal (described
below) to trigger execution of a subsystem once on each integration
step when the value of the signal that passes through the trigger port
changes in a specifiable way (see“Triggered Subsystems”). You can also
configure the Trigger block to accept a function-call trigger. This allows
a Function-Call Generator block or S-function to trigger execution of
a subsystem or model multiple times during a time step. A subsystem
or model can contain only one Trigger block. For more information, see
“Function-Call Models” and “Function-Call Subsystems”.

The Trigger type parameter allows you to choose the type of event that
triggers execution of the subsystem:

• rising triggers execution of the subsystem when the control signal
rises from a negative or zero value to a positive value (or zero if the
initial value is negative).

• falling triggers execution of the subsystem when the control signal
falls from a positive or a zero value to a negative value (or zero if the
initial value is positive).

• either triggers execution of the subsystem when the signal is either
rising or falling.

• function-call allows a Function-Call Generator or S-function to
control execution of the subsystem or model.

Note The Trigger type must be function-call for Trigger ports
at the root-level of a model. In other words, only function-call signals
can trigger execution of a model.

2-696

Trigger

You can output the trigger signal by selecting the Show output port
check box. Selecting this option allows the system to determine what
caused the trigger. The width of the signal is the width of the triggering
signal. The signal value is

• 1 for a signal that causes a rising trigger

• -1 for a signal that causes a falling trigger

• 2 for a function-call trigger

• 0 otherwise

Data Type
Support

The Trigger block accepts signals of any data type supported by
Simulink, including fixed-point data types.

For a discussion on the data types supported by Simulink, see“Data
Types Supported by Simulink” in the Simulink documentation.

2-697

Trigger

Parameters
and
Dialog
Box

Trigger type
The type of event that triggers execution of the subsystem.

States when enabling
This option is enabled only if you select function-call as the
block’s trigger type and the setting applies only if the function-call
subsystem is explicitly enabled and disabled. For example:

• The function-call subsystem resides inside of an enabled
subsystem. In this case, the function-call subsystem is enabled
and disabled along with the parent subsystem.

• The function-call initiator that controls the function-call
subsystem resides in an enabled subsystem. In this case, the

2-698

Trigger

function-call subsystem is enabled and disabled along with the
enabled subsystem containing the function-call initiator.

• The function-call initiator is a Stateflow event that is bound
to a particular state. See “Using Bind Actions to Control
Function-Call Subsystems” in the Stateflow documentation.

• The function-call initiator is an S-function that explicitly
enables and disables the function-call subsystem. See
ssEnableSystemWithTid for an example.

Selecting held (the default) causes Simulink to leave the states
at their current values.

Selecting reset for this option causes Simulink to reset the states.

Selecting inherit causes the trigger’s held/reset setting to be
the same as that of the function-call initiator’s parent subsystem,
for example, an enabled subsystem, or the model’s root system if
the function-call initiator is at the model’s root level. If the parent
of the initiator is the model root, the inherited setting is held. If
the trigger has multiple initiators and its States when enabling
setting is inherit, the parents of all initiators must have the
same held/reset setting, i.e., either all held or all reset.

Show output port
If selected and this block is in a subsystem, Simulink displays the
Trigger block output port and outputs the trigger signal.

Note This option is disabled for function-call Trigger blocks
residing at the root-level of a model.

Output data type
Specifies the data type (double or int8) of the trigger output. If
you select auto, Simulink sets the data type to be the same as

2-699

Trigger

that of the port to which the output is connected. If the port’s data
type is not double or int8, Simulink signals an error.

Note The Trigger block ignores the Data Type Override setting
of the Fixed-Point Settings interface.

Enable zero crossing detection
Select to enable zero crossing detection. For more information, see
“Zero-Crossing Detection” in the “How Simulink Works” chapter
of the Using Simulink documentation.

Sample time type
This parameter is active only when Trigger type is set to
function-call. Its value may be triggered or periodic. Select
periodic if the caller of the parent function-call subsystem, for
example, a Stateflow chart, calls the subsystem once per time
step when the subsystem is active (enabled). Otherwise, select
triggered. See "Using Bind Actions to Control Function-Call
Subsystems" in Using Stateflow and the "Function-Call
Subsystems" section of Writing S-functions for more information.

Sample time
This parameter is active only when the Trigger type is
function-call and the Sample time type is periodic. Set
this parameter to the sample time at which you expect the
function-call subsystem that contains this block to be called.
See “Specifying Sample Time” in the online documentation for
information on how to the value of this parameter. Simulink
displays an error if the actual rate at which the subsystem is
called differs from the rate that this parameter specifies.

2-700

Trigger

Characteristics Sample Time Determined by the sample time
parameter if the trigger type is
function-call and the sample time type
is periodic; otherwise, by the signal at
the trigger port.

Dimensionalized Yes

Zero Crossing Yes, if enabled

2-701

Trigger-Based Linearization

Purpose Generate linear models in base workspace when triggered

Library Model-Wide Utilities

Description When triggered, this block calls linmod or dlinmod to create a linear
model for the system at the current operating point. No trimming
is performed. The linear model is stored in the base workspace as a
structure, along with information about the operating point at which
the snapshot was taken. Multiple snapshots are appended to form an
array of structures.

The name of the structure used to save the snapshots is the name of
the model appended by _Trigger_Based_Linearization, for example,
vdp_Trigger_Based_Linearization. The structure has the follow
fields:

Field Description

a The A matrix of the linearization

b The B matrix of the linearization

c The C matrix of the linearization

d The D matrix of the linearization

StateName Names of the model’s states

OutputName Names of the model’s output ports

InputName Names of the model’s input ports

OperPoint A structure that specifies the operating point of
the linearization. The structure specifies the
value of the model’s states (OperPoint.x) and
inputs (OperPoint.u) at the operating point time
(OperPoint.t).

Ts The sample time of the linearization for a
discrete linearization

2-702

Trigger-Based Linearization

Use the Time-Based Linearization block to generate linear models at
predetermined times.

You can use state and simulation time logging to extract the model
states at operating points. For example, suppose that you want to
get the states of the vdp demo model when the signal x1 triggers the
Trigger-Based Linearization block on a rising edge.

1 Open the model and drag an instance of this block from the
Model-Wide Utilities library and drop the instance into the model.

2 Connect the block’s trigger port to the signal labeled x1.

3 Open the model’s Configuration Parameters dialog box.

4 Select the Data Import/Export pane.

5 Check States and Time on the Save to Workspace control panel

6 Select OK to confirm the selections and close the dialog box.

7 Simulate the model.

At the end of the simulation, the following variables appear in the
MATLAB workspace: vdp_Trigger_Based_Linearization, tout,
and xout.

8 Get the index to the first operating point time by entering the
following at the MATLAB command line:

ind1 = find(vdp_Trigger_Based_Linearization(1).OperPoint.t==tout);

9 Get the state vector at this operating point.

x1 = xout(ind1,:);

Data Type
Support

The trigger port accepts signals of any data type supported by Simulink.

2-703

Trigger-Based Linearization

Parameters
and
Dialog
Box

Trigger type
Type of event on the trigger input signal that triggers generation
of a linear model. See the Trigger type parameter of the Trigger
block for an explanation of the various trigger types that you can
select.

Sample time (of linearized model)
Specify a sample time to create a discrete-time linearization of the
model (see “Discrete-Time System Linearization” on page 3-6).

Characteristics Sample Time Specified in the Sample time
parameter

Dimensionalized No

See Also Time-Based Linearization

2-704

Triggered Subsystem

Purpose Represent subsystem whose execution is triggered by external input

Library Ports & Subsystems

Description This block is a Subsystem block that is preconfigured to serve as
the starting point for creating a triggered subsystem (see “Triggered
Subsystems”).

2-705

Trigonometric Function

Purpose Perform trigonometric function

Library Math Operations

Description The Trigonometric Function block performs numerous common
trigonometric functions.

You can select one of these functions from the Function list: sin, cos,
tan, asin, acos, atan, atan2, sinh, cosh, tanh, asinh, acosh, and
atanh. The block output is the result of the operation of the function on
the input or inputs.

The name of the function appears on the block. If you select the atan2
function, the block displays two inputs. The first (upper) input is the
y-axis or complex part of the function argument. The second (lower)
input is the x-axis or real part of the function argument.

Use the Trigonometric Function block instead of the Fcn block when
you want dimensionalized output, because the Fcn block can produce
only scalar output.

Data Type
Support

The Trigonometric Function block accepts and outputs real or complex
signals of type double.

2-706

Trigonometric Function

Parameters
and
Dialog
Box

Function
The trigonometric function.

Output signal type
Type of signal (complex or real) to output.

Sample time (-1 for inherited)
Specify the time interval between samples. To inherit the sample
time, set this parameter to -1. See “Specifying Sample Time” in
the online documentation for more information.

Characteristics Direct Feedthrough Yes

Sample Time Inherited from driving block

Scalar Expansion Yes, of the input when the function
requires two inputs

2-707

Trigonometric Function

Dimensionalized Yes

Zero Crossing No

2-708

Unary Minus

Purpose Negate input

Library Math Operations

Description The Unary Minus block negates the input. The block accepts only
signed data types.

For signed data types, you cannot accurately negate the most negative
value since the result is not representable by the data type. In this
case, the behavior of the block is controlled by the Saturate to max or
min when overflows occur check box. If selected, the most negative
value of the data type wraps to the most positive value. If not selected,
the operation has no effect. If an overflow occurs, then a warning is
returned to the MATLAB command line.

For example, suppose the block input is an 8-bit signed integer. The
range of this data type is from -128 to 127, and the negation of -128 is
not representable. If you select the Saturate to max or min when
overflows occur check box, then the negation of -128 is 127. If it is not
selected, then the negation of -128 remains at -128.

Data Type
Support

The Unary Minus block accepts signals of any data type supported by
Simulink except unsigned integers, including fixed-point data types.

Parameters
and
Dialog
Box

2-709

Unary Minus

Saturate to max or min when overflows occur
If selected, fixed-point overflows saturate.

Characteristics Direct Feedthrough No

Scalar Expansion Yes, of input or initial conditions

2-710

Uniform Random Number

Purpose Generate uniformly distributed random numbers

Library Sources

Description The Uniform Random Number block generates uniformly distributed
random numbers over a specifiable interval with a specifiable starting
seed. The seed is reset each time a simulation starts. The generated
sequence is repeatable and can be produced by any Uniform Random
Number block with the same seed and parameters. To generate
normally distributed random numbers, use the Random Number block.

Avoid integrating a random signal, because solvers are meant to
integrate relatively smooth signals. Instead, use the Band-Limited
White Noise block.

The block’s numeric parameters must be of the same dimensions
after scalar expansion. If the Interpret vector parameters as
1-D option is off, the block outputs a signal of the same dimensions
and dimensionality as the parameters. If the Interpret vector
parameters as 1-D option is on and the numeric parameters are row
or column vectors (i.e., single row or column 2-D arrays), the block
outputs a vector (1-D array) signal.

Data Type
Support

The Uniform Random Number block outputs a real signal of type
double.

2-711

Uniform Random Number

Parameters
and
Dialog
Box

Opening this dialog box causes a running simulation to pause.
See "Changing Source Block Parameters" in the online Simulink
documentation for details.

Minimum
The minimum of the interval. The default is -1.

Maximum
The maximum of the interval. The default is 1.

2-712

Uniform Random Number

Initial seed
The starting seed for the random number generator. The default
is 0.

Sample time
The sample period. The default is 0. See “Specifying Sample
Time” in the online documentation for more information.

Interpret vector parameters as 1-D
If selected, column or row matrix values for the Uniform
Random Number block’s numeric parameters result in a vector
output signal; otherwise, the block outputs a signal of the same
dimensionality as the parameters. If this option is not selected,
the block always outputs a signal of the same dimensionality as
the block’s numeric parameters. See “Determining the Output
Dimensions of Source Blocks” in the “Working with Signals”
chapter of the Using Simulink documentation.

Characteristics Sample Time Specified in the Sample time
parameter

Scalar Expansion No

Dimensionalized Yes

Zero Crossing No

2-713

Unit Delay

Purpose Delay signal one sample period

Library Discrete

Description The Unit Delay block delays its input by the specified sample period.
This block is equivalent to the z-1 discrete-time operator. The block
accepts one input and generates one output, which can be either both
scalar or both vector. If the input is a vector, all elements of the vector
are delayed by the same sample period.

You specify the block output for the first sampling period with the
Initial conditions parameter. Careful selection of this parameter can
minimize unwanted output behavior. The time between samples is
specified with the Sample time parameter. A setting of -1 means the
sample time is inherited.

Note The Unit Delay block accepts continuous signals. When it has
a continuous sample time, the block is equivalent to the Simulink
Memory block.

The Unit Delay block provides a mechanism for discretizing one or more
signals in time.

Note Do not use the Unit Delay block to create a slow-to-fast transition
between blocks operating at different sample rates. Instead, use the
Rate Transition block.

Data Type
Support

The Unit Delay block accepts real or complex signals of any data type
supported by Simulink, including fixed-point data types. If the data type
of the input signal is user-defined, the initial condition must be zero.

For a discussion on the data types supported by Simulink, see “Data
Types Supported by Simulink” in the Simulink documentation.

2-714

Unit Delay

Parameters
and
Dialog
Box

Initial conditions
The output of the simulation for the first sampling period, during
which the output of the Unit Delay block is otherwise undefined.
The Initial conditions parameter is converted from a double to
the input data type offline using round-to-nearest and saturation.

Sample time (-1 for inherited)
Specify the time interval between samples. To inherit the sample
time, set this parameter to -1. See “Specifying Sample Time” in
the online documentation for more information.

The State Properties pane of this block pertains to code generation
and has no effect on model simulation. See “Block States: Storing
and Interfacing” in the Real-Time Workshop documentation for more
information.

2-715

Unit Delay

Characteristics Direct Feedthrough No

Sample Time Specified in the Sample time
parameter

Scalar Expansion Yes, of input or initial conditions

States Yes--inherited from driving block for
nonfixed-point data types.

Dimensionalized Yes

Zero Crossing No

See Also Unit Delay Enabled, Unit Delay Enabled External IC, Unit Delay
Enabled Resettable, Unit Delay Enabled Resettable External IC, Unit
Delay External IC, Unit Delay Resettable, Unit Delay Resettable
External IC, Unit Delay With Preview Enabled, Unit Delay With
Preview Enabled Resettable, Unit Delay With Preview Enabled
Resettable External RV, Unit Delay With Preview Resettable, Unit
Delay With Preview Resettable External RV

2-716

Unit Delay Enabled

Purpose Delay signal one sample period, if external enable signal is on

Library Additional Math & Discrete / Additional Discrete

Description The Unit Delay Enabled block delays a signal by one sample period
when the external enable signal E is on. While the enable is off, the block
is disabled. It holds the current state at the same value and outputs
that value. The enable signal is on when E is not 0, and off when E is 0.

You specify the block output for the first sampling period with the value
of the Initial condition parameter.

The output data type is the same as the input u data type. The data
type of the input u and the enable E can be any data type.

You input the sample time with the Sample time parameter. A setting
of -1 means the Sample time is inherited.

Data Type
Support

The Unit Delay Enabled block accepts signals of any data type
supported by Simulink, including fixed-point data types.

2-717

Unit Delay Enabled

Parameters
and
Dialog
Box

Initial condition
Initial condition.

Sample time
Specify the time interval between samples. To inherit the sample
time, set this parameter to -1. See “Specifying Sample Time” in
the online documentation for more information.

Characteristics Direct Feedthrough No

Sample Time Specified in the Sample time
parameter

Scalar Expansion Yes

See Also Unit Delay, Unit Delay Enabled External IC, Unit Delay Enabled
Resettable, Unit Delay Enabled Resettable External IC, Unit Delay

2-718

Unit Delay Enabled

External IC, Unit Delay Resettable, Unit Delay Resettable External IC,
Unit Delay With Preview Enabled, Unit Delay With Preview Enabled
Resettable, Unit Delay With Preview Enabled Resettable External
RV, Unit Delay With Preview Resettable, Unit Delay With Preview
Resettable External RV

2-719

Unit Delay Enabled External IC

Purpose Delay signal one sample period, if external enable signal is on, with
external initial condition

Library Additional Math & Discrete / Additional Discrete

Description The Unit Delay Enabled External IC block delays a signal by one
sample period when the enable signal E is on. While the enable is off,
the block holds the current state at the same value and outputs that
value. The enable E is on when E is not 0, and off when E is 0.

The initial condition of this block is given by the signal IC.

The input u and IC data types must be the same, and are any data
type. The output data type is the same as u and IC. The enable E is
any data type.

You specify the time between samples with the Sample time
parameter. A setting of -1 means the Sample time is inherited.

Data Type
Support

The Unit Delay Enabled External IC block accepts signals of any data
type supported by Simulink, including fixed-point data types.

Parameters
and
Dialog
Box

2-720

Unit Delay Enabled External IC

Sample time
Specify the time interval between samples. To inherit the sample
time, set this parameter to -1. See “Specifying Sample Time” in
the online documentation for more information.

Characteristics Direct Feedthrough Yes, of the reset input port

No, of the enable input port

Yes, of the external IC port

Sample Time Specified in the Sample time
parameter

Scalar Expansion Yes

See Also Unit Delay, Unit Delay Enabled, Unit Delay Enabled Resettable, Unit
Delay Enabled Resettable External IC, Unit Delay External IC, Unit
Delay Resettable, Unit Delay Resettable External IC, Unit Delay With
Preview Enabled, Unit Delay With Preview Enabled Resettable, Unit
Delay With Preview Enabled Resettable External RV, Unit Delay With
Preview Resettable, Unit Delay With Preview Resettable External RV

2-721

Unit Delay Enabled Resettable

Purpose Delay signal one sample period, if external enable signal is on, with
external Boolean reset

Library Additional Math & Discrete / Additional Discrete

Description The Unit Delay Enabled Resettable block combines the features of the
Unit Delay Enabled and Unit Delay Resettable blocks.

The block can reset its state based on an external reset signal R. When
the enable signal E is on and the reset signal R is false, the block outputs
the input signal delayed by one sample period.

When the enable signal E is on and the reset signal R is true, the block
resets the current state to the initial condition, specified by the Initial
condition parameter, and outputs that state delayed by one sample
period.

When the enable signal is off, the block is disabled, and the state and
output do not change except for resets. The enable signal is on when E
is not 0, and off when E is 0.

You specify the time between samples with the Sample time
parameter. A setting of -1 means the Sample time is inherited.

Data Type
Support

The Unit Delay Enabled Resettable block accepts signals of any data
type supported by Simulink, including fixed-point data types.

2-722

Unit Delay Enabled Resettable

Parameters
and
Dialog
Box

Initial condition
The initial output of the simulation.

Sample time
Specify the time interval between samples. To inherit the sample
time, set this parameter to -1. See “Specifying Sample Time” in
the online documentation for more information.

2-723

Unit Delay Enabled Resettable

Characteristics Direct Feedthrough No, of the input port

No, of the enable port

Yes, of the reset port

Sample Time Specified in the Sample time
parameter

Scalar Expansion Yes

See Also Unit Delay, Unit Delay Enabled, Unit Delay Enabled External IC, Unit
Delay Enabled Resettable External IC, Unit Delay External IC, Unit
Delay Resettable, Unit Delay Resettable External IC, Unit Delay With
Preview Enabled, Unit Delay With Preview Enabled Resettable, Unit
Delay With Preview Enabled Resettable External RV, Unit Delay With
Preview Resettable, Unit Delay With Preview Resettable External RV

2-724

Unit Delay Enabled Resettable External IC

Purpose Delay signal one sample period, if external enable signal is on, with
external Boolean reset and initial condition

Library Additional Math & Discrete / Additional Discrete

Description The Unit Delay Enabled Resettable External IC block combines the
features of the Unit Delay Enabled, Unit Delay External IC, and Unit
Delay Resettable blocks.

The block can reset its state based on an external reset signal R. When
the enable signal E is on and the reset signal R is false, the block outputs
the input signal delayed by one sample period.

When the enable signal E is on and the reset signal R is true, the block
resets the current state to the initial condition given by the signal IC,
and outputs that state delayed by one sample period.

When the enable signal is off, the block is disabled, and the state and
output do not change except for resets. The enable signal is on when E
is not 0, and off when E is 0.

The output data type is the same as the input u and the initial
condition IC data type, which can be any data type, but must be the
same. The enable E and reset R can be any data type.

You specify the time between samples with the Sample time
parameter. A setting of -1 means the Sample time is inherited.

Data Type
Support

The Unit Delay Enabled Resettable External IC block accepts signals of
any data type supported by Simulink, including fixed-point data types.

2-725

Unit Delay Enabled Resettable External IC

Parameters
and
Dialog
Box

Sample time
Specify the time interval between samples. To inherit the sample
time, set this parameter to -1. See “Specifying Sample Time” in
the online documentation for more information.

Characteristics Direct Feedthrough No, of the input port

No, of the enable port

Yes, of the enable port

Yes, of the external IC port

Sample Time Specified in the Sample time
parameter

Scalar Expansion Yes

See Also Unit Delay, Unit Delay Enabled, Unit Delay Enabled External IC,
Unit Delay Enabled Resettable, Unit Delay External IC, Unit Delay

2-726

Unit Delay Enabled Resettable External IC

Resettable, Unit Delay Resettable External IC, Unit Delay With
Preview Enabled, Unit Delay With Preview Enabled Resettable, Unit
Delay With Preview Enabled Resettable External RV, Unit Delay With
Preview Resettable, Unit Delay With Preview Resettable External RV

2-727

Unit Delay External IC

Purpose Delay signal one sample period, with external initial condition

Library Additional Math & Discrete / Additional Discrete

Description The Unit Delay External IC block delays its input by one sample period.
This block is equivalent to the z-1 discrete-time operator. The block
accepts one input and generates one output, both of which can be scalar
or vector. If the input is a vector, all elements of the vector are delayed
by the same sample period.

The block’s output for the first sample period is equal to the signal IC.

The input u and initial condition IC data types must be the same, and
are any data type.

You specify the time between samples with the Sample time parameter.
A setting of -1 means the Sample time is inherited.

Data Type
Support

The Unit Delay External IC block accepts signals of any data type
supported by Simulink, including fixed-point data types.

Parameters
and
Dialog
Box

2-728

Unit Delay External IC

Sample time
Specify the time interval between samples. To inherit the sample
time, set this parameter to -1. See “Specifying Sample Time” in
the online documentation for more information.

Characteristics Direct Feedthrough No, of the input port

Yes, of the external IC port

Sample Time Specified in the Sample time
parameter

Scalar Expansion Yes

See Also Unit Delay, Unit Delay Enabled, Unit Delay Enabled External IC, Unit
Delay Enabled Resettable, Unit Delay Enabled Resettable External IC,
Unit Delay Resettable, Unit Delay Resettable External IC, Unit Delay
With Preview Enabled, Unit Delay With Preview Enabled Resettable,
Unit Delay With Preview Enabled Resettable External RV, Unit Delay
With Preview Resettable, Unit Delay With Preview Resettable External
RV

2-729

Unit Delay Resettable

Purpose Delay signal one sample period, with external Boolean reset

Library Additional Math & Discrete / Additional Discrete

Description The Unit Delay Resettable block delays a signal one sample period.

The block can reset its state based on an external reset signal R. The
block has two input ports, one for the input signal u and the other for
the external reset signal R. When the reset signal is false, the block
outputs the input signal delayed by one time step. When the reset
signal is true, the block resets the current state to the initial condition,
specified by the Initial condition parameter, and outputs that state
delayed by one time step.

You specify the time between samples with the Sample time
parameter. A setting of -1 means the Sample time is inherited.

Data Type
Support

The Unit Delay Resettable block accepts signals of any data type
supported by Simulink, including fixed-point data types.

Parameters
and
Dialog
Box

2-730

Unit Delay Resettable

Initial condition
Specify the initial output of the simulation.

Sample time
Specify the time interval between samples. To inherit the sample
time, set this parameter to -1. See “Specifying Sample Time” in
the online documentation for more information.

Characteristics Direct Feedthrough No, of the input port

Yes, of the reset port

Sample Time Specified in the Sample time
parameter

Scalar Expansion Yes

See Also Unit Delay, Unit Delay Enabled, Unit Delay Enabled External IC, Unit
Delay Enabled Resettable, Unit Delay Enabled Resettable External IC,
Unit Delay External IC, Unit Delay Resettable External IC, Unit Delay
With Preview Enabled, Unit Delay With Preview Enabled Resettable,
Unit Delay With Preview Enabled Resettable External RV, Unit Delay
With Preview Resettable, Unit Delay With Preview Resettable External
RV

2-731

Unit Delay Resettable External IC

Purpose Delay signal one sample period, with external Boolean reset and initial
condition

Library Additional Math & Discrete / Additional Discrete

Description The Unit Delay Resettable External IC block delays a signal one sample
period.

The block can reset its state based on an external reset signal R. The
block has two input ports, one for the input signal u and the other for
the reset signal R. When the reset signal is false, the block outputs the
input signal delayed by one time step. When the reset signal is true, the
block resets the current state to the initial condition given by the signal
IC and outputs that state delayed by one time step.

The input u and initial condition IC must be the same data type, but
can be any data type. The output is the same data type as the inputs u
and IC. The reset R can be any data type.

You specify the time between samples with the Sample time
parameter. A setting of -1 means the Sample time is inherited.

Data Type
Support

The Unit Delay Resettable External IC block accepts signals of any data
type supported by Simulink, including fixed-point data types.

2-732

Unit Delay Resettable External IC

Parameters
and
Dialog
Box

Sample time
Specify the time interval between samples. To inherit the sample
time, set this parameter to -1. See “Specifying Sample Time” in
the online documentation for more information.

Characteristics Direct Feedthrough No, of the input port

Yes, of the reset port

Yes, of the external IC port

Sample Time Specified in the Sample time
parameter

Scalar Expansion Yes

See Also Unit Delay, Unit Delay Enabled, Unit Delay Enabled External IC, Unit
Delay Enabled Resettable, Unit Delay Enabled Resettable External
IC, Unit Delay External IC, Unit Delay Resettable, Unit Delay With
Preview Enabled, Unit Delay With Preview Enabled Resettable, Unit

2-733

Unit Delay Resettable External IC

Delay With Preview Enabled Resettable External RV, Unit Delay With
Preview Resettable, Unit Delay With Preview Resettable External RV

2-734

Unit Delay With Preview Enabled

Purpose Output signal and signal delayed by one sample period, if external
enable signal is on

Library Additional Math & Discrete / Additional Discrete

Description The Unit Delay With Preview Enabled block supports calculations that
have feedback and depend on the current input.

The block has two output ports. When the external enable signal E is
on, the upper port outputs the signal and the lower port outputs the
signal delayed by one sample period. The block has two input ports, one
for the input signal u and the other for the enable signal E.

When the enable signal E is off, the block is disabled, and the state and
output values do not change, except for resets. The enable signal is on
when E is not 0, and off when E is 0.

You specify the block output for the first sampling period with the value
of the Initial condition parameter.

The input u can be any data type. The output is the same data type
as the input u.

You specify the time between samples with the Sample time
parameter. A setting of -1 means the Sample time is inherited.

Data Type
Support

The Unit Delay With Preview Enabled block accepts signals of any data
type supported by Simulink, including fixed-point data types.

2-735

Unit Delay With Preview Enabled

Parameters
and
Dialog
Box

Initial condition
Specify the initial condition.

Sample time
Specify the time interval between samples. To inherit the sample
time, set this parameter to -1. See “Specifying Sample Time” in
the online documentation for more information.

2-736

Unit Delay With Preview Enabled

Characteristics Direct Feedthrough Yes, to upper output port

No, to lower output port

Sample Time Specified in the Sample time
parameter

Scalar Expansion Yes

See Also Unit Delay, Unit Delay Enabled, Unit Delay Enabled External IC, Unit
Delay Enabled Resettable, Unit Delay Enabled Resettable External IC,
Unit Delay External IC, Unit Delay Resettable, Unit Delay Resettable
External IC, Unit Delay With Preview Enabled Resettable, Unit Delay
With Preview Enabled Resettable External RV, Unit Delay With
Preview Resettable, Unit Delay With Preview Resettable External RV

2-737

Unit Delay With Preview Enabled Resettable

Purpose Output signal and signal delayed by one sample period, if external
enable signal is on, with external Boolean reset

Library Additional Math & Discrete / Additional Discrete

Description The Unit Delay With Preview Enabled Resettable block supports
calculations that have feedback and depend on the current input.

The block can reset its state based on an external reset signal R. The
block has two output ports. When the external enable signal E is on and
the reset R is false, the upper port outputs the signal and the lower port
outputs the signal delayed by one sample period. The block has three
input ports, one for the input signal u, one for the enable signal E, and
one for the reset signal R.

When the enable signal E is on and the reset R is true, the block resets
the current state to the initial condition given by the Initial condition
parameter. The block outputs that state delayed by one sample time
through the lower output port, and outputs the state without a delay
through the upper output port.

When the Enable signal is off, the block is disabled, and the state and
output values do not change, except for resets. The enable signal is on
when E is not 0, and off when E is 0.

The input u can be any data type. The output is the same data type as
the input u. The reset R can be any data type.

You specify the time between samples with the Sample time
parameter. A setting of -1 means the Sample time is inherited.

Data Type
Support

The Unit Delay With Preview Enabled Resettable block accepts signals
of any data type supported by Simulink, including fixed-point data
types.

2-738

Unit Delay With Preview Enabled Resettable

Parameters
and
Dialog
Box

Initial condition
Specify the initial condition.

2-739

Unit Delay With Preview Enabled Resettable

Sample time
Specify the time interval between samples. To inherit the sample
time, set this parameter to -1. See “Specifying Sample Time” in
the online documentation for more information.

Characteristics Direct Feedthrough Yes, to upper output port

No, to lower output port

Sample Time Specified in the Sample time
parameter

Scalar Expansion Yes

See Also Unit Delay, Unit Delay Enabled, Unit Delay Enabled External IC, Unit
Delay Enabled Resettable, Unit Delay Enabled Resettable External IC,
Unit Delay External IC, Unit Delay Resettable, Unit Delay Resettable
External IC, Unit Delay With Preview Enabled, Unit Delay With
Preview Enabled Resettable External RV, Unit Delay With Preview
Resettable, Unit Delay With Preview Resettable External RV

2-740

Unit Delay With Preview Enabled Resettable External
RV

Purpose Output signal and signal delayed by one sample period, if external
enable signal is on, with external RV reset

Library Additional Math & Discrete / Additional Discrete

Description The Unit Delay With Preview Enabled Resettable External RV block
supports calculations that have feedback and depend on the current
input.

The block can reset its state based on an external reset signal R. The
block has two output ports. When the external enable signal E is on and
the reset R is false, the upper port outputs the signal and the lower port
outputs the signal delayed by one sample period. The block has four
input ports, one for the input signal u, one for the enable signal E, one
for the reset signal R, and one for the external reset signal, RV.

When the enable signal E is on and the reset R is true, the upper output
signal is forced to equal the external reset signal RV. The lower output
signal is not affected until one time step later, at which time it is equal
to the external reset signal RV at the previous time step. The block uses
the internal Initial condition only when the model starts or when a
parent enabled subsystem is used. The internal Initial condition
only affects the lower output signal. The first output is only affected
through feedback.

When the Enable signal is off, the block is disabled, and the state and
output values do not change, except for resets. The enable signal is on
when E is not 0, and off when E is 0.

The input u can be any data type. The output is the same data type as
the input u. The reset R can be any data type.

You specify the time between samples with the Sample time
parameter. A setting of -1 means the Sample time is inherited.

Data Type
Support

The Unit Delay With Preview Enabled Resettable External RV block
accepts signals of any data type supported by Simulink, including
fixed-point data types.

2-741

Unit Delay With Preview Enabled Resettable External RV

Parameters
and
Dialog
Box

Initial condition
Specify the initial condition.

2-742

Unit Delay With Preview Enabled Resettable External
RV

Sample time
Specify the time interval between samples. To inherit the sample
time, set this parameter to -1. See “Specifying Sample Time” in
the online documentation for more information.

Characteristics Direct Feedthrough Yes, to upper output port

No, to lower output port

Sample Time Specified in the Sample time
parameter

Scalar Expansion Yes

See Also Unit Delay, Unit Delay Enabled, Unit Delay Enabled External IC, Unit
Delay Enabled Resettable, Unit Delay Enabled Resettable External IC,
Unit Delay External IC, Unit Delay Resettable, Unit Delay Resettable
External IC, Unit Delay With Preview Enabled, Unit Delay With
Preview Enabled Resettable, Unit Delay With Preview Resettable, Unit
Delay With Preview Resettable External RV

2-743

Unit Delay With Preview Resettable

Purpose Output signal and signal delayed by one sample period, with external
Boolean reset

Library Additional Math & Discrete / Additional Discrete

Description The Unit Delay With Preview Resettable block supports calculations
that have feedback and depend on the current input.

The block can reset its state based on an external reset signal R. The
block has two output ports. When the reset R is false, the upper port
outputs the signal and the lower port outputs the signal delayed by
one sample period.

When the reset R is true, the block resets the current state to the initial
condition given by the Initial condition parameter. The block outputs
that state delayed by one sample time through the lower output port,
and outputs the state without a delay through the upper output port.

The input u can be any data type. The output is the same data type as
the input u. The reset R can be any data type.

You specify the time between samples with the Sample time
parameter. A setting of -1 means the Sample time is inherited.

Data Type
Support

The Unit Delay With Preview Resettable block accepts signals of any
data type supported by Simulink, including fixed-point data types.

2-744

Unit Delay With Preview Resettable

Parameters
and
Dialog
Box

Initial condition
Specify the initial condition.

Sample time
Specify the time interval between samples. To inherit the sample
time, set this parameter to -1. See “Specifying Sample Time” in
the online documentation for more information.

2-745

Unit Delay With Preview Resettable

Characteristics Direct Feedthrough Yes, to upper output port

No, to lower output port

Sample Time Specified in the Sample time
parameter

Scalar Expansion Yes

See Also Unit Delay, Unit Delay Enabled, Unit Delay Enabled External IC,
Unit Delay Enabled Resettable, Unit Delay Enabled Resettable
External IC, Unit Delay External IC, Unit Delay Resettable, Unit Delay
Resettable External IC, Unit Delay With Preview Enabled, Unit Delay
With Preview Enabled Resettable, Unit Delay With Preview Enabled
Resettable External RV, Unit Delay With Preview Resettable External
RV

2-746

Unit Delay With Preview Resettable External RV

Purpose Output signal and signal delayed by one sample period, with external
RV reset

Library Additional Math & Discrete / Additional Discrete

Description The Unit Delay With Preview Resettable External RV block supports
calculations that have feedback and depend on the current input.

The block can reset its state based on an external reset signal R. The
block has two output ports. When the external reset R is false, the upper
port outputs the signal and the lower port outputs the signal delayed by
one sample period.

When the external reset R is true, the upper output signal is forced
to equal the external reset signal RV. The lower output signal is not
affected until one time step later, at which time it is equal to the external
reset signal RV at the previous time step. The block uses the internal
Initial condition only when the model starts or when a parent enabled
subsystem is used. The internal Initial condition only affects the
lower output signal. The first output is only affected through feedback.

The input u can be any data type. The output is the same data type as
the input u. The reset R can be any data type.

You specify the time between samples with the Sample time
parameter. A setting of -1 means the Sample time is inherited.

Data Type
Support

The Unit Delay With Preview Resettable External RV block accepts
signals of any data type supported by Simulink, including fixed-point
data types.

2-747

Unit Delay With Preview Resettable External RV

Parameters
and
Dialog
Box

Initial condition
Specify the initial condition.

Sample time
Specify the time interval between samples. To inherit the sample
time, set this parameter to -1. See “Specifying Sample Time” in
the online documentation for more information.

2-748

Unit Delay With Preview Resettable External RV

Characteristics Direct Feedthrough Yes, to upper output port

No, to lower output port

Sample Time Specified in the Sample time
parameter

Scalar Expansion Yes

See Also Unit Delay, Unit Delay Enabled, Unit Delay Enabled External IC,
Unit Delay Enabled Resettable, Unit Delay Enabled Resettable
External IC, Unit Delay External IC, Unit Delay Resettable, Unit Delay
Resettable External IC, Unit Delay With Preview Enabled, Unit Delay
With Preview Enabled Resettable, Unit Delay With Preview Enabled
Resettable External RV, Unit Delay With Preview Resettable

2-749

Variable Time Delay, Variable Transport Delay

Purpose Delay input by variable amount of time

Library Continuous

Description The Variable Transport Delay and Variable Time Delay appear as two
blocks in the Simulink block library. However, they are actually the
same built-in Simulink block with different settings of a Select delay
type parameter. This parameter allows you to specify that the block
operate in either of the following modes.

Variable Time Delay

In this mode, the block has a data (top, or left) input a time delay
(bottom, or right) input, and a data output. The block’s output at the
current time step equals the value of its data input at a previous time
equal to the current simulation time minus a delay time specified by the
block’s time delay input.

y t u t t u t t() () (())= − = −0 τ

u(t)

τ(t)
y(t) = u(t − τ(t))

To

Variable
Time Delay

−C−

−C−

The block’s Maximum delay parameter defines the largest value the
time delay input can have. The block clips values of the delay that
exceed this value. The Maximum delay must be greater than or equal
to zero. If the time delay becomes negative, the block clips it to zero and
issues a warning message.

During the simulation, the block stores time and input value pairs in
an internal buffer. At the start of the simulation, the block outputs
the value of the Initial output parameter until the simulation time
exceeds the time delay input. Then, at each simulation step, the
block outputs the signal at the time that corresponds to the current
simulation time minus the delay time.

2-750

Variable Time Delay, Variable Transport Delay

When output is required at a time that does not correspond to the times
of the stored input values and the solver is a continuous solver, the block
interpolates linearly between points. If the time delay is smaller than
the step size, the block extrapolates an output point from a previous
point. For example, consider a fixed-step simulation with a step size of
1 and the current time at t = 5. If the delay is 0.5, the block needs to
generate a point at t = 4.5. Because the most recent stored time value is
at t = 4, the block extrapolates the input at 4.5 from the input at 4 and
uses the extrapolated value as its output at t = 5.

Extrapolating forward from the previous time step can produce a less
accurate result than extrapolating back from the current time step.
However, the block cannot use the current input to calculate its output
value because the input port does not have direct feedthrough.

If the model specifies a discrete solver, the block does not interpolate
between time steps. Instead, it returns the nearest stored value that
precedes the required value.

Variable Transport Delay

In this mode, the block’s output at the current time step is equal to
the value of its data (top, or left) input at an earlier time equal to the
current time minus a transportation delay

y t u t t td() (())= −

Simulink finds the transportation delay, t td () , by solving the following
equation

1
1

t
d

it t t

t

d (() τ
τ

)
=

−∫

This equation involves an instantaneous time delay, t ti () , given by the
block’s time delay (bottom, or right) input.

2-751

Variable Time Delay, Variable Transport Delay

u(t)

t
i
(t)

y(t) = u(t − t
d
(t))

Ti

Variable
Transport Delay

−C−

1

For example, suppose you want to use this block to model the flow of a
fluid through a pipe where the speed of the flow varies with time. In
this case, the time delay input to the block would be

t t
L

v ti
i

()
()

=

where L is the length of the pipe and v ti () is the speed of the fluid.

Data Type
Support

The Variable Time Delay and Variable Transport Delay blocks accept
and output real signals of type double.

Parameters
and
Dialog
Box

The block’s parameters and dialog box differ, depending on whether it
is operating in variable time or variable transport delay mode. Most
parameters exist in both modes. The following sections note parameters
that exist only in one mode.

Variable Time Delay Parameters and Dialog Box

The dialog box for the Variable Time Delay block appears as follows.

2-752

Variable Time Delay, Variable Transport Delay

Select delay type
The delay type of the block. The Variable Time Delay block
in the Simulink library has a preset value of Variable time
delay. The Variable Transport Delay block has a preset value of
Variable transport delay.

2-753

Variable Time Delay, Variable Transport Delay

Maximum delay
The maximum value of the time delay input. The value cannot
be negative. The default is 10.

Initial output
The output generated by the block until the simulation time first
exceeds the time delay input. The default is 0. Simulink does not
allow the initial output of this block to be inf or NaN.

Initial buffer size
Initial size of the buffer used to store previous input values. The
default is 1024.

Use fixed buffer size
Specifies use of a fixed-size buffer to save input data from previous
time steps. The Initial buffer size parameter specifies the
buffer’s size. If the buffer is full, new data replaces data already
in the buffer. Simulink uses linear extrapolation to estimate the
output value if it is not in the buffer. This option can save memory
if the input data is linear. If the input is not linear, this option
may yield inaccurate results.

Note ERT or GRT code generation uses a fixed-size buffer even if
you do not select this check box.

Handle zero delay
For Variable time delay mode. Turns this block into a direct
feedthrough block.

Direct feedthrough of input during linearization
Causes the block to output its input during linearization and trim.
This sets the block’s mode to direct feedthrough.

Enabling this check box can cause a change in the ordering of
states in the model when using the functions linmod, dlinmod,
or trim. To extract this new state ordering, use the following
commands.

2-754

Variable Time Delay, Variable Transport Delay

First compile the model using the following command, where
model is the name of the Simulink model.

[sizes, x0, x_str] = model([],[],[],'lincompile');

Next, terminate the compilation with the following command.

model([],[],[],'term');

The output argument, x_str, which is a cell array of the states
in the Simulink model, contains the new state ordering. When
passing a vector of states as input to the linmod, dlinmod, or trim
functions, the state vector must use this new state ordering.

Pade order (for linearization)
The order of the Pade approximation for linearization routines.
The default value is 0, which results in a unity gain with no
dynamic states. Setting the order to a positive integer n adds n
states to your model, but results in a more accurate linear model
of the transport delay.

Variable Transport Delay Parameters and Dialog Box

The block’s dialog box in Variable Transport Delay mode appears as
follows.

2-755

Variable Time Delay, Variable Transport Delay

This mode adds the following parameter.

Absolute tolerance
Absolute tolerance used to solve the block’s states. You can enter
auto or a numeric value. If you enter auto, Simulink determines

2-756

Variable Time Delay, Variable Transport Delay

the absolute tolerance (see “Absolute tolerance”). If you enter a
numeric value, Simulink uses the specified value to solve the
block’s states. Note that a numeric value overrides the setting
for the absolute tolerance in the Configuration Parameters
dialog box.

Characteristics Direct Feedthrough Yes, of the time delay (second) input

Sample Time Continuous

Scalar Expansion Yes, of input and all parameters except
Initial buffer size

Dimensionalized Yes

Zero Crossing No

2-757

Weighted Moving Average

Purpose Implement weighted moving average

Library Discrete

Description The Weighted Moving Average block samples and holds the N most
recent inputs, multiplies each input by a specified value (given by the
Weights parameter), and stacks them in a vector. This block supports
both single-input/single-output (SISO) and single-input/multi-output
(SIMO) modes.

For the SISO mode, the Weights parameter is specified as a row vector.
For the SIMO mode, the weights are specified as a matrix where each
row corresponds to a separate output.

The Initial condition parameter provides the initial values for all
times preceding the start time. You specify the time interval between
samples with the Sample time parameter.

You can choose whether or not to specify the data type and scaling
of the weights in the dialog with the Gain data type and scaling
parameter. If you select Specify via dialog for this parameter, the
Parameter data type, Parameter scaling, and Parameter scaling
mode parameters become visible.

You can specify the scaling for the weights with the Parameter scaling
and Parameter scaling mode parameters. If Parameter data type
is a generalized fixed-point number such as sfix(16), the Parameter
scaling mode list provides you with these scaling modes:

• Use Specified Scaling--This mode uses the [Slope Bias] or binary
point-only scaling specified by the Parameter scaling parameter
(for example, 2^-10).

• Best Precision: Element-wise--This mode produces binary
points such that the precision is maximized for each element of the
Weights parameter.

• Best Precision: Row-wise--This mode produces a common binary
point for each element of the Weights row based on the best precision
for the largest value of that row.

2-758

Weighted Moving Average

• Best Precision: Column-wise--This mode produces a common
binary point for each element of the Weights column based on the
best precision for the largest value of that column.

• Best Precision: Matrix-wise--This mode produces a common
binary point for each element of the Weights matrix based on the
best precision for the largest value of the matrix.

If the weights are specified as a row vector, then scaling element-wise
and column-wise produce the same result, while scaling matrix-wise
and row-wise produce the same result.

The Weighted Moving Average block first multiplies its inputs by the
Weights parameter, converts those results to the output data type
using the specified rounding and overflow modes, and then carries out
the summation.

Data Type
Support

The Weighted Moving Average block supports all data types supported
by Simulink, including fixed-point data types.

2-759

Weighted Moving Average

Parameters
and
Dialog
Box

The Main pane of the Weighted Moving Average block dialog appears
as follows:

Weights
Specify the weights of the moving average; one row per output.
The Weights parameter is converted from doubles to the specified
data type offline using round-to-nearest and saturation.

Initial condition
Specify the initial values for all times preceding the start time.
The Initial condition parameter is converted from doubles to
the input data type offline using round-to-nearest and saturation.

Sample time
Specify the time interval between samples. To inherit the sample
time, set this parameter to -1. See “Specifying Sample Time” in
the online documentation for more information.

2-760

Weighted Moving Average

The Parameter Data Types pane of the Weighted Moving Average
block dialog appears as follows:

Gain data type and scaling
Choose whether to specify the data type of the weights in the block
dialog or via an internal rule. If you select Specify via dialog,
the Parameter data type, Parameter scaling, and Parameter
scaling mode parameters become visible.

Parameter data type
Specify the data type of the weights. This parameter is only
visible if you select Specify via dialog for the Gain data type
and scaling parameter.

Parameter scaling mode
This drop-down list enables you to specify the parameter scaling
in the dialog or by an inherited rule. This parameter is only
visible if you select Specify via dialog for the Gain data type
and scaling parameter.

2-761

Weighted Moving Average

Parameter scaling
Set the scaling of the weights using binary point-only or [Slope
Bias] scaling. Additionally, the Weights vector or matrix can be
scaled using the constant vector or constant matrix scaling modes
for maximizing precision. These scaling modes are available only
for generalized fixed-point data types. This parameter is only
visible if you select Specify via dialog for the Gain data type
and scaling parameter.

The Signal Data Types pane of the Weighted Moving Average block
dialog appears as follows:

2-762

Weighted Moving Average

Output data type and scaling
Specify the output data type and scaling via the dialog box, or
inherit the data type and scaling from the driving block or by
backpropagation.

Output data type
Specify the output data type.

Output scaling
Set the output scaling using binary point-only or [Slope Bias]
scaling. These scaling modes are available only for generalized
fixed-point data types.

Lock output scaling against changes by the autoscaling tool
If selected, Output scaling is locked. This feature is available
only for generalized fixed-point output.

Round toward
Rounding mode for the fixed-point output.

Saturate to max or min when overflows occur
If selected, fixed-point overflows saturate.

Examples Suppose you want to configure this block for two outputs (SIMO mode)
where the first output is given by

the second output is given by

and the initial values of u(k - 1) and u(k - 2) are given by ic1 and ic2,
respectively. To configure the Weighted Moving Average block for this
situation, you must specify the Weights parameter as [a1 b1 c1; a2
b2 c2] where c2 = 0, and the Initial condition parameter as [ic1
ic2].

2-763

Weighted Moving Average

Characteristics Direct Feedthrough Yes

Scalar Expansion Yes, of initial conditions

2-764

Weighted Sample Time

Purpose Support calculations involving sample time

Library Signal Attributes

Description The Weighted Sample Time block is an implementation of the Weighted
Sample Time Math block. See Weighted Sample Time Math for more
information.

2-765

Weighted Sample Time Math

Purpose Support calculations involving sample time

Library Math Operations

Description The Weighted Sample Time Math block adds, subtracts, multiplies, or
divides the input signal, u, by a weighted sample time Ts. The sample
time Ts is the Simulink model’s sample time if the input signal is
continuous, or the signal’s sample time if the input signal is discrete.

You specify the math operation with the Operation parameter.
Additionally, you can specify to use only the weight with either the
sample time or its inverse.

Enter the weighting factor in the Weight value parameter. If the
weight (w) is 1, it is removed from the equation displayed on the block’s
icon.

The block’s output is calculated using MATLAB’s operator precedence
rules. For example, the + operation calculates the output using the
equation

u + (Ts * w)

while the / operation calculates the output using the equation

(u / Ts) / w

Data Type
Support

The Weighted Sample Time Math block accepts signals of any data type
supported by Simulink, including fixed-point data types.

2-766

Weighted Sample Time Math

Parameters
and
Dialog
Box

The Main pane of the Weighted Sample Time Math block dialog
appears as follows:

Operation
Specify operation to use: +, -, *, /, Ts only, 1/Ts only.

Weight value
Enter weight of sample time.

Implement using
Specify online calculations or offline scaling adjustment. This
parameter is only visible for the * and / Operation parameter
settings.

The Signal Data Types pane of the Weighted Sample Time Math block
dialog appears as follows:

2-767

Weighted Sample Time Math

Output data type and scaling
Specify whether the output data type and scaling are inherited
by an internal rule or by backpropagation.

Round toward
Select the rounding mode for fixed-point operations. This
parameter is only visible for the + and - Operation parameters or
for the * and / Operation parameters if Online Calculations
is selected for the Implement using parameter.

Saturate to max or min when overflows occur
If selected, fixed-point overflows saturate. This parameter is only
visible for the + and - Operation parameters or for the * and /
Operation parameters if Online Calculations is selected for
the Implement using parameter.

2-768

Weighted Sample Time Math

Characteristics Direct Feedthrough For all math operations options except
Ts and 1/Ts

Scalar Expansion No, the weight is always a scalar

2-769

While Iterator

Purpose Repeatedly execute contents of subsystem at current time step while
condition is satisfied

Library Ports & Subsystems / While Iterator Subsystem

Description The While Iterator block, when placed in a subsystem, repeatedly
executes the contents of the subsystem at the current time step while a
specified condition is true.

Note Placing a While Iterator block in a subsystem makes it an atomic
subsystem if it is not already an atomic subsystem.

You can use this block to implement the block-diagram equivalent of
a C program while or do-while loop. In particular, the block’s While
loop style parameter allows you to choose either of the following while
loop modes:

• do-while

In this mode, the While Iterator block has one input, the while
condition input, whose source must reside in the subsystem. At each
time step, the block runs all the blocks in the subsystem once and
then checks whether the while condition input is true. If the input is
true, the iterator block runs the blocks in the subsystem again. This
process continues as long as the while condition input is true and
the number of iterations is less than or equal to the iterator block’s
Maximum number of iterations parameter.

• while

In this mode, the iterator block has two inputs: a while condition
input and an initial condition (IC) input. The source of the initial
condition signal must be external to the while subsystem. At the
beginning of the time step, if the IC input is true, the iterator block
executes the contents of the subsystem and then checks the while
condition input. If the while condition input is true, the iterator

2-770

While Iterator

executes the subsystem again. This process continues as long as the
while condition input is true and the number of iterations is less than
or equal to the iterator block’s Maximum number of iterations
parameter. If the IC input is false at the beginning of a time step,
the iterator does not execute the contents of the subsystem during
the time step.

Note Unless you are certain that the while condition will become
false at some point in the simulation, you should specify a maximum
number of iterations to avoid endless loops, which can be broken
only by terminating MATLAB.

The While Iterator block can optionally output the current iteration
number, starting at 1. The following example uses this capability to
compute N, where N is the first N integers whose sum is less than 100.

2-771

While Iterator

This example is the diagrammatic equivalent to the following
pseudocode.

max_sum = 100;
sum = 0;
iteration_number = 0;
cond = (max_sum > 0);
while (cond != 0) {
iteration_number = iteration_number + 1;
sum = sum + iteration_number;
if (sum > max_sum OR iteration_number > max_iterations)
cond = 0;

}

2-772

While Iterator

Data Type
Support

Acceptable data inputs for the condition ports are any type supported by
Simulink, as well as any fixed-point type, that includes a 0 value. For a
discussion on the data types supported by Simulink, see “Data Types
Supported by Simulink” in the Simulink documentation.

The While Iterator block’s optional output port can output any of the
following data types: double, int32, int16, or int8.

Parameters
and
Dialog
Box

Maximum number of iterations
The maximum number of iterations allowed. A value of -1 allows
any number of iterations as long as the while condition input is
true. Note that if you specify -1 and the while condition never
becomes false, the simulation will run forever. In this case, the

2-773

While Iterator

only way to stop the simulation is to terminate the MATLAB
process. Therefore, you should not specify -1 as the value of this
parameter unless you are certain that the while condition will
become false at some point in the simulation.

While loop style
Specifies the type of while loop implemented by this block. See
the preceding block description for more information.

States when starting
Set this field to reset if you want the iterator block to reset the
states of the blocks in the while subsystem to their initial values
at the beginning of each time step (i.e., before executing the first
loop iteration in the current time step). To cause the states of
blocks in the subsystem to persist across time steps, set this field
to held (the default).

Show iteration number port
If you select this check box, the While Iterator block outputs its
iteration value. This value starts at 1 and is incremented by 1
for each succeeding iteration. By default, this check box is not
selected.

Output data type
If you select the Show iteration number port check box (the
default), this field is enabled. Use it to set the data type of the
iteration number output to int32, int16, int8, or double.

Characteristics Direct Feedthrough No

Sample Time Inherited from driving block

Scalar Expansion No

Dimensionalized No

Zero Crossing No

2-774

While Iterator Subsystem

Purpose Represent subsystem that executes repeatedly while condition is
satisfied during simulation time step

Library Ports & Subsystems

Description The While Iterator Subsystem block is a Subsystem block that is
preconfigured to serve as a starting point for creating a subsystem that
executes repeatedly while a condition is satisfied during a simulation
time step. See the While Iterator block and “Modeling Control Flow
Logic” for more information.

2-775

Width

Purpose Output width of input vector

Library Signal Attributes

Description The Width block generates as output the width of its input vector.

Data Type
Support

The Width block accepts real or complex signals of any data type
supported by Simulink, including fixed-point data types. The Width
block supports mixed-type signal vectors.

For a discussion on the data types supported by Simulink, see “Data
Types Supported by Simulink” in the Simulink documentation.

Parameters
and
Dialog
Box

Note The Width block ignores the Data Type Override setting of
the Fixed-Point Settings interface.

Output data type mode
Specify the output data type to be the same as the input, or inherit
the data type by backpropagation. You can also choose to specify

2-776

Width

a built-in data type from the drop-down list in the Output data
type parameter.

Output data type
This parameter is visible when Choose intrinsic data type is
selected for the Output data type mode parameter. Choose a
built-in data type from the drop-down list.

Characteristics Sample Time Constant

Dimensionalized Yes

2-777

Wrap To Zero

Purpose Set output to zero if input is above threshold

Library Discontinuities

Description The Wrap To Zero block sets the output to zero if the input is above the
value set by the Threshold parameter, and outputs the input if the
input is less than or equal to the Threshold.

Data Type
Support

The Wrap To Zero block accepts signals of any data type supported by
Simulink, including fixed-point data types.

Parameters
and
Dialog
Box

Threshold
When the input exceeds the threshold, the output is set to zero.

Characteristics Direct Feedthrough Yes

Scalar Expansion Yes

2-778

XY Graph

Purpose Display X-Y plot of signals using MATLAB figure window

Library Sinks

Description The XY Graph block displays an X-Y plot of its inputs in a MATLAB
figure window.

The block has two scalar inputs. The block plots data in the first (top,
or let) input (the x direction) against data in the second (bottom, or
right) input (the y direction). This block is useful for examining limit
cycles and other two-state data. Data outside the specified range is
not displayed.

Simulink opens a figure window for each XY Graph block in the model
at the start of the simulation.

For a demo that illustrates the use of the XY Graph block, enter lorenz
in the command window.

Data Type
Support

The XY Graph block accepts real signals of type double.

2-779

XY Graph

Dialog
box

x-min
The minimum x-axis value. The default is -1.

x-max
The maximum x-axis value. The default is 1.

y-min
The minimum y-axis value. The default is -1.

y-max
The maximum y-axis value. The default is 1.

2-780

XY Graph

Sample time
Specify the time interval between samples. To inherit the sample
time, set this parameter to -1. See “Specifying Sample Time” in
the online documentation for more information.

Characteristics Sample Time Specified in the Sample time
parameter

States 0

2-781

Zero-Order Hold

Purpose Implement zero-order hold of one sample period

Library Discrete

Description The Zero-Order Hold block samples and holds its input for the specified
sample period. The block accepts one input and generates one output,
both of which can be scalar or vector. If the input is a vector, all
elements of the vector are held for the same sample period.

You specify the time between samples with the Sample time
parameter. A setting of -1 means the Sample time is inherited.

This block provides a mechanism for discretizing one or more signals
in time.

Note Do not use the Zero-Order Hold block to create a fast-to-slow
transition between blocks operating at different sample rates. Instead,
use the Rate Transition block.

Data Type
Support

The Zero-Order Hold block accepts real or complex signals of any data
type supported by Simulink, including fixed-point data types.

For a discussion on the data types supported by Simulink, see “Data
Types Supported by Simulink” in the Simulink documentation.

2-782

Zero-Order Hold

Parameters
and
Dialog
Box

Sample time (-1 for inherited)
Specify the time interval between samples. To inherit the sample
time, set this parameter to -1. See “Specifying Sample Time” in
the online documentation for more information.

Characteristics Direct Feedthrough Yes

Sample Time Specified in the Sample time
parameter

Scalar Expansion No

Dimensionalized Yes

Zero Crossing No

2-783

Zero-Pole

Purpose Model system by zero-pole-gain transfer function

Library Continuous

Description The Zero-Pole block models a system specified by the zeros, poles,
and gain of a Laplace-domain transfer function that defines the
relationship between the system’s input and its outputs. You can use
this block to model either a single-input-single output (SISO) or a
single-input-multiple-output (SIMO) system.

Use the Zeros, Poles, and Gain parameters on the block’s parameter
dialog box to enter the values of the transfer function’s zeros, poles, and
gain, respectively. The dialog box assumes the following form for the
transfer function that models the system

where Z represents the zeros, P the poles, and K the gain of the transfer
function. The number of poles must be greater than or equal to the
number of zeros. If the poles and zeros are complex, they must be
complex conjugate pairs.

For a single-output system, Z and P are vectors and K is a scalar. The
input and the output of the block are time-domain scalar signals. For a
multiple output system, Z is a matrix each of whose columns represents
the zeros of a transfer function relating the system’s input to one of its
outputs. All of the system’s transfer functions are assumed to have
the same poles represented by the vector P. K is a vector each of whose
elements represents a gain of the corresponding transfer function
defined by Z. In this case, the output of the block is a vector each of
whose elements represents the output of the transfer function defined
by the corresponding column of Z, i.e., the block’s output is a vector
whose width is equal to the number of columns in Z

2-784

Zero-Pole

Note You cannot use a single Zero-Pole block to model multiple-output
systems whose transfer functions have a differing number of zeros or a
single zero each. Use multiple Zero-Pole blocks to model such systems.

Transfer Function Display on Block

The Zero-Pole block displays the transfer function depending on how
the parameters are specified:

• If each is specified as an expression or a vector, the icon shows the
transfer function with the specified zeros, poles, and gain. If you
specify a variable in parentheses, the variable is evaluated.

For example, if you specify Zeros as [3,2,1], Poles as (poles),
where poles is defined in the workspace as [7,5,3,1], and Gain
as gain, the icon looks like this:

• If each is specified as a variable, the icon shows the variable name
followed by (s) if appropriate. For example, if you specify Zeros as
zeros, Poles as poles, and Gain as gain, the icon looks like this.

Specifying the Absolute Tolerance for the Block’s States

By default, Simulink uses the absolute tolerance value specified in the
Configuration Parameters dialog box (see “Specifying Variable-Step
Solver Error Tolerances”) to solve the states of the Zero-Pole block.
If this value does not provide sufficient error control, specify a more
appropriate value in the Absolute tolerance field of the Zero-Pole

2-785

Zero-Pole

block’s dialog box. The value that you specify is used to solve all the
block’s states.

Data Type
Support

The Zero-Pole block accepts real signals of type double.

Parameters
and
Dialog
Box

Zeros
The matrix of zeros. The default is [1].

Poles
The vector of poles. The default is [0 -1].

Gain
The vector of gains. The default is [1].

2-786

Zero-Pole

Absolute tolerance
Absolute tolerance used to solve the block’s states. You can enter
auto or a numeric value. If you enter auto, Simulink determines
the absolute tolerance (see “Specifying Variable-Step Solver Error
Tolerances”). If you enter a numeric value, Simulink uses the
specified value to solve the block’s states. Note that a numeric
value overrides the setting for the absolute tolerance in the
Configuration Parameters dialog box.

Characteristics Direct Feedthrough Only if the lengths of the Poles and
Zeros parameters are equal

Sample Time Continuous

Scalar Expansion No

States Length of Poles vector

Dimensionalized No

Zero Crossing No

2-787

3

Linearization and
Trimming Commands

This section describes commands that you can use to linearize or trim a
Simulink model. See “Analyzing Simulation Results” in “Using Simulink” for
more information on these commands.

3 Linearization and Trimming Commands

Linearization and Trimming Commands — Alphabetical List
linmod, dlinmod, linmod2, linmodv5
trim

3-2

linmod, dlinmod, linmod2, linmodv5

Purpose Extract the continuous- or discrete-time linear state-space model of a
system around an operating point

Syntax argout = linmod('sys');
argout = linmod('sys',x,u);
argout = linmod('sys', x, u, para);
argout = linmod('sys', x, u, 'v5');
argout = linmod('sys', x, u, para, 'v5');
argout = linmod('sys', x, u, para, xpert, upert, 'v5');

argout = dlinmod('sys', Ts, x, u);
argout = dlinmod('sys',Ts, x, u, para, 'v5');
argout = dlinmod('sys',Ts, x, u, para, xpert, upert, 'v5');

argout = linmod2('sys', x, u);
argout = linmod2('sys', x, u, para);

argout = linmodv5('sys');
argout = linmodv5('sys',x,u);
argout = linmodv5('sys', x, u, para);
argout = linmod('sys', x, u, para, xpert, upert);

Arguments sys The name of the Simulink system from which the
linear model is to be extracted.

x and u The state and the input vectors. If specified, they set
the operating point at which the linear model is to be
extracted. You can also specify x using the Simulink
structure format. To extract the x structure from the
model, use the following command:

x = Simulink.BlockDiagram.getInitialState(,'sys');

You can then change the operating point values
within this structure by editing x.signals.values.

3-3

linmod, dlinmod, linmod2, linmodv5

Ts Sample time of the discrete-time linearized model

'v5' An optional argument that invokes the perturbation
algorithm created prior to MATLAB 5.3. This
perturbation algorithm is the only linearization
algorithm that supports the linearization of models
containing references to other models using the
Model block. When a model has model references
using the Model block, you must use the Simulink
structure format to specify x, and xpert when not
using the default perturbation values. To extract the
x structure, use the following command:

x = Simulink.BlockDiagram.getInitialState('sys');

You can then change the operating point values
within this structure by editing x.signals.values.

Invoking this optional argument is equivalent to
calling linmodv5.

para A three-element vector of optional arguments:

• para(1) — Perturbation value of delta, the value
used to perform the perturbation of the states
and the inputs of the model. This is valid for
linearizations using the 'v5' flag. The default
value is 1e-05.

• para(2) — Linearization time. For blocks that
are functions of time, this parameter can be set
with a nonnegative value of t giving the time
at which Simulink evaluates the blocks when
linearizing a model. The default value is 0.

• para(3) — Set para(3)=1 to remove extra states
associated with blocks that have no path from
input to output. The default value is 0.

3-4

linmod, dlinmod, linmod2, linmodv5

xpert and
upert

The perturbation values used to perform the
perturbation of all the states and inputs of the
model. The default values are

xpert = para(1) + 1e-3*para(1)*abs(x)
upert = para(1) + 1e-3*para(1)*abs(u)

When a model has model references using the Model
block, you must use the Simulink structure format
to specify xpert. To extract the xpert structure, use
the following command:

xpert = Simulink.BlockDiagram.getInitialState('sys');

You can then change the perturbation values within
this structure by editing xpert.signals.values.

The perturbation input arguments are only available
when invoking the perturbation algorithm created
prior to MATLAB 5.3, either by calling linmodv5 or
specifying the 'v5' input argument to linmod.

argout linmod, dlinmod, and linmod2 all return
state-space, transfer function, and MATLAB data
structure representations of the linearized system,
depending on how you specify the output (left-hand)
side of the equation. Using linmod as an example:

• [A,B,C,D] = linmod('sys', x, u) obtains the
linearized model of sys around an operating point
with the specified state variables x and the input
u. If you omit x and u, the default values are zero.

• [num, den] = linmod('sys', x, u) returns
the linearized model in transfer function form.

• sys_struc = linmod('sys', x, u) returns a
structure that contains the linearized model,
including state names, input and output names,
and information about the operating point.

3-5

linmod, dlinmod, linmod2, linmodv5

Description linmod and dlinmod compute a linear state space model by linearizing
each block in a model individually. linmod2 computes a linear
state-space model by perturbing the model inputs and model states,
and uses an advanced algorithm to reduce truncation error. linmodv5
computes a linear state space model using the full model perturbation
algorithm created prior to MATLAB 5.3.

linmod obtains linear models from systems of ordinary differential
equations described as Simulink models. Inputs and outputs are
denoted in Simulink block diagrams using Inport and Outport blocks.

The default algorithm uses preprogrammed analytic block
Jacobians for most blocks which should result in more accurate
linearization than numerical perturbation of block inputs and states.
A list of blocks that have preprogrammed analytic Jacobians is
available in the Simulink Control Design documentation along
with a discussion of the block-by-block analytic algorithm for
linearization. If you do not have Simulink Control Design installed,
you can access the documentation on the MathWorks Web site at
http://www.mathworks.com/access/helpdesk/help/toolbox/slcontrol/.

The default algorithm also allows for special treatment of problematic
blocks such as the Transport Delay and the Quantizer. See the mask
dialog of these blocks for more information and options.

Discrete-Time System Linearization

The function dlinmod can linearize discrete, multirate, and hybrid
continuous and discrete systems at any given sampling time. Use the
same calling syntax for dlinmod as for linmod, but insert the sample
time at which to perform the linearization as the second argument.
For example,

[Ad,Bd,Cd,Dd] = dlinmod('sys', Ts, x, u);

3-6

http://www.mathworks.com/access/helpdesk/help/toolbox/slcontrol/

linmod, dlinmod, linmod2, linmodv5

produces a discrete state-space model at the sampling time Ts and the
operating point given by the state vector x and input vector u. To obtain
a continuous model approximation of a discrete system, set Ts to 0.

For systems composed of linear, multirate, discrete, and continuous
blocks, dlinmod produces linear models having identical frequency and
time responses (for constant inputs) at the converted sampling time
Ts, provided that

• Ts is an integer multiple of all the sampling times in the system.

• The system is stable.

For systems that do not meet the first condition, in general the
linearization is a time-varying system, which cannot be represented
with the [A,B,C,D] state-space model that dlinmod returns.

Computing the eigenvalues of the linearized matrix Ad provides an
indication of the stability of the system. The system is stable if Ts>0
and the eigenvalues are within the unit circle, as determined by this
statement:

all(abs(eig(Ad))) < 1

Likewise, the system is stable if Ts = 0 and the eigenvalues are in the
left half plane, as determined by this statement:

all(real(eig(Ad))) < 0

When the system is unstable and the sample time is not an integer
multiple of the other sampling times, dlinmod produces Ad and Bd
matrices, which can be complex. The eigenvalues of the Ad matrix in
this case still, however, provide a good indication of stability.

You can use dlinmod to convert the sample times of a system to other
values or to convert a linear discrete system to a continuous system or
vice versa.

You can find the frequency response of a continuous or discrete system
by using the bode command.

3-7

linmod, dlinmod, linmod2, linmodv5

Notes By default, the system time is set to zero. For systems that are
dependent on time, you can set the variable para to a two-element
vector, where the second element is used to set the value of t at which
to obtain the linear model.

The ordering of the states from the nonlinear model to the linear model
is maintained. For Simulink systems, a string variable that contains
the block name associated with each state can be obtained using

[sizes,x0,xstring] = sys

where xstring is a vector of strings whose ith row is the block name
associated with the ith state. Inputs and outputs are numbered
sequentially on the diagram.

For single-input multi-output systems, you can convert to transfer
function form using the routine ss2tf or to zero-pole form using ss2zp.
You can also convert the linearized models to LTI objects using ss. This
function produces an LTI object in state-space form that can be further
converted to transfer function or zero-pole-gain form using tf or zpk.

The default algorithms in linmod and dlinmod handle Transport
Delay blocks by replacing the linearization of the blocks with a Pade
approximation. For the 'v5' algorithm, linearization of a model that
contains Derivative or Transport Delay blocks can be troublesome. For
more information, see “Linearizing Models” in “Using Simulink”.

3-8

trim

Purpose Find a trim point of a dynamic system

Syntax [x,u,y,dx] = trim('sys')
[x,u,y,dx] = trim('sys',x0,u0,y0)
[x,u,y,dx] = trim('sys',x0,u0,y0,ix,iu,iy)
[x,u,y,dx] = trim('sys',x0,u0,y0,ix,iu,iy,dx0,idx)
[x,u,y,dx,options] = trim('sys',x0,u0,y0,ix,iu,iy,dx0,idx,

options)
[x,u,y,dx,options] = trim('sys',x0,u0,y0,ix,iu,iy,dx0,idx,

options,t)

Description A trim point, also known as an equilibrium point, is a point in the
parameter space of a dynamic system at which the system is in a steady
state. For example, a trim point of an aircraft is a setting of its controls
that causes the aircraft to fly straight and level. Mathematically, a trim
point is a point where the system’s state derivatives equal zero. trim
starts from an initial point and searches, using a sequential quadratic
programming algorithm, until it finds the nearest trim point. You
must supply the initial point implicitly or explicitly. If trim cannot
find a trim point, it returns the point encountered in its search where
the state derivatives are closest to zero in a min-max sense; that is, it
returns the point that minimizes the maximum deviation from zero
of the derivatives. trim can find trim points that meet specific input,
output, or state conditions, and it can find points where a system is
changing in a specified manner, that is, points where the system’s state
derivatives equal specific nonzero values.

[x,u,y,dx] = trim('sys') finds the equilibrium point nearest to
the system’s initial state, x0. Specifically, trim finds the equilibrium
point that minimizes the maximum absolute value of [x-x0,u,y]. If
trim cannot find an equilibrium point near the system’s initial state,
it returns the point at which the system is nearest to equilibrium.
Specifically, it returns the point that minimizes abs(dx-0). You can
obtain x0 using this command.

[sizes,x0,xstr] = sys([],[],[],0)

3-9

trim

[x,u,y,dx] = trim('sys',x0,u0,y0) finds the trim point nearest to
x0, u0, y0, that is, the point that minimizes the maximum value of

abs([x-x0; u-u0; y-y0])

[x,u,y,dx] = trim('sys',x0,u0,y0,ix,iu,iy) finds the trim point
closest to x0, u0, y0 that satisfies a specified set of state, input, and/or
output conditions. The integer vectors ix, iu, and iy select the values in
x0, u0, and y0 that must be satisfied. If trim cannot find an equilibrium
point that satisfies the specified set of conditions exactly, it returns the
nearest point that satisfies the conditions, namely,

abs([x(ix)-x0(ix); u(iu)-u0(iu); y(iy)-y0(iy)])

[x,u,y,dx] = trim('sys',x0,u0,y0,ix,iu,iy,dx0,idx) finds
specific nonequilibrium points, that is, points at which the system’s
state derivatives have some specified nonzero value. Here, dx0 specifies
the state derivative values at the search’s starting point and idx selects
the values in dx0 that the search must satisfy exactly.

[x,u,y,dx,options] =
trim('sys',x0,u0,y0,ix,iu,iy,dx0,idx,options) specifies an array
of optimization parameters that trim passes to the optimization
function that it uses to find trim points. The optimization function, in
turn, uses this array to control the optimization process and to return
information about the process. trim returns the options array
at the end of the search process. By exposing the underlying
optimization process in this way, trim allows you to monitor and
fine-tune the search for trim points.

The following table describes how each element affects the search for a
trim point. Array elements 1, 2, 3, 4, and 10 are particularly useful for
finding trim points.

3-10

trim

No. Default Description

1 0 Specifies display options. 0 specifies no
display; 1 specifies tabular output; -1
suppresses warning messages.

2 10–4 Precision the computed trim point must attain
to terminate the search.

3 10–4 Precision the trim search goal function must
attain to terminate the search.

4 10–6 Precision the state derivatives must attain to
terminate the search.

5 N/A Not used.

6 N/A Not used.

7 N/A Used internally.

8 N/A Returns the value of the trim search goal
function (λ in goal attainment).

9 N/A Not used.

10 N/A Returns the number of iterations used to find
a trim point.

11 N/A Returns the number of function gradient
evaluations.

12 0 Not used.

13 0 Number of equality constraints.

14 100*(Number
of
variables)

Maximum number of function evaluations to
use to find a trim point.

15 N/A Not used.

16 10–8 Used internally.

3-11

trim

No. Default Description

17 0.1 Used internally.

18 N/A Returns the step length.

[x,u,y,dx,options] =
trim('sys',x0,u0,y0,ix,iu,iy,dx0,idx,options,t) sets the time
to t if the system is dependent on time.

Examples Consider a linear state-space model

The A, B, C, and D matrices are as follows in a system called sys.

A = [-0.09 -0.01; 1 0];
B = [0 -7; 0 -2];
C = [0 2; 1 -5];
D = [-3 0; 1 0];

Example 1

To find an equilibrium point, use

[x,u,y,dx,options] = trim('sys')
x =

0
0

u =
0

y =
0
0

dx =
0
0

3-12

trim

The number of iterations taken is

options(10)
ans =

7

Example 2

To find an equilibrium point near x = [1;1], u = [1;1], enter

x0 = [1;1];
u0 = [1;1];
[x,u,y,dx,options] = trim('sys', x0, u0);
x =

1.0e-11 *
-0.1167
-0.1167

u =
0.3333
0.0000

y =
-1.0000
0.3333

dx =
1.0e-11 *
0.4214
0.0003

The number of iterations taken is

options(10)
ans =

25

Example 3

To find an equilibrium point with the outputs fixed to 1, use

3-13

trim

y = [1;1];
iy = [1;2];
[x,u,y,dx] = trim('sys', [], [], y, [], [], iy)
x =

0.0009
-0.3075

u =
-0.5383
0.0004

y =
1.0000
1.0000

dx =
1.0e-16 *

-0.0173
0.2396

Example 4

To find an equilibrium point with the outputs fixed to 1 and the
derivatives set to 0 and 1, use

y = [1;1];
iy = [1;2];
dx = [0;1];
idx = [1;2];
[x,u,y,dx,options] = trim('sys',[],[],y,[],[],iy,dx,idx)
x =

0.9752
-0.0827

u =
-0.3884
-0.0124

y =
1.0000
1.0000

dx =
0.0000

3-14

trim

1.0000

The number of iterations taken is

options(10)
ans =

13

Limitations The trim point found by trim starting from any given initial point is only
a local value. Other, more suitable trim points may exist. Thus, if you
want to find the most suitable trim point for a particular application, it
is important to try a number of initial guesses for x, u, and y.

Algorithm trim uses a sequential quadratic programming algorithm to find trim
points. See the “Optimization Toolbox User’s Guide” for a description of
this algorithm.

3-15

4

Model Construction
Commands

The following sections describe commands that you can use in programs that
create or modify models.

Task-Oriented Command List
(p. 4-2)

List of commands arranged by tasks
to be performed

Model Construction Commands —
Alphabetical List (p. 4-5)

Model construction commands listed
in alphabetical order

4 Model Construction Commands

Task-Oriented Command List
This table lists the tasks performed by commands described in this section.
An alphabetical list follows.

Task Command

Create a new Simulink system. new_system

Open an existing system. open_system

Invisibly load a model into memory. load_system

Open or close the Simulink Library
Browser.

simulink

Change MATLAB character encoding
to be compatible with model character
encoding.

slCharacterEncoding

Close a system window. close_system, bdclose

Save a system. save_system

Find a system, block, line, or annotation. find_system

Find model references. find_mdlrefs

Get information about the library links
in a model.

libinfo

Add a new block to a system. add_block

Delete a block from a system. delete_block

Replace a block in a system. replace_block

Replace Mux blocks used as Bus Creator
blocks with Bus Creator blocks.

slreplace_mux

Update obsolete versions of blocks. slupdate

Terminate unconnected ports in a system. addterms

Add a line to a system. add_line

Delete a line from a system. delete_line

Add a parameter to a system. add_param

4-2

Task-Oriented Command List

Task Command

Get a parameter value. get_param

Set parameter values. set_param

Delete a system parameter. delete_param

Attach a configuration set to a model. attachConfigSet

Get a model’s active configuration set. getActiveConfigSet

Get one of a model’s configuration sets. getConfigSet

Get the names of a model’s configuration
sets.

getConfigSets

Set a model’s active configuration set. setActiveConfigSet

Dissociates a configuration set from a
model.

detachConfigSet

Open configuration set dialog. openDialog

Close configuration set dialog. closeDialog

Get the pathname of the current block. gcb

Get the pathname of the current system. gcs

Get the handle of the current block. gcbh

Get the name of the root-level system. bdroot

Display a graph of model reference
dependencies.

view_mdlrefs

Get or set the editor invoked by the
DocBlock.

docblock

Discretize a model. sldiscmdl

Configure a modeI for efficient simulation
and code generation.

modeladvisor

Open the Model Discretizer GUI. slmdldiscui

Save bus objects in an M-file. Simulink.Bus.save

Create bus objects for blocks in a model. Simulink.Bus.createObject

4-3

4 Model Construction Commands

Task Command

Restore bus objects saved in cell format
to the MATLAB workspace.

Simulink.Bus.cellToObject

Convert an atomic subsystem to a model
reference.

Simulink.SubSystem.convertToModelReference

Use Legacy Code Tool. legacy_code

4-4

Model Construction Commands — Alphabetical List

Model Construction Commands — Alphabetical List

4-5

add_block

Purpose Add a block to a Simulink system

Syntax add_block('src', 'dest')
add_block('src', 'dest', 'param1', value1, ...)
add_block('src', 'dest', 'MakeNameUnique', 'on', 'param1', value1,
...)
add_block('src_inport', 'dest_inport', 'copyoption', 'duplicate',
'param1', value1,...)

Description add_block('src', 'dest') copies the block with the full pathname
'src' to a new block with the full pathname 'dest'. The block
parameters of the new block are identical to those of the original. You
can use 'built-in/blocktype' as a source block path for Simulink
built-in blocks (blocks available in Simulink block libraries that are not
masked blocks), where blocktype is the built-in block’s type, i.e., the
value of its BlockType parameter (see “Common Block Parameters”
on page 10-56).

add_block('src', 'dest', 'param1', value1, ...) creates a copy as
above, in which the named parameters have the specified values. Any
additional arguments must occur in parameter/value pairs.

add_block('src', 'dest', 'MakeNameUnique', 'on',
'parameter1', value1,...) creates a copy of src. If a block having the
full pathname 'dest' already exists, the command creates a unique
name for the new block based on 'dest'.

add_block('src_inport', 'dest_inport', 'copyoption',
'duplicate', 'param1', value1,...) applies only to Inport blocks. It
creates a copy with the same port number as the 'src_inport' block.

Before you add a block, you need to first open the library that contains
the block with the load_system (library opens invisibly) or open_system
(library opens visibly) command.

Examples This command copies the Scope block from the Sinks subsystem of the
simulink system to a block named Scope1 in the timing subsystem of
the engine system.

4-6

add_block

add_block('simulink/Sinks/Scope', 'engine/timing/Scope1')

This command creates a new subsystem named controller in the F14
system.

add_block('built-in/SubSystem', 'F14/controller')

This command copies the built-in Gain block to a block named Volume
in the mymodel system and assigns the Gain parameter a value of 4.

add_block('built-in/Gain', 'mymodel/Volume', 'Gain', '4')

The following command

block = add_block('vdp/Mu', 'vdp/Mu', 'MakeNameUnique', 'on')

copies the block named Mu in vdp and create a copy. Since Mu already
exists, the command names the new block Mu1.

See Also delete_block, set_param

4-7

add_line

Purpose Add a line to a Simulink system

Syntax h = add_line('sys','oport','iport')
h = add_line('sys','oport','iport', 'autorouting','on')
h = add_line('sys', points)

Description The add_line command adds a line to the specified system and returns
a handle to the new line. You can define the line in two ways:

• By naming the block ports that are to be connected by the line

• By specifying the location of the points that define the line segments

add_line('sys', 'oport', 'iport') adds a straight line to a system
from the specified block output port 'oport' to the specified block
input port 'iport'. 'oport' and 'iport' are strings consisting
of a block name and a port identifier in the form 'block/port'.
Most block ports are identified by numbering the ports from top
to bottom or from left to right, such as 'Gain/1' or 'Sum/2'.
Enable, Trigger, State, and Action ports are identified by name,
such as 'subsystem_name/Enable', 'subsystem_name/Trigger',
'Integrator/State', or if_action_subsystem_name/Ifaction'.

add_line('sys','oport','iport', 'autorouting','on') works
like add_line('sys','oport','iport') except that it routes the line
around intervening blocks. The default value for autorouting is 'off'.

add_line(system, points) adds a segmented line to a system. Each
row of the points array specifies the x and y coordinates of a point on a
line segment. The origin is the top-left corner of the window. The signal
flows from the point defined in the first row to the point defined in the
last row. If the start of the new line is close to the output of an existing
block or line, a connection is made. Likewise, if the end of the line is
close to an existing input, a connection is made.

4-8

add_line

Examples This command adds a line to the mymodel system connecting the output
of the Sine Wave block to the first input of the Mux block.

add_line('mymodel','Sine Wave/1','Mux/1')

This command adds a line to the mymodel system extending from
(20,55) to (40,10) to (60,60).

add_line('mymodel',[20 55; 40 10; 60 60])

See Also delete_line

4-9

add_param

Purpose Add a parameter to a Simulink system

Syntax add_param('sys','parameter1',value1,'parameter2',value2,...)

Description The add_param command adds the specified parameters to the specified
system and initializes the parameters to the specified values. The
command displays an error if a parameter of the same name is already
assigned to the model. Case is ignored for parameter names. Value
strings are case sensitive. The value of the parameter must be a string.
Once the parameter is added to a system, set_param and get_param
can be used on the new parameters as if they were standard Simulink
parameters. Any added parameters are saved with the model.

Examples This command

add_param('vdp','DemoName','VanDerPolEquation','EquationOrder','2')

adds the parameters DemoName and EquationOrder with values
'VanDerPolEquation' and '2' to the vdp system. Note that 2 is
entered as a string. The following command can then be used to retrieve
the value of the DemoName parameter.

get_param('vdp','DemoName')

See Also delete_param, get_param, set_param

4-10

addterms

Purpose Add terminators to unconnected ports in a model

Syntax addterms('sys')

Description addterms('sys') adds Terminator and Ground blocks to the
unconnected ports in the Simulink block diagram sys.

See Also slupdate

4-11

attachConfigSet

Purpose Associates configuration set with model

Syntax attachConfigSet('model', configSet)
attachConfigSet('model', configSet, allowRename)

Description attachConfigSet('model', configSet) associates the
Simulink.ConfigSet object specified by configSet with 'model',
where 'model' is the name of an open model.

Note You cannot attach a configuration set to a model if the
configuration set is already attached to another model or has the same
name as another configuration set attached to the same model.

attachConfigSet('model', configSet, allowRename) associates a
configuration set with a model as described previously. allowRename
is a boolean argument that determines how Simulink handles a
name conflict among configuration sets. If allowRename is false and
the configuration set specified by configSet has the same name as
another configuration set attached to 'model', Simulink generates an
error. If allowRename is true and Simulink detects a name conflict,
Simulink provides a unique name for configSet before associating it
with 'model'.

Examples The following example creates a copy of the current model’s active
configuration set, provides it with a unique name, and attaches it to the
model as an alternate configuration geared to model development.

activeConfig = getActiveConfigSet(gcs);
develConfig = activeConfig.copy;
develConfig.Name = 'develConfig';
attachConfigSet(gcs, develConfig);

The following example creates a copy of the current model’s active
configuration set and attaches it to the model as an alternate

4-12

attachConfigSet

configuration. In this example, Simulink uniquely renames the copy of
the configuration set since allowRename is true.

activeConfig = getActiveConfigSet(gcs);
develConfig = activeConfig.copy;
attachConfigSet(gcs, develConfig, true);

See Also attachConfigSetCopy, getActiveConfigSet, getConfigSet,
detachConfigSet

4-13

attachConfigSetCopy

Purpose Copies a configuration set and associates it with a model

Syntax newConfigSet = attachConfigSetCopy('model', configSet)
newConfigSet = attachConfigSetCopy('model', configSet, ...

allowRename)

Description newConfigSet = attachConfigSetCopy('model', configSet) copies
the Simulink.ConfigSet object specified by configSet and associates
the copy with 'model', where 'model' is the name of an open model.
Simulink returns the copied configuration set as newConfigSet.

Note You cannot attach a configuration set to a model if the
configuration set has the same name as another configuration set
attached to the same model.

newConfigSet = attachConfigSetCopy('model', configSet,
allowRename) copies and associates a configuration set with a model
as described previously. allowRename is a boolean argument that
determines how Simulink handles a name conflict among configuration
sets. If allowRename is false and the configuration set specified by
configSet has the same name as another configuration set attached
to 'model', Simulink generates an error. If allowRename is true and
Simulink detects a name conflict, Simulink provides a unique name for
the copy of configSet before associating it with 'model'. Simulink
returns the copied configuration set as newConfigSet.

Examples The following example uniquely renames the active configuration set of
modelA, copies it, and attaches the copy to modelB.

activeConfigA = getActiveConfigSet('modelA');
activeConfigA.Name = 'myactiveConfigA';
newConfig = attachConfigSetCopy('modelB', activeConfigA);

The following example creates a copy of the current model’s active
configuration set and attaches it to the model as an alternate

4-14

attachConfigSetCopy

configuration. In this example, Simulink uniquely renames the copy of
the configuration set since allowRename is true.

activeConfig = getActiveConfigSet(gcs);
newConfig = attachConfigSetCopy(gcs, activeConfig, true);

See Also attachConfigSet, getActiveConfigSet, getConfigSet,
detachConfigSet

4-15

bdclose

Purpose Close any or all Simulink system windows unconditionally

Syntax bdclose
bdclose('sys')
bdclose('all')

Description bdclose with no arguments closes the current system window
unconditionally and without confirmation. Any changes made to the
system since it was last saved are lost.

bdclose('sys') closes the specified system window.

bdclose('all') closes all system windows.

Examples This command closes the vdp system.

bdclose('vdp')

See Also close_system, new_system, open_system, save_system

4-16

bdroot

Purpose Return the name of the top-level Simulink system

Syntax bdroot
bdroot('obj')

Description bdroot with no arguments returns the top-level system name.

bdroot('obj'), where 'obj' is a system or block pathname, returns
the name of the top-level system containing the specified object name.

Examples This command returns the name of the top-level system that contains
the current block.

bdroot(gcb)

See Also find_system, gcb

4-17

close_system

Purpose Close a Simulink system window or a block dialog box

Syntax close_system
close_system('sys')
close_system('sys', saveflag)
close_system('sys', 'newname')
close_system('sys', 'newname','ErrorIfShadowed')
close_system('blk')

Description close_system with no arguments closes the current system or
subsystem window. If the current system is the top-level system and it
has been modified, close_system asks if the changed system should be
saved to a file before removing the system from memory. The current
system is defined in the description of the gcs command.

close_system('sys') closes the specified system or subsystem window.
This command displays an error if ’sys’ is a MATLAB keyword,
'simulink', or more than 63 characters long.

close_system('sys', saveflag) closes the specified top-level system
window and removes it from memory. If saveflag is 0, the system is
not saved.

close_system('sys', 'newname') saves the specified top-level system
to a file with the specified new name, then closes the system.

close_system('sys','newname','ErrorIfShadowed') saves the
specified top-level system to a file with the specified new name. This
command generates an error if the specified model name already exists
on the MATLAB path or workspace.

close_system('blk'), where 'blk' is a full block pathname, closes
the dialog box associated with the specified block or calls the block’s
CloseFcn callback parameter if one is defined. Any additional
arguments are ignored.

4-18

close_system

Examples This command closes the current system.

close_system

This command closes the vdp system.

close_system('vdp')

This command saves the engine system with its current name, then
closes it.

close_system('engine', 1)

This command saves the mymdl12 system under the new name testsys,
then closes it.

close_system('mymdl12', 'testsys')

This command tries to save the vdp system to a file with the name
'max', but returns an error because 'max' is the name of an existing
MATLAB function.

close_system('vdp','max','ErrorIfShadowed')

This command closes the dialog box of the Unit Delay block in the
Combustion subsystem of the engine system.

close_system('engine/Combustion/Unit Delay')

Note The close_system command cannot be used in a block or menu
callback to close the root-level model. Attempting to close the root-level
model in a block or menu callback results in an error and discontinues
the callback’s execution.

See Also bdclose, gcs, new_system, open_system, save_system

4-19

closeDialog

Purpose Close configuration set dialog

Syntax closeDialog(ConfigSet)

Description closeDialog(ConfigSet) closes a configuration parameter dialog for
the Simulink.ConfigSet object specified by configSet.

Examples The following example creates an instance of a configuration set
object, gets the configuration set for the current model, and opens the
configuration parameter dialog for the active configuration set.

cs=Simulink.ConfigSet;
cs=getActiveConfigSet(gcs);
openDialog(cs);
closeDialog(cs);

See Also openDialog

4-20

delete_block

Purpose Delete a block from a Simulink system

Syntax delete_block('blk')

Description delete_block('blk'), where 'blk' is a full block pathname, deletes
the specified block from a system.

Examples This command removes the Out1 block from the vdp system.

delete_block('vdp/Out1')

See Also add_block

4-21

delete_line

Purpose Delete a line from a Simulink system

Syntax delete_line('sys', 'oport', 'iport')
delete_line('system', [x y])
delete_line('handle')

Description delete_line('sys', 'oport', 'iport') deletes the line extending
from the specified block output port 'oport' to the specified block
input port 'iport'. 'oport' and 'iport' are strings consisting
of a block name and a port identifier in the form 'block/port'.
Most block ports are identified by numbering the ports from top
to bottom or from left to right, such as 'Gain/1' or 'Sum/2'.
Enable, Trigger, and State ports are identified by name, such
as 'subsystem_name/Enable', 'subsystem_name/Trigger',
'Integrator/State', or if_action_subsystem_name/Ifaction'.

delete_line('sys', [x y]) deletes one of the lines in the system that
contains the specified point (x,y), if any such line exists.

delete_line('system', [x y]) deletes all of the lines in the system
that contain the specified point, including any branches.

delete_line('handle') deletes the line specified by the handle,
'handle'.

Examples This command removes the line from the mymodel system connecting
the Sum block to the second input of the Mux block.

delete_line('mymodel','Sum/1','Mux/2')

See Also add_line

4-22

delete_param

Purpose Delete a system parameter added via the add_param command

Syntax delete_param('sys','parameter1','parameter2',...)

Description This command deletes parameters that were added to the system using
the add_param command. The command displays an error message if a
specified parameter was not added with the add_param command.

Examples The following example

add_param('vdp','DemoName','VanDerPolEquation','EquationOrder','2')

delete_param('vdp','DemoName')

adds the parameters DemoName and EquationOrder to the vdp system,
then deletes DemoName from the system.

See Also add_param

4-23

detachConfigSet

Purpose Dissociates a configuration set from a model

Syntax detachConfigSet('model', 'configSetName')

detachConfigSet('model', 'configSetName') disassociates the
Simulink.ConfigSet object specified by 'configSetName’, where
ConfigSetName is the name of a configuration set, from 'model', where
model is the name of an open model.

Examples The following example creates a copy of the vdp model’s active
configuration set, attaches it to the model, then detaches it.

vdp
x=Simulink.ConfigSet;
x.Name='new config';
attachConfigSet('vdp',x);
detachConfigSet('vdp','new config');

See Also attachConfigSet

4-24

docblock

Purpose Get or set the editor invoked by the Simulink DocBlock

Syntax docblock('setEditorHTML', editCmd)
docblock('setEditorDOC', editCmd)
docblock('setEditorTXT', editCmd)
editCmd = docblock('getEditorHTML')
editCmd = docblock('getEditorDOC')
editCmd = docblock('getEditorTXT')

Description docblock('setEditorHTML', editCmd) sets the HTML editor invoked
by the DocBlock. The editCmd string specifies a command, executed
at the MATLAB prompt, which launches a custom HTML editor. By
default, the DocBlock invokes Microsoft Word (if available) as the
HTML editor; otherwise, it opens HTML documents using the editor
you specified on the Editor/Debugger Preferences pane of the
Preferences dialog box.

docblock('setEditorDOC', editCmd) sets the Rich Text Format
(RTF) editor invoked by the DocBlock. The editCmd string specifies
a command, executed at the MATLAB prompt, which launches a
custom RTF editor. By default, the DocBlock invokes Microsoft Word
(if available) as the RTF editor; otherwise, it opens RTF documents
using the editor you specified on the Editor/Debugger Preferences
pane of the Preferences dialog box.

docblock('setEditorTXT', editCmd) sets the text editor invoked by
the DocBlock. The editCmd string specifies a command, executed at the
MATLAB prompt, which launches a custom text editor. By default, the
DocBlock invokes the editor you specified on the Editor/Debugger
Preferences pane of the Preferences dialog box.

editCmd = docblock('getEditorHTML') returns the value of the
current command used to invoke an HTML editor when double-clicking
the DocBlock.

editCmd = docblock('getEditorDOC') returns the value of the
current command used to invoke a RTF editor when double-clicking
the DocBlock.

4-25

docblock

editCmd = docblock('getEditorTXT') returns the value of the
current command used to invoke a text editor when double-clicking
the DocBlock.

Note Use the "%<FileName>" token in the editCmd string to represent
the full pathname to the document. Use the empty string '' as the
editCmd to reset the DocBlock to its default editor for a particular
document type.

Examples This command specifies Microsoft Notepad as the DocBlock editor for
RTF documents.

docblock('setEditorRTF','system(''notepad "%<FileName>"'');')

This command resets the DocBlock to use its default editor for RTF
documents.

docblock('setEditorRTF','')

This command specifies Mozilla Composer as the HTML editor for the
DocBlock.

docblock('setEditorHTML','system(''/usr/local/bin/mozilla ...
-edit "%<FileName>" &'');')

4-26

find_mdlrefs

Purpose Find the Model blocks in a model and the models that the Model blocks
reference

Syntax [refMdls, mdlBlks] = find_mdlrefs('modelName')
[refMdls, mdlBlks] = find_mdlrefs('modelName', true)
[refMdls, mdlBlks] = find_mdlrefs('modelName', false)

Description [refMdls, mdlBlks] = find_mdlrefs('modelName') or
find_mdlrefs('modelName', true) finds all Model blocks contained
by and models referenced by 'modelName' directly or indirectly (i.e., via
models referenced by 'modelName'. The commands output arguments
are

• refMdls

List of models. The last element in the list is 'modelName'. The other
elements are the names of models referenced by 'modelName'.

• mdlBlks

Names of Model blocks contained by 'modelName' and the models
that it references directly or indirectly.

[refMdls, mdlBlks] = find_mdlrefs(modelName, false) finds only
the Model blocks and models directly referenced by 'modelName'.

Examples Open the sldemo_mdlref_basic demo. Then execute

>> [r, b] = find_mdlrefs('sldemo_mdlref_basic')

r =
'sldemo_mdlref_counter'
'sldemo_mdlref_basic'

b =
'sldemo_mdlref_basic/CounterA'
'sldemo_mdlref_basic/CounterB'

4-27

find_mdlrefs

'sldemo_mdlref_basic/CounterC'

See Also view_mdlrefs

4-28

find_system

Purpose Find systems, blocks, lines, ports, and annotations

Syntax find_system(sys, 'c1', cv1, 'c2', cv2,...'p1',
v1, 'p2', v2,...)

Description find_system(sys, 'c1', cv1, 'c2', cv2,...'p1', v1, 'p2',
v2,...) searches the systems or subsystems specified by sys, using
the constraints specified by c1, c2, etc., and returns handles or paths
to the objects whose parameters, p1, p2, etc., have the values, v1, v2,
etc. sys can be a pathname (or cell array of pathnames), a handle (or
vector of handles), or omitted. If you specify 'BlockDialogParams' as
the parameter name , find_system searches for all blocks that have
a parameter that has the specified value and appears in the block’s
dialog box.

Note All the search constraints must precede all the property-value
pairs in the argument list.

If sys is a pathname or cell array of pathnames, find_system returns
a cell array of pathnames of the objects it finds. If sys is a handle or
a vector of handles, find_system returns a vector of handles to the
objects that it finds. If sys is omitted, find_system searches all open
systems and returns a cell array of pathnames.

Case is ignored for parameter names. Value strings are case sensitive by
default (see the ’CaseSensitive’ search constraint for more information).
Any parameters that correspond to dialog box entries have string
values. See Chapter 10, “Model and Block Parameters” for a list of
model and block parameters.

You can specify any of the following search constraints.

4-29

find_system

Name Value Type Description

’SearchDepth’ scalar Restricts the search depth to the
specified level (0 for open systems
only, 1 for blocks and subsystems
of the top-level system, 2 for the
top-level system and its children,
etc.). The default is all levels.

'LookUnderMasks' 'none' Search skips masked blocks.

{'graphical'} Search includes masked blocks
that have no workspaces and no
dialogs. This is the default.

'functional' Search includes masked blocks
that do not have dialogs.

'all' Search includes all masked blocks.

'FollowLinks' 'on'| {'off'} If 'on', search follows links into
library blocks. The default is
'off'.

'FindAll' 'on'| {'off'} If 'on', search extends to lines,
ports, and annotations within
systems. The default is 'off'.
Note that find_system returns a
vector of handles when this option
is 'on', regardless of the array
type of sys.

'CaseSensitive' {'on'}| 'off' If 'on', search considers case
when matching search strings.
The default is 'on'.

'RegExp' 'on'| {'off'} If 'on', search treats search
expressions as regular
expressions. The default is'off'.

4-30

find_system

The table encloses default constraint values in brackets. If a
'constraint' is omitted, find_system uses the default constraint
value.

By default, find_system attempts to load any partially loaded models.
When a PreLoadFcn callback invokes find_system, find_system tries
to load the calling model, causing recursive load warnings. To prevent
this warning, disable the model loading property of find_system. Turn
off the LoadFullyIfNeeded property, as follows:

find_system(gcs,'LoadFullyIfNeeded','off','PropertyName','PropertyValue')

Examples This command returns a cell array containing the names of all open
systems and blocks.

find_system

This command returns the names of all open block diagrams.

open_bd = find_system('type', 'block_diagram')

This command returns the names of all Goto blocks that are children of
the Unlocked subsystem in the clutch system.

find_system('clutch/
Unlocked','SearchDepth',1,'BlockType','Goto')

These commands return the names of all Gain blocks in the vdp system
having a Gain parameter value of 1.

gb = find_system('vdp', 'BlockType', 'Gain')
find_system(gb, 'Gain', '1')

The preceding commands are equivalent to this command:

find_system('vdp', 'BlockType', 'Gain', 'Gain', '1')

4-31

find_system

These commands obtain the handles of all lines and annotations in
the vdp system.

sys = get_param('vdp', 'Handle');
l = find_system(sys, 'FindAll', 'on', 'type', 'line');
a = find_system(sys, 'FindAll', 'on', 'type',
'annotation');

Searching
with
Regular
Expressions

If you specify the 'RegExp' constraint as 'on', find_system treats
search value strings as regular expressions. A regular expression
is a string of characters in which some characters have special
pattern-matching significance. For example, a period (.) in a regular
expression matches not only itself but any other character.

Regular expressions greatly expand the types of searches you can
perform with find_system. For example, regular expressions allow you
to do partial-word searches. You can search for all objects that have a
specified parameter that contains or begins or ends with a specified
string of characters.

To use regular expressions effectively, you need to learn the meanings
of the special characters that regular expressions can contain. The
following table lists the special characters supported by find_subystem
and explains their usage.

Expression Usage

. Matches any character. For example, the string 'a.' matches 'aa',
'ab', 'ac', etc.

* Matches zero or more of preceding character. For example, 'ab*'
matches 'a', 'ab', 'abb', etc. The expression '.*' matches any
string, including the empty string.

+ Matches one or more of preceding character. For example, 'ab+'
matches 'ab', 'abb', etc.

^ Matches start of string. For example, '^a.*' matches any string
that starts with 'a'.

4-32

find_system

Expression Usage

$ Matches end of string. For example, '.*a$' matches any string that
ends with 'a'.

\ Causes the next character to be treated as an ordinary character.
This escape character lets regular expressions match expressions
that contain special characters. For example, the search string '\\'
matches any string containing a \ character.

[] Matches any one of a specified set of characters. For example,
'f[oa]r' matches 'for' and 'far'. Some characters have special
meaning within brackets. A hyphen (-) indicates a range of
characters to match. For example, '[a-zA-Z1-9]' matches any
alphanumeric character. A circumflex (^) indicates characters that
should not produce a match. For example, 'f[^i]r' matches 'far'
and 'for' but not 'fir'.

\w Matches a word character. (This is a shorthand expression for
[a-z_A-Z0-9].) For example, '^\w' matches 'mu' but not '&mu'.

\d Matches any digit (shorthand for [0-9]). For example, '\d+'
matches any integer.

\D Matches any nondigit (shorthand for [^0-9]).

\s Matches a white space (shorthand for [\t\r\n\f]).

\S Matches a non white-space (shorthand for [^ \t\r\n\f]).

\<WORD\> Matches WORD exactly, where WORD is a string of characters separated
by white space from other words. For example, '\<to\>' matches
'to' but not 'today'.

To use regular expressions to search Simulink systems, specify the
'regexp' search constraint as 'on' in a find_system command and
use a regular expression anywhere you would use an ordinary search
value string.

4-33

find_system

For example, the following command finds all the inport and outport
blocks in the clutch model demo provided with Simulink.

find_system('clutch', 'regexp', 'on', 'blocktype', 'port')

See Also get_param, set_param

4-34

gcb

Purpose Get the pathname of the current block

Syntax gcb
gcb('sys')

Description gcb returns the full block pathname of the current block in the current
system.

gcb('sys') returns the full block pathname of the current block in
the specified system.

The current block is one of these:

• During editing, the current block is the block most recently clicked.

• During simulation of a system that contains S-Function blocks,
the current block is the S-Function block currently executing its
corresponding MATLAB function.

• During callbacks, the current block is the block whose callback
routine is being executed.

• During evaluation of the MaskInitialization string, the current
block is the block whose mask is being evaluated.

Examples This command returns the path of the most recently selected block.

gcb
ans =

clutch/Locked/Inertia

This command gets the value of the Gain parameter of the current block.

get_param(gcb,'Gain')
ans =

1/(Iv+Ie)

See Also gcbh, gcs

4-35

gcbh

Purpose Get the handle of the current block

Syntax gcbh

Description gcbh returns the handle of the current block in the current system.

You can use this command to identify or address blocks that have no
parent system. The command should be most useful to blockset authors.

Examples This command returns the handle of the most recently selected block.

gcbh

ans =

281.0001

See Also gcb

4-36

gcs

Purpose Get the pathname of the current system

Syntax gcs

Description gcs returns the full pathname of the current system.

The current system is one of these:

• During editing, the current system is the system or subsystem most
recently clicked.

• During simulation of a system that contains S-Function blocks, the
current system is the system or subsystem containing the S-Function
block that is currently being evaluated.

• During callbacks, the current system is the system containing any
block whose callback routine is being executed.

• During evaluation of the MaskInitialization string, the current
system is the system containing the block whose mask is being
evaluated.

The current system is always the current model or a subsystem of the
current model. Use bdroot to get the current model.

Examples This example returns the path of the system that contains the most
recently selected block.

gcs
ans =

clutch/Locked

See Also bdroot, gcb

4-37

getActiveConfigSet

Purpose Get a model’s active configuration set.

Syntax getActiveConfigSet('model')

Description getActiveConfigSet('model') returns a Simulink.ConfigSet object
representing the active configuration set of 'model', where 'model' is
the name of an open model.

Examples The following command

cs = getActiveConfigSet(gcs);

returns the active configuration set of the currently selected model.

See Also attachConfigSet, setActiveConfigSet

4-38

getCallbackAnnotation

Purpose Get information about an annotation

Syntax getCallbackAnnotation

Description getCallbackAnnotation is intended to be invoked by annotation
callback functions. If it is invoked from an annotation callback function,
it returns an instance of Simulink.Annotation class that represents
the annotation associated with the callback function. The callback
function can then use the instance to get and set the annotation’s
properties, such as its text, font and color. If this function is not invoked
from an annotation callback function, it returns nothing, i.e., [].

4-39

getConfigSet

Purpose Get one of a model’s configuration sets

Syntax getConfigSet('model', configSetName)

Description getConfigSets('model', configSetName) returns a
Simulink.ConfigSet object representing the configuration
set named configSetName whose owner is 'model', where model is a
string specifying the name of a model.

Note Use getConfigSets to get the names of the configuration sets
owned by a model.

Examples The following command gets the configuration set of the currently
selected model whose name is 'DevelopmentConfiguration'.

hCs = getConfigSet(gcs, 'DevelomentConfiguration');

See Also attachConfigSet, getActiveConfigSet, getConfigSets,
setActiveConfigSet

4-40

getConfigSets

Purpose Get the names of a model’s configuration sets

Syntax getConfigSets('model')

Description getConfigSets('model') returns a cell array of strings specifying the
names of the configuration sets owned by 'model', where 'model' is
the name of a model.

Examples The following command displays the names of the configuration sets
owned by the current selected model at the MATLAB command line.

getConfigSets(gcs)

See Also attachConfigSet, setActiveConfigSet

4-41

get_param

Purpose Get system and block parameter values

Syntax get_param('obj', 'parameter')
get_param({ objects }, 'parameter')
get_param(handle, 'parameter')
get_param(0, 'parameter')
get_param('obj', 'ObjectParameters')
get_param('obj', 'DialogParameters')

Description get_param('obj', 'parameter'), where 'obj' is a system or
block pathname, returns the value of the specified parameter. Some
parameters are case-sensitive, and some are not. To prevent problems,
treat all parameters as case-sensitive.

get_param({ objects }, 'parameter') accepts a cell array of full
path specifiers, enabling you to get the values of a parameter common
to all objects specified in the cell array.

get_param(handle, 'parameter') returns the specified parameter of
the object whose handle is handle.

get_param(0, 'parameter') returns the current value of a Simulink
session parameter or the default value of a model or block parameter.

get_param('obj', 'ObjectParameters') returns a structure that
describes obj’s parameters. Each field of the returned structure
corresponds to a particular parameter and has the parameter’s name.
For example, the Name field corresponds to the object’s Name parameter.
Each parameter field itself contains three fields, Name, Type, and
Attributes, that specify the parameter’s name (for example, 'Gain'),
data type (for example, string), and attributes (for example, read-only),
respectively.

get_param('obj', 'DialogParameters') returns a cell array
containing the names of the dialog parameters of the specified block.

Chapter 10, “Model and Block Parameters” contains lists of model and
block parameters.

4-42

get_param

Examples This command returns the value of the Gain parameter for the Inertia
block in the Requisite Friction subsystem of the clutch system.

get_param('clutch/Requisite Friction/Inertia','Gain')
ans =

1/(Iv+Ie)

These commands display the block types of all blocks in the mx + b
system (the current system), described in “Masked Subsystem Example”
in “Using Simulink”.

blks = find_system(gcs, 'Type', 'block');
listblks = get_param(blks, 'BlockType')

listblks =

'SubSystem'
'Inport'
'Constant'
'Gain'
'Sum'
'Outport'

This command returns the name of the currently selected block.

get_param(gcb, 'Name')

The following commands get the attributes of the currently selected
block’s Name parameter.

p = get_param(gcb, 'ObjectParameters');
a = p.Name.Attributes

ans =
'read-write' 'always-save'

4-43

get_param

The following command gets the dialog parameters of a Sine Wave block.

p = get_param('untitled/Sine Wave', 'DialogParameters')
p =

'Amplitude'
'Frequency'
'Phase'
'SampleTime'

See Also find_system, set_param

4-44

legacy_code

Purpose Use Legacy Code Tool

Syntax legacy_code('help')
specs = legacy_code('initialize')
legacy_code('sfcn_cmex_generate', specs)
legacy_code('compile', specs)
legacy_code('sfcn_tlc_generate', specs)
legacy_code('rtwmakecfg_generate', specs)
legacy_code('slblock_generate', specs, modelname)

Description legacy_code('help') displays instructions for using Legacy Code Tool
in a context-sensitive help window.

specs = legacy_code('initialize') initializes the Legacy Code
Tool data structure, specs, used to define characteristics of existing C
code and specify properties of the S-function that the Legacy Code Tool
will create.

legacy_code('sfcn_cmex_generate', specs) generates an
S-function source file specified by the Legacy Code Tool data structure,
specs.

legacy_code('compile', specs) compiles the S-function specified by
the Legacy Code Tool data structure, specs.

legacy_code('sfcn_tlc_generate', specs) generates a TLC file
associated with the S-function specified by the Legacy Code Tool data
structure, specs. This option is relevant only if you use Real-Time
Workshop to generate code from your Simulink model. See “Real-Time
Workshop Target Language Compiler” for more information.

legacy_code('rtwmakecfg_generate', specs) generates a
rtwmakecfg.m file associated with the S-function specified by the
Legacy Code Tool data structure, specs. This option is relevant only
if you use Real-Time Workshop to generate code from your Simulink
model. See “Using the rtwmakecfg.m API” for more information.

legacy_code('slblock_generate', specs, modelname) generates
a masked S-Function block associated with the S-function specified by
the Legacy Code Tool data structure, specs. The block appears in the

4-45

legacy_code

Simulink model specified by modelname. If you omit modelname, the
block appears in an empty model editor window.

See “Legacy Code Tool” in the “Writing S-Functions” documentation
for more information.

4-46

libinfo

Purpose Get information about the library blocks referenced by a model

Syntax libdata = libinfo('sys')

Description libdata = libinfo('sys') returns information about library blocks
referenced by sys and all of the systems underneath it. The command
returns an array of structures that describes each library block
referenced by the model. Each structure has the following fields:

• Block

Path of the link to the library block.

• Library

Name of the library containing the referenced block.

• ReferenceBlock

Path of the library block.

• LinkStatus

Value of the LinkStatus parameter for the link to the library block.

This command also accepts search constraints as additional arguments.
For instance:

libdata=libinfo(Sys,'FollowLinks','off')

See find_system for more information.

4-47

load_system

Purpose Invisibly load a Simulink model

Syntax load_system('sys')

Description load_system('sys') loads 'sys', where sys is the name of a Simulink
model, into memory without making its model window visible.

Examples The command

load_system('vdp')

loads the vdp sample model into memory.

See Also close_system, open_system

4-48

modeladvisor

Purpose Open the Model Advisor

Syntax modeladvisor(model)

Description modeladvisor(model) opens the Model Advisor (see the “Consulting
the Model Advisor” in “Using Simulink”) on the model or subsystem
specified by model, where model is a path or handle to the model
or subsystem. If the specified model or subsystem is not open, this
command opens it.

Examples The command

modeladvisor('vdp')

opens the Model Advisor on the vdp demo model.

The command

modeladvisor('f14/Aircraft Dynamics Model')

opens the Model Advisor on the Aircraft Dynamics Model subsystem of
the f14 demo model. The command

modeladvisor(gcs)

opens the Model Advisor on the currently selected subsystem.

The command

modeladvisor(bdroot)

opens the Model Advisor on the currently selected model.

4-49

new_system

Purpose Create an empty Simulink system

Syntax new_system('sys')
new_system('sys', 'Model')
new_system('sys', 'Model', 'subsystem_path')
new_system('sys', 'Model', 'ErrorIfShadowed')
new_system('sys', 'Library')

Description new_system('sys') or new_system('sys', 'Model') creates an empty
system where 'sys' is the name of the new system. This command
displays an error if ’sys’ is a MATLAB keyword, 'simulink', or more
than 63 characters long.

new_system('sys', 'Model', 'subsystem_path') creates a system
from a subsystem where 'subsystem_path' is the full path of the
subsystem. The model that contains the subsystem must be open when
this command is executed.

new_system('sys', 'Model', 'ErrorIfShadowed') creates an empty
system having the specified name. This command generates an error
if another model, M-file, or variable of the same name exists on the
MATLAB path or workspace.

new_system('sys', 'Library') creates an empty library.

Note The new_system command does not open the window of the
system or library that it creates.

See Chapter 10, “Model and Block Parameters” for a list of the default
parameter values for the new system.

Examples This command creates a new system named 'mysys'.

new_system('mysys')

4-50

new_system

The command

new_system('mysys','Library')

creates, but does not open, a new library named 'sys'.

The command

new_system('vdp','Model','ErrorIfShadowed')

returns an error because 'vdp' is the name of a model on the MATLAB
path.

The commands

load_system('f14')
new_system('mycontroller','Model','f14/Controller')

create a new model named mycontroller that has the same contents as
does the subsystem named Controller in the f14 demo model.

See Also close_system, open_system, save_system

4-51

open_system

Purpose Open a Simulink system window or a block dialog box

Syntax open_system('sys')
open_system('blk')
open_system('blk', 'force')
open_system('blk', 'parameter')
open_system('blk', 'mask')
open_system('blk', 'OpenFcn')
open_system('sys', 'destsys', 'replace')
open_system('sys', 'destsys', reuse')

Description open_system('sys') opens the specified system or subsystem window,
where 'sys' is the name of a model on the MATLAB path, the fully
qualified pathname of a model, or the relative pathname of a subsystem
of an already open system (for example, engine/Combustion). On
UNIX, the fully qualified pathname of a model can start with a tilde
(~), signifying your home directory.

open_system('blk'), where 'blk' is a full block pathname, opens the
dialog box associated with the specified block. If the block’s OpenFcn
callback parameter is defined, the routine is evaluated.

open_system('blk', 'force'), where 'blk' is a full pathname or a
masked system, looks under the mask of the specified system. This
command is equivalent to using the Look Under Mask menu item.

open_system('blk', 'parameter') opens this block’s parameter dialog
box.

open_system('sys', 'mask') opens this block’s mask.

open_system('blk', 'OpenFcn') runs this block’s open function.

open_system('sys', 'destsys', 'replace') replaces the window
of the previously opened system destsys with the window of the
subsystem sys opened by this command. The location of the new
window is determined by the location of the destination system destsys
while the size of the window will match that used by sys.

4-52

open_system

open_system('sys', 'destsys', 'reuse') reuses the window of
the previously opened system destsys to display the contents of the
subsystem sys opened by this command. In this case, sys will be scaled
to fit within the window size determined by the destination system
destsys.

Note Use the MATLAB sprintf command to insert carriage return or
line feed characters into paths passed to the open_system command.
For example, the path to the Aircraft Dynamics Model subsystem of the
f14 demo model contains line feeds. To open the subsystem, enter the
following command at the MATLAB command line:

open_system(['f14/Aircraft' sprintf('\n') 'Dynamics' sprintf('\n') 'Model'])

Examples This command opens the controller system in its default screen
location.

open_system('controller');

This command opens the block dialog box for the Gain block in the
controller system.

open_system('controller/Gain');

This command opens f14 into the f14/Controller window using reuse
mode.

open_system('f14','f14/Controller','reuse');

Suppose that mymodel contains a masked subsystem, A, and a block, B,
whose OpenFcn contains the following lines:

open_system('mymodel/B', 'parameter');
open_system('mymodel/A', 'mask');

4-53

open_system

Then opening block B causes both the parameter dialog box for B and
the mask dialog box for A to appear.

See Also close_system, load_system, new_system, save_system

4-54

openDialog

Purpose Open configuration set dialog

Syntax openDialog(configSet)

Description openDialog(configSet) opens a configuration parameter dialog for
the Simulink.ConfigSet object specified by ConfigSet.

Examples The following example creates an instance of a configuration set
object, gets the configuration set for the current model, and opens the
configuration parameter dialog for the active configuration set.

cs=Simulink.ConfigSet;
cs=getActiveConfigSet(gcs);
openDialog(cs);

See Also closeDialog

4-55

replace_block

Purpose Replace blocks in a Simulink model

Syntax replace_block('sys', 'blk1', 'blk2', 'noprompt')
replace_block('sys', 'Parameter', 'value', 'blk', ...)

Description replace_block('sys', 'blk1', 'blk2') replaces all blocks in 'sys'
having the block or mask type 'blk1' with 'blk2'. If 'blk2' is a
Simulink built-in block, only the block name is necessary. If 'blk' is in
another system, its full block pathname is required. If 'noprompt' is
omitted, Simulink displays a dialog box that asks you to select matching
blocks before making the replacement. Specifying the 'noprompt'
argument suppresses the dialog box from being displayed. If a return
variable is specified, the paths of the replaced blocks are stored in that
variable.

replace_block('sys', 'Parameter', 'value', ..., 'blk')
replaces all blocks in 'sys' having the specified values for the specified
parameters with 'blk'. You can specify any number of parameter
name/value pairs.

Note Because it may be difficult to undo the changes this command
makes, it is a good idea to save your system first.

Examples This command replaces all Gain blocks in the f14 system with
Integrator blocks and stores the paths of the replaced blocks in
RepNames. Simulink lists the matching blocks in a dialog box before
making the replacement.

RepNames = replace_block('f14','Gain','Integrator')

4-56

replace_block

This command replaces all blocks in the Unlocked subsystem in the
clutch system having a Gain of 'bv' with the Integrator block.
Simulink displays a dialog box listing the matching blocks before
making the replacement.

replace_block('clutch/Unlocked','Gain','bv','Integrator')

This command replaces the Gain blocks in the f14 system with
Integrator blocks but does not display the dialog box.

replace_block('f14','Gain','Integrator','noprompt')

See Also find_system, set_param

4-57

save_system

Purpose Save a Simulink system

Syntax save_system
save_system('sys')
save_system('sys', 'newname')
save_system('sys', 'newname', 'BreakLinks')
save_system('sys', 'newname', 'SaveModelWorkspace')
save_system('sys', 'newname', 'BreakLinks', 'SaveModelWorkspace')
save_system('sys', 'newname', 'ErrorIfShadowed')
save_system('sys', 'newname', '', 'version')
save_system('sys', 'newname', 'BreakLinks', 'version')

Description save_system saves the current top-level system to a file with its current
name.

save_system('sys') saves the specified top-level system to a file with
its current name. The system must be open.

save_system('sys', 'newname') saves the specified top-level system
to a file with the specified new name. The system to be saved must be
open. The new name can be a file name, in which case Simulink saves
the system in the working directory, or a fully qualified pathname. On
UNIX, the fully qualified pathname can start with a tilde (~), signifying
your home directory. This command displays an error if you enter any
of the following as the new model name:

A MATLAB keyword
'simulink'
More than 63 characters

save_system('sys', 'newname', 'BreakLinks') saves the specified
top-level system to a file with the specified new name, replacing links
to library blocks with copies of the library blocks in the saved file. The
'BreakLinks' option affects any linked block, including user-defined
and Simulink library blocks.

save_system('sys', 'newname', 'SaveModelWorkspace') saves the
specified top-level system to a file with the specified new name. If the

4-58

save_system

model workspace DataSource is a MAT-file, this command also saves
the contents of the model workspace. ’SaveModelWorkspace’ is most
useful when DataSource is a MAT-file.

save_system('sys', 'newname',
'BreakLinks','SaveModelWorkspace') saves the
specified top-level system to a file with the specified new name,
replacing links to library blocks with copies of the library blocks in
the saved file. If the model workspace DataSource is a MAT-file,
this command also saves the contents of the model workspace.
'SaveModelWorkspace' is most useful when DataSource is a MAT-file.
The positions of 'BreakLinks' and 'SaveModelWorkspace' are
interchangeable.

save_system('sys', 'newname', 'ErrorIfShadowed',) saves the
specified top-level system to a file with the specified new name. This
command generates an error if the specified new name already exists
on the MATLAB path or workspace.

save_system('sys', 'newname', '', 'version') saves the specified
top-level system in a form that can be loaded by a specified version of
Simulink. Valid values for 'version' include 'R14', 'R13SP1', 'R13',
'R12P1', and 'R12'. If the system to be saved contains blocks not
supported by the specified Simulink version, the command replaces
the unsupported blocks with empty masked subsystem blocks colored
yellow. As a result, the converted system may generate incorrect results.

save_system('sys', 'newname', 'BreakLinks', 'version') saves
the specified top-level system with broken library links and in a form
compatible with a specified version of Simulink.

4-59

save_system

Note The 'BreakLinks' option should be used with caution as it can
result in compatibility issues when upgrading to newer versions of
Simulink. For example:

• Any masks on top of library links to Simulink S-functions will not
upgrade to the new version of the S-function

• Any library links to masked subsystems in a Simulink library will
not upgrade to the new subsystem behavior

• Any broken links prevent the automatic library forwarding
mechanism from upgrading the link

If you have saved a model with broken links, use the Check model,
local libraries, and referenced models for known upgrade
issues option in the Model Advisor to scan the model for out-of-date
blocks. You can then use the slupdate command to upgrade the
Simulink blocks to their current versions. Subsequently running the
Model Advisor lists any remaining third-party library and optional
Simulink blockset blocks that are still out of date and need to be
manually upgraded.

Examples This command saves the current system.

save_system

This command saves the vdp system.

save_system('vdp')

This command saves the vdp system to a file with the name 'myvdp'.

save_system('vdp', 'myvdp')

This command saves the vdp system to another directory.

save_system('vdp', 'C:\TMP\vdp.mdl')

4-60

save_system

This command saves the vdp system to a file with the name 'myvdp'
and replaces links to library blocks with copies of the library blocks
in the saved file.

save_system('vdp','myvdp','BreakLinks')

This command tries to save the vdp system to a file with the name
'max', but returns an error because 'max' is the name of a MATLAB
function.

save_system('vdp', 'max', 'ErrorIfShadowed')

This command saves the vdp system to Simulink Version R13SP1 with
the name 'myvdp'. It does not replace links to library blocks with
copies of the library blocks.

save_system('vdp','myvdp','','R13SP1)

See Also close_system, new_system, open_system

4-61

setActiveConfigSet

Purpose Sets a model’s active configuration set

Syntax setActiveConfigSet('model', 'configSetName')

Description setActiveConfigSet('model', 'configSetName') sets the active
configuration set of model, where model is the name of an open model,
to configSetName, where configSetName specifies the name of one of the
model’s configuration sets.

Examples The following example

setActiveConfigSet(gcs, 'develConfigSet');

makes it the active configuration set of the currently selected model.

See Also attachConfigSet, getActiveConfigSet

4-62

set_param

Purpose Set Simulink system and block parameters

Syntax set_param('obj', 'parameter1', value1, 'parameter2', value2, ...)
set_param(0, 'modelparm1', value1, 'modelparm2', value2, ...)

Description set_param('obj', 'parameter1', value1, 'parameter2',
value2, ...), where 'obj' is a system or block path, sets the specified
parameters to the specified values. Value strings are case sensitive.
Case is ignored for parameter names. Any parameters that correspond
to dialog box entries have string values. Model and block parameters
are listed in Chapter 10, “Model and Block Parameters”.

set_param(0, 'modelparm1', value1, 'modelparm2', value2,
...) sets the specified model parameters to default values, i.e., to
values that Simulink assigns to the parameters when it creates a model.
You can use this form of set_param in your MATLAB startup file to
specify your own default values for Simulink model parameters.

You can change block parameter values in the workspace during a
simulation and update the block diagram with these changes. To do
this, make the changes in the command window, then make the model
window the active window, then choose Update Diagram from the
Edit menu.

Note Most block parameter values must be specified as strings. Two
exceptions are the Position and UserData parameters, common to all
blocks.

Examples This command sets the Solver and StopTime parameters of the vdp
system.

set_param('vdp', 'Solver', 'ode15s', 'StopTime', '3000')

4-63

set_param

This command sets the Gain parameter of block Mu in the vdp system
to 1000.

set_param('vdp/Mu', 'Gain', '1000')

This command sets the position of the Fcn block in the vdp system.

set_param('vdp/Fcn', 'Position', [50 100 110 120])

This command sets the Zeros and Poles parameters for the Zero-Pole
block in the mymodel system.

set_param('mymodel/Zero-Pole','Zeros','[2 4]','Poles','[1 2 3]')

This command sets the Gain parameter for a block in a masked
subsystem. The variable k is associated with the Gain parameter.

set_param('mymodel/Subsystem', 'k', '10')

This command sets the OpenFcn callback parameter of the block named
Compute in system mymodel. The function 'my_open_fcn' executes
when you double-click on the Compute block (see “Using Callback
Functions”).

set_param('mymodel/Compute', 'OpenFcn', 'my_open_fcn')

See Also find_system, get_param

4-64

signalbuilder

Purpose Create and access Signal Builder blocks

Syntax [time, data] = signalbuilder(block)
[time, data, siglabels] = signalbuilder(block)
[time, data, siglabels, grouplabels] = signalbuilder(block)
block = signalbuilder([],'create', time, data, siglabels,
grouplabels)
block = signalbuilder(block,'append', time, data, siglabels,
grouplabels)
[time, data] = signalbuilder(block,'get', signal, group)
signalbuilder(block, 'set', signal, group, time, data)
index = signalbuilder(block, 'activegroup')
signalbuilder(block, 'activegroup', index)

Description [time, data] = signalbuilder(block) returns the time (x coordinate)
and amplitude (y coordinate) data of the Signal Builder block.

The output arguments, time and data, take different formats depending
on the block configuration:

Configuration Time/Data Format

1 signal, 1 group Row vector of break points.

>1 signal, 1 group Column cell vector where each element
corresponds to a separate signal and
contains a row vector of breakpoints.

1 signal, >1 group Row cell vector where each element
corresponds to a separate group and
contains a row vector of breakpoints.

>1 signal, >1 group Cell matrix where each element (i,j)
corresponds to signal i and group j.

[time, data, siglabels] = signalbuilder(block) returns the signal
labels, siglabels, in a string or a cell array of strings.

4-65

signalbuilder

[time, data, siglabels, grouplabels] = signalbuilder(block)
returns the group labels, grouplabels, in a string or a cell array of
strings.

block = signalbuilder([],'create', time, data, siglabels,
grouplabels) creates a Signal Builder block in a new Simulink model
using the specified values. If data is a cell array and time is a vector,
the time values are duplicated for each element of data. Each vector
in time and data must be the same length and have at least two
elements. If time is a cell array, all elements in a column must have
the same initial and final value. Signal labels, siglabels, and group
labels, grouplabels, can be omitted to use default values. The function
returns the path to the new block, block.

block = signalbuilder(block,'append', time, data, siglabels,
grouplabels) appends new groups to the Signal Builder block, block.
The time and data arguments must have the same number of signals
as the existing block.

Get/Set Methods for Specific Signals and Groups

[time, data] = signalbuilder(block,'get', signal, group) gets
the time and data values for the specified signal(s) and group(s). The
signal argument can be the name of a signal, a scalar index of a signal,
or an array of signal indices. The group argument can be a group label,
a scalar index, or an array of indices.

signalbuilder(block,'set', signal, group, time, data) sets the
time and data values for the specified signal(s) and group(s). Use empty
values of time and data to remove groups and signals.

Query and Set the Active Group

index = signalbuilder(block, 'activegroup') gets the index of
the active group.

signalbuilder(block, 'activegroup', index) sets the active group
index to index.

4-66

simulink

Purpose Open the Simulink block library

Syntax simulink
simulink('open')
simulink('close')

Description On Microsoft Windows, simulink or simulink('open') opens the
Simulink block library browser. On UNIX, the command opens the
Simulink library window. simulink('close') closes the library window.

4-67

Simulink.Bus.cellToObject

Purpose Convert a cell array containing bus information to bus objects

Syntax Simulink.Bus.cellToObject(busCell)

Description Simulink.Bus.cellToObject(busCell) creates a set of bus objects in the
MATLAB base workspace from a cell array of bus information.

See Also Simulink.Bus.save

4-68

Simulink.Bus.createObject

Purpose Creates bus objects for blocks

Syntax busInfo = Simulink.Bus.createObject(model, blks)
busInfo = Simulink.Bus.createObject(model, blks, 'fileName')
busInfo = Simulink.Bus.createObject(model, blks, 'fileName',
'format')

Description Simulink.Bus.createObject(model, blks, 'fileName', 'format'')
creates bus objects, i.e., instances of Simulink.Bus class, in the
MATLAB workspace for specified blocks and optionally saves the bus
objects in an M-file. The function accepts the following arguments:

• model — Name or handle of a model

• blks — List of subsystem-level Inport blocks, root-level or
subsystem-level Outport blocks or Bus Creator blocks in the specified
model. If only one block needs to be specified, this argument can be
the full pathname of the block. Otherwise, this argument can be
either a cell array containing block pathnames or a vector of block
handles.

• 'fileName' — Name of the file in which to save the bus objects
created by this function. If this argument is omitted, this function
does not save the created bus objects in a file.

• 'format' — Format used to store the bus objects. May be 'cell' or
'object' or omitted in which case 'cell' is assumed. Use cell array
format to save the objects in a compact form.

This function returns a structure array containing bus information for
the specified blocks. Each element of the structure array corresponds to
one of the specified blocks and contains the following fields:

• block — Handle of the block

• busName — Name of the bus object associated with the block

See Also Simulink.Bus.cellToObject, Simulink.Bus.save

4-69

Simulink.Bus.save

Purpose Save bus objects in an M-file

Syntax Simulink.Bus.save('fileName')
Simulink.Bus.save('fileName', 'format')
Simulink.Bus.save('fileName', 'format', busNames)

Description Simulink.Bus.save('fileName', 'format', busNames) saves bus
objects, i.e., instances of Simulink.Bus class, residing in the MATLAB
workspace in an M-file. Executing the M-file restores the objects to the
workspace. This function takes the following arguments:

• 'fileName' — Name of the file in which to store the bus objects

• 'format' — Format used to store the bus objects. May be 'cell' or
'object' or omitted in which case 'cell' is assumed. Use cell array
format to save the objects in a compact form.

• busNames — A cell array containing names of bus objects to be saved.
If the cell array is empty or omitted, this function saves all bus
objects in the MATLAB workspace.

See also Simulink.Bus.cellToObject

4-70

Simulink.SubSystem.convertToModelReference

Purpose Converts an atomic subsystem to a model reference

Syntax [success,mdlRefBlkH] =
Simulink.SubSystem.convertToModelReference(subsys,
mdlRef, 'opt1', 'val1', 'opt2', 'val2', ...)

Description [success,mdlRefBlkH] =
Simulink.SubSystem.convertToModelReference(subsys, mdlRef,
'opt1', 'val1', 'opt2', 'val2', ...) converts an atomic
subsystem to a model reference. It does this by creating a model, copying
the contents of the subsystem into the model, and reconfiguring the root
level Inport and Outport blocks and configuration parameters of the
new model. Then, based on its input arguments, this function either
replaces the subsystem block with a Model block that references the
new model, or it creates another, temporary model containing a Model
block that references the model derived from the subsystem block.

Note Execute

sldemo_mdlref_conversion

at the MATLAB command line for a demonstration of this command’s
usage.

To be converted, your model must specify the following configuration
parameter settings:

• The Inline parameters option in the Optimization pane must
be on.

• The Signal resolution option in the Data Validity diagnostics pane
must be set to Explicit only.

• The Mux blocks used to create bus signals diagnostic in the
Connectivity diagnostics pane must be set to Error.

4-71

Simulink.SubSystem.convertToModelReference

You can use the following commands to set these parameters to the
values required by this function:

set_param(mdlName, 'InlineParams', 'on');

set_param(mdlName, 'SignalResolutionControl', 'UseLocalSettings');

set_param(mdlName, 'StrictBusMsg', 'ErrorLevel1');

Note This function produces error or warning messages for models and
subsystems that it cannot handle. Even if conversion is successful,
you may still need to reconfigure the resulting model to meet your
requirements.

This function accepts the following arguments:

• subsys — Full name or handle of the atomic subsystem block to be
converted

• mdlRef — Name of the model to which the subsystem is to be
converted

• 'opt1', 'val1', 'opt2', 'val2'... — parameter/value pairs
that specify various conversion options. This function support the
following option pairs:

- 'Replace Subsystem', [true|{false}] — If the option value
is true, this function replaces the subsystem block with a Model
block that references the model created from the subsystem. If
you do not specify this option or specify its value as false, this
function creates and opens a model containing a Model block that
references the model derived from the subsystem block.

- 'BusSaveFormat', ['Cell' | 'Object'] — If this option is
specified, the function saves the bus objects that it creates in an
M-file. See Simulink.Bus.save for more information.

- 'BuildTarget', ['Sim' | 'RTW'] — If you specify this option,
this function generates a model reference Sim or RTW target for
the new model.

4-72

Simulink.SubSystem.convertToModelReference

- 'Force', [true|{false}] — If this parameter is true, this
function reports some errors that would halt the conversion
process as warnings and continues with the conversion. This
allows you to use this function to do the initial steps of conversion
and then complete the conversion process yourself. If you do not
specify this option or specify it as false, this function halts the
conversion if an error occurs.

This function returns the following outputs:

• success — True if this function is successful; otherwise, false.

• mdlRefBlkH — Handle of the Model block that references the new
model

See Also Simulink.Bus.save

4-73

slCharacterEncoding

Purpose Change the MATLAB character set encoding

Syntax slCharacterEncoding()
slCharacterEncoding(encoding)

Description This command allows you to change the current MATLAB character set
encoding to be compatible with the encoding of a model that you want
to open.

slCharacterEncoding() returns the current MATLAB character set
encoding.

slCharacterEncoding(encoding) change the MATLAB character set
encoding to the specified encoding. Valid values include:

• 'US-ASCII'

• 'UTF-8'

• 'Shift_JIS'

• 'ISO-8859-1'

To display a complete list of the names of character set encodings
supported by MATLAB and the characters supported by the encodings,
use the ICU Converter Explorer. The first column of the ICU Converter
Explorer lists the primary names of the character sets supported by
MATLAB. The remaining columns list aliases for the character sets.

4-74

http://www.ibm.com/software/globalization/icu/demo/converters

slCharacterEncoding

The slCharacterEncoding command accepts the aliases as well as
the primary names of character sets. To display a table listing the
characters supported by a character set and the encodings for the
characters, click the character set’s primary name in the ICU Converter
Explorer.

Note You must close all open models or libraries before changing
the MATLAB character set encoding except when changing from
'US-ASCII' to another encoding.

4-75

sldiscmdl

Purpose Discretize a Simulink model containing continuous blocks

Syntax sldiscmdl('sys',sampletime)
sldiscmdl('sys',sampletime,'method')
sldiscmdl('sys',sampletime,{options})
sldiscmdl('sys',sampletime,'method',cf)
sldiscmdl('sys',sampletime,'method',{options})
sldiscmdl('sys',sampletime,'method',cf,{options})

Description sldiscmdl('sys',sampletime) discretizes the model specified by 'sys'
and sampletime. You can enter a sample time and an offset as a
two-element vector for sampletime. The units for sampletime are
seconds.

sldiscmdl('sys',sampletime,'method') discretizes the model with the
transform method specified by 'method'. Available values for 'method'
are shown below:

Value Description

'zoh' Zero-order hold on the inputs (the default if
you do not specify a method)

'foh' First-order hold on the inputs

'tustin' Bilinear (Tustin) approximation

'prewarp' Tustin approximation with frequency
prewarping

'matched' Matched pole-zero method (for SISO
systems only)

sldiscmdl('sys',sampletime,{options}) discretizes the model with
the criteria specified by {options}, where {options} is a cell array
containing the following string elements:

{'target','ReplaceWith','PutInto','prompt'}

4-76

sldiscmdl

Available values for 'target' are shown below:

Value Description

'all' Discretize all continuous blocks

'selected' Discretize selected blocks only

'<full path name of
block>'

Discretize specified block

Available values for 'ReplaceWith' are shown below:

Value Description

'parammask' Create discrete blocks whose parameters
are retained from the corresponding
continuous block

'hardcoded' Create discrete blocks whose parameters
are “hard_coded” values placed directly into
the block’s dialog box.

Available values for 'PutInto' are shown below:

Value Description

'current' Apply discretization to current model

'configurable' Create discretization candidate in a
configurable subsystem

'untitled' Create discretization in a new untitled
window

'copy' Create discretization in copy of the original
model

Available values for 'prompt' are shown below:

4-77

sldiscmdl

Value Description

'on' Show the discretization information

'off' Do not show the discretization information

sldiscmdl('sys',sampletime,'method',cf) discretizes the model with
the critical frequency specified by cf. The units for cf are Hz. This is
only used when the transform method is 'prewarp'.

Examples This command discretizes all of the continuous blocks in the f14 model
with a 1 second sample time.

sldiscmdl('f14',1.0)

This command discretizes the Controller subsystem in the f14 model
using a first-order hold transform method with a 1–second sample
time and a 0.1–second sample time offset. The discretized block has
"hard-coded" parameters that are placed directly into the block’s dialog
box.

sldiscmdl('f14',[1.0 0.1],'foh',{'f14/Controller',...
'hardcoded','copy','on'})

This command discretizes the Controller subsystem in the f14 model
using a zero-order hold transform method with a 1–second sample time
and a 0.1–second sample time offset. It returns to the command window
a cell array for the original continuous blocks in the system and a cell
array for the discretized blocks in the system.

4-78

sldiscmdl

[a, b] = sldiscmdl('f14',[1.0 0.1],'zoh', {'f14/Controller',...
'hardcoded', 'copy', 'on'})
a =

[1x43 char] [1x37 char] [1x53 char] [1x30 char]

b =

[1x43 char] [1x37 char] [1x53 char] [1x30 char]

You can index into the cell arrays to get the new names of the discretized
blocks and the original names of the continuous blocks.

For example, this command returns the name of the second discretized
block.

b{2}

ans =

f14_disc_copy/Controller/Pitch Rate
Lead Filter

4-79

slmdldiscui

Purpose Open the Model Discretizer GUI

Syntax slmdldiscui('name')

Description slmdldiscui('name') opens the Model Discretizer with the library or
model specified by 'name'.

Examples This command opens the Model Discretizer with the f14 model.

slmdldiscui('f14')

This command opens the Model Discretizer with the library named Test.

slmdldiscui('Test')

4-80

slreplace_mux

Purpose Replace Mux blocks used to create buses with Bus Creator blocks

Syntax [muxes, uniqueMuxes, uniqueBds] = slreplace_mux(model,
reportonly)

Description slreplace_mux(model) or slreplace_mux(model, true) reports all
Mux blocks that create buses in model and in libraries referenced by
model.

A signal created by a Mux block is a bus if the signal meets either or
both of the following conditions:

• A Bus Selector block individually selects one or more of the signal’s
elements (as opposed to the entire signal).

• The signal’s components have different data types, numeric types
(complex or real), dimensionality, storage classes, or sampling modes.

Note Before running this command, you should set the Mux blocks
used to create bus signals connectivity diagnostic to warning or
none. See “Connectivity Diagnostics” for more information.

slreplace_mux(model, false) replaces all Mux blocks in model that
create buses, including Mux blocks in libraries, with Bus Creator blocks.
This command saves the model, if changed, and saves and closes any
library that it modifies.

Note You should make a backup copy of your model and libraries before
using this form of the command because it is difficult to undo its effects.

4-81

slreplace_mux

[muxes, uniqueMuxes, uniqueBds] = slreplace_mux(model)
returns the following output variables:

• muxes

All Mux blocks used as Bus Creators in the model and in libraries
referenced by the model

• uniqueMuxes

All Mux blocks used as Bus Creators in the model and in libraries
referenced by the model except blocks in the model that are copies of
blocks in libraries

• uniqueBds

Models and libraries that use Mux blocks as Bus Creators

4-82

slupdate

Purpose Replace blocks from previous releases with the latest versions

Syntax slupdate('sys')
slupdate('sys', prompt)
slupdate('sys', 'OperatingMode', 'Analyze')

Description slupdate('sys') replaces blocks in model sys from a previous release
of Simulink with the latest versions.

Note The model to be updated must be open when you call slupdate.

slupdate('sys', prompt) specifies whether to prompt you before
replacing a block. If prompt equals 1, the command prompts you before
replacing the block. The prompt asks whether you want to replace the
block. Valid responses are

• y

Replace the block (the default).

• n

Do not replace the block.

• a

Replace this and all subsequent obsolete blocks without further
prompting.

If prompt equals 0, the command replaces all obsolete blocks without
prompting you.

In addition to replacing obsolete blocks, slupdate

• Reconnects broken links to masked blocks in libraries provided by
the MathWorks to ensure that the model reflects changes made to the
blocks in this release. This will overwrite any customizations that
you have made to the masks of these blocks.

4-83

slupdate

• Updates obsolete configuration settings for the model.

slupdate('sys', 'OperatingMode', 'Analyze') performs only
the analysis portion without updating or changing the model. This
command analyzes referenced models, linked libraries, and S-functions,
and then returns a data structure with the following fields:

• Message — string containing a message summarizing the results

• blockList — cell array listing blocks that need to be updated

• blockReasons — cell array listing reasons for updating the
corresponding blocks

• modelList — cell array listing referenced models and the parent
model

• libraryList — cell array listing non-MathWorks libraries referenced

• configSetList — for internal use

• sfunList — cell array listing S-functions referenced

• sfunOK — logical array representing S-function status, where false
indicates that an S-function needs updating and true indicates
otherwise

• sfunType — cell array listing apparent S-function type (e.g., m, mex)

4-84

view_mdlrefs

Purpose Display a graph of model reference dependencies

Syntax view_mdlrefs('model_name')

Description view_mdlrefs('model_name') displays a graph of model reference
dependencies for the model specified by model_name. The nodes in the
graph represent Simulink models. The directed lines indicate model
dependencies. For more information, see the sldemo_mdlref_depgraph
demo.

See Also find_mdlrefs

4-85

5

Simulation Commands

The following section describes commands that you can use to run simulations
manually.

Task-Oriented Command List
(p. 5-2)

Simulation commands listed by the
tasks they perform.

Simulation Commands —
Alphabetical List (p. 5-4)

Simulation commands listed in
alphabetical order.

5 Simulation Commands

Task-Oriented Command List
This table lists the tasks performed by commands described in this section.
An alphabetical list follows.

Task Command

Simulate a dynamic system
represented by a Simulink
model.

sim

Get simulation options. simget

Set simulation options. simset

Plot simulation output. simplot

Execute a particular phase of
the simulation of a model.

model

Display diagnostic
information about a Simulink
system.

sldiagnostics

Build simulation targets for
models referenced by this
model.

slbuild

Unpack a signal log. unpack

List the names of signal
logging objects in a signal log
container object.

who

List the names and types of
signal logging objects in a
signal log container object.

whos

Register a listener for a block
method execution event.

add_exec_event_listener

Get checksum data for a
model.

Simulink.BlockDiagram.getChecksum

5-2

Task-Oriented Command List

Task Command

Get initial state structure of a
block diagram

Simulink.BlockDiagram.getInitialState

Get checksum data for a
subsystem.

Simulink.SubSystem.getChecksum

5-3

5 Simulation Commands

Simulation Commands — Alphabetical List

5-4

add_exec_event_listener

Purpose Register a listener for a block method execution event

Syntax h = add_exec_event_listener(blk, event, listener);

Description h = add_exec_event_listener(blk, event, listener) registers a
listener for a block method execution event where the listener is an
M-file program that performs some task, such as logging runtime data
for a block, when the event occurs (see “Listening for Method Execution
Events” in “Using Simulink” for more information). Simulink invokes
the registered listener whenever the specified event occurs during
simulation of the model.

Note Simulink can register a listener only while a simulation is
running. Invoking this function when no simulation is running results
in an error message. To ensure that a listener catches all relevant events
triggered by a model’s simulation, you should register the listener in the
model’s StartFcn callback function (see “Model Callback Functions”).

Arguments blk
Specifies the block whose method execution event the listener is
intended to handle. May be one of the following:

• Full pathname of a block

• A block handle

• A block runtime object (see “Accessing Block Data During
Simulation” in “Using Simulink”.)

event
Specifies the type of event for which the listener listens. It may
be any of the following:

5-5

add_exec_event_listener

Event Occurs...

'PreDerivatives' Before a block’s Derivatives
method executes

'PostDerivatives' After a block’s Derivatives
method executes

'PreOutputs' Before a block’s Outputs
method executes.

'PostOutputs' After a block’s Outputs method
executes

'PreUpdate' Before a block’s Update
method executes

'PostUpdate' After a block’s Update method
executes

listener
Specifies the listener to be registered. It may be either a string
specifying a MATLAB expression, e.g., 'disp(''here'')' or
a handle to a MATLAB function that accepts two arguments.
The first argument is the block runtime object of the block that
triggered the event. The second argument is an instance of
EventData class that specifies the runtime object and the name
of the event that just occurred.

Return
Value

add_exec_event_listener returns a handle to the listener that it
registered. To stop listening for an event, use the MATLAB clear
command to clear the listener handle from the workspace in which the
listener was registered.

5-6

model

Purpose Execute a particular phase of the simulation of a model

Syntax [sys,x0,str,ts] = model([],[],[],'sizes');
[sys,x0,str,ts] = model([],[],[],'compile');
outputs = model(t,x,u,'outputs');
derivs = model(t,x,u,'derivs');
dstates = model(t,x,u,'update');
model([],[],[],'term');

Description The model command executes a specific phase of the simulation of a
Simulink model whose name is model. The command’s last (flag)
argument specifies the phase of the simulation to be executed. See
“Simulating Dynamic Systems” for a description of the steps that
Simulink uses to simulate a model.

This command is intended to allow linear analysis and other M-file
program-based tools to run a simulation step by step, gathering
information about the model’s states and outputs at each step. It is not
intended to be used to run a model step by step, for example, to debug a
model. Use the Simulink debugger if you need to examine intermediate
results to debug a model.

5-7

model

Arguments

sys Vector of model size data:

• sys(1) = number of continuous states

• sys(2) = number of discrete states

• sys(3) = number of outputs

• sys(4) = number of inputs

• sys(5) = reserved

• sys(6) = direct-feedthrough flag (1 =
yes, 0 = no)

• sys(7) = number of sample times (=
number of rows in ts)

x0 Vector containing the initial conditions of
the system’s states

str Vector of names of the blocks associated
with the model’s states. The state names
and initial conditions appear in the same
order in str and x0, respectively.

ts An m-by-2 matrix containing the sample
time (period, offset) information

outputs Outputs of the model at time step t.

derivs Derivatives of the continuous states of
the model at time t.

dstates Discrete states of the model at time t.

t Time step

x State vector

5-8

model

u Inputs

flag String that indicates the simulation
phase to be executed:

• 'sizes' executes the size computation
phase of the simulation. This phase
determines the sizes of the model’s
inputs, outputs, state vector, etc.

• 'compile' executes the compilation
phase of the simulation. The
compilation phase propagates signal
and sample time attributes. It is
equivalent to selecting the Update
Diagram (Ctrl-D) option from the
Simulink Edit menu.

• 'update' computes the next values of
the model’s discrete states.

• 'outputs' computes the outputs of the
model’s blocks at time t.

• 'derivs'computes the derivatives of
the model’s continuous states at time
step t.

• 'term' causes Simulink to terminate
simulation of the model.

Examples This command executes the compilation phase of the vdp model that
comes with Simulink.

vdp([], [], [], 'compile')

5-9

model

The following command terminates the simulation initiated in the
previous example.

vdp([], [], [], 'term')

Note You must always terminate simulation of the model by invoking
the model command with the 'term' command. Simulink does not let
you close the model until you have terminated the simulation.

See Also sim

5-10

sim

Purpose Simulate a dynamic system

Syntax [t,x,y] = sim(model,timespan,options,ut);
[t,x,y1, y2, ..., yn] = sim(model,timespan,options,ut);

Description The sim command executes a Simulink model, using all Configuration
Parameters dialog box settings, including the options specified on
the Data Import/Export pane.

You can supply a null ([]) matrix for any right-side argument except
the first (the model name). The sim command uses default values
for unspecified arguments and arguments specified as null matrices.
The default values are the values specified by the model. You can set
optional simulation parameters, using the sim command’s options
argument. Parameters set in this way override parameters specified by
the model.

If you do not specify the left side arguments, the command logs the
simulation data specified by the Data Import/Export pane of the
Configuration Parameters dialog box (see “Data Import/Export
Pane” in “Using Simulink”).

If you want to simulate a continuous system, you must specify
the solver parameter, using simset. The solver defaults to
VariableStepDiscrete for purely discrete models.

5-11

sim

Note The base workspace for a simulation launched by the sim
command is the MATLAB workspace by default, with one exception.
The exception is that the default workspace for To Workspace blocks is
the current workspace, i.e., the workspace of the function that invoked
the sim command. You can use the DstWorkspace and SrcWorkspace
options of the sim command (see simset) to change these defaults. For
example, suppose that you want to use the workspace of the function
that invokes the sim command as the base workspace of the simulation.
To do this, specify current as the value of the DstWorkspace and
SrcWorkspace options.

Arguments t Returns the simulation’s time vector.

x Returns the simulation’s state matrix consisting
of continuous states followed by discrete states.

y Returns the simulation’s output matrix. Each
column contains the output of a root-level
Outport block, in port number order. If any
Outport block has a vector input, its output
takes the appropriate number of columns.

y1,...,yn Each yi returns the output of the corresponding
root-level Outport block for a model that has
n such blocks.

model Name of a block diagram.

5-12

sim

timespan Simulation start and stop time. Specify as one
of these:

tFinal to specify the stop time. The start time
is 0.

[tStart tFinal] to specify the start and stop
times.

[tStart OutputTimes tFinal] to specify the
start and stop times and time points to be
returned in t. Generally, t will include more
time points. OutputTimes is equivalent to
choosing Produce additional output on the
dialog box.

options Optional simulation parameters specified as a
structure created by the simset command (see
simset).

ut Optional external inputs to top-level Inport
blocks. ut can be a MATLAB function
(expressed as a string) that specifies the input
u = UT(t) at each simulation time step, a
table of input values versus time for all input
ports, or a comma-separated list of tables, ut1,
ut2, ..., each of which corresponds to a specific
port. Tabular input for all ports can be in
the form of a MATLAB array or a structure.
Tabular input for individual ports must be in
the form of a structure. See “Importing Data
from the MATLAB Workspace” in the online
documentation for a description of the array
and structure input formats.

Examples This command simulates the Van der Pol equations, using the vdp model
that comes with Simulink. The command uses all default parameters.

[t,x,y] = sim('vdp')

5-13

sim

This command simulates the Van der Pol equations, using the
parameter values associated with the vdp model, but defines a value
for the Refine parameter.

[t,x,y] = sim('vdp', [], simset('Refine',2));

This command simulates the Van der Pol equations for 1,000 seconds,
saving the last 100 rows of the return variables. The simulation outputs
values for t and y only, but saves the final state vector in a variable
called xFinal.

[t,x,y] = sim('vdp', 1000, simset('MaxRows', 100,
'OutputVariables', 'ty', 'FinalStateName', 'xFinal'));

See Also simset, simget

5-14

simplot

Purpose Plot simulation data in a figure window

Syntax simplot(data);
simplot(time, data);

Description The simplot command plots output from a simulation in a Handle
Graphics® figure window. The plot looks like the display on the screen
of a Scope block. Plotting the output on a figure window allows you
to annotate and print the output.

Arguments data Data produced by one of the Simulink output
blocks (for example, a root-level Outport block
or a To Workspace block) or in one of the output
formats used by those blocks: Array, Structure,
Structure with time (see “Data Import/Export
Pane” in “Using Simulink”).

time The vector of sample times produced by an output
block when you have selected Array or Structure
as the simulation’s output format. The simplot
command ignores this argument if the format of
the data is Structure with time.

Examples The following sequence of commands

vdp
set_param(gcs, 'SaveOutput', 'on')
set_param(gcs, 'SaveFormat', 'StructureWithTime')
sim(gcs)
simplot(yout)

5-15

simplot

plots the output of the vdp demo model on a figure window as follows.

See Also sim, set_param

5-16

simget

Purpose Get settings of a model’s simulation parameters

Syntax struct = simget(model)
value = simget(model, 'param')
value = simget(OptionStructure, param)
simget

Description struct = simget(model) returns the current simulation parameter
settings for the specified model as a structure compatible with
the options argument of the sim command. You can use this
command along with the simset command to override model-specified
simulation options for a particular simulation run. See simset for
more information. If the model uses a workspace variable to specify
a simulation parameter, simget returns the variable’s value, not its
name. If the variable does not exist in the workspace, Simulink issues
an error message.

value = simget(model, 'param') returns the value of the simulation
parameter, 'param', specified by the model, model.

value = simget(OptionStructure, param) extracts the value of the
specified simulation parameter from OptionStructure, returning an
empty matrix if the value is not specified in the structure. param can
be a cell array containing a list of parameter names. If a cell array is
used, the output is also a cell array.

simget returns a structure containing the names of simulation
parameters recognized by the simget command.

You need to enter only as many leading characters of a property name
as are necessary to identify it.

Examples This command retrieves the simulation options for the vdp model.

options = simget('vdp');

5-17

simget

This command retrieves the value of the Refine property for the vdp
model.

refine = simget('vdp', 'Refine');

See Also sim, simset

5-18

simset

Purpose Specify simulation options for simulations run via the sim command

Syntax options = simset(param, value, ...);
options = simset(old_opstruct, param, value, ...);
options = simset(old_opstruct, new_opstruct);
simset

Description The simset command creates and returns the structure required by the
options argument of the sim command. The structure specifies the
simulation parameter values to be used for the simulation run initiated
by the sim command to which the structure is passed.

Note The parameter values specified by the structure apply only to the
simulation run initiated by the sim command to which the structure
is passed. They override the permanent values of the simulation
parameters for that simulation run. If you want to set the permanent
value of a simulation parameter, use the Model Editor’s Configuration
Parameters dialog box or the set_param command.

You can enter the values of the parameters as paired arguments of
the simset command, e.g., 'Debug', 'on'. You need enter only as
many leading characters as are necessary to identify a parameter. The
structure contains default values for parameters that you do not specify.

options = simset(param, value, ...) returns an options structure
containing the specified values for the specified parameters and default
values for unspecified parameters.

options = simset(old_opstruct, param, value, ...) modifies
the specified parameters in old_opstruct, an existing structure. You
can use this form of the command to override the values of simulation
parameters specified by the model to be simulated. To do this, use the
simget command to get the settings specified by the model and pass the
settings to simset along with the parameters that you want to override.

5-19

simset

options = simset(old_opstruct, new_opstruct) combines two
existing options structures, old_opstruct and new_opstruct, into
options. Any properties defined in new_opstruct overwrite the same
properties defined in old_opstruct.

simset with no input arguments displays all parameter names and
values that the simset command can specify

If a parameter is set twice within one call to the simset command, the
last value in the list is used. For example:

simset('MaxStep', 0.01, 'MaxStep', 0.02)

assigns the final value of 0.02 to the MaxStep property.

Parameters AbsTol positive scalar {1e-6}
Absolute error tolerance. This scalar applies to all elements of the
state vector. AbsTol applies only to the variable-step solvers.

Debug 'on' | {'off'} | cmds
Debug. Starts the simulation in debug mode (see “Starting the
Debugger” in “Using Simulink” for more information). The value
of this option can be a cell array of commands to be sent to the
debugger after it starts, e.g.,

opts = simset('debug', ...
{'strace 4', ...
'diary solvertrace.txt', ...
'cont', ...
'diary off', ...
'cont'})

sim('vdp',[], opts);

Decimation positive integer {1}
Decimation for output variables. Decimation factor applied to
the return variables t, x, and y. A decimation factor of 1 returns
every data logging time point, a decimation factor of 2 returns
every other data logging time point, etc.

5-20

simset

DstWorkspace base | {current} | parent
Where to assign variables. Specifies the workspace in which to
assign any variables defined as return variables or as output
variables on the To Workspace block.

ExtrapolationOrder 1 | 2 | 3 | {4}
ode14x extrapolation order. Specifies extrapolation order of the
ode14x implicit fixed-step solver.

FinalStateName string {''}
Name of final states variable. This property specifies the name of
a variable in which Simulink saves the model’s states at the end
of the simulation.

FixedStep positive scalar
Fixed step size. This property applies only to the fixed-step solvers.
If the model contains discrete components, the default is the
fundamental sample time; otherwise, the default is one-fiftieth of
the simulation interval.

InitialState vector {[]}
Initial continuous and discrete states. The initial state vector
consists of the continuous states (if any) followed by the discrete
states (if any). InitialState supersedes the initial states specified
in the model. The default, an empty matrix, causes the initial
state values specified in the model to be used. The initial state
values can be specified using either an array, structure, or
structure-with-time format. See Importing and Exporting States
for more information.

InitialStep positive scalar {auto}
Suggested initial step size. This property applies only to the
variable-step solvers. The solvers try a step size of InitialStep
first. By default, the solvers determine an initial step size
automatically.

MaxOrder 1 | 2 | 3 | 4 | {5}
Maximum order of ode15s. This property applies only to ode15s.

5-21

simset

MaxDataPoints nonnegative integer {0}
Limit number of output data points. This property limits
the number of data points returned in t, x, and y to the last
MaxDataPoints data logging time points. If specified as 0, the
default, no limit is imposed.

MaxStep positive scalar {auto}
Upper bound on the step size. This property applies only to the
variable-step solvers and defaults to one-fiftieth of the simulation
interval.

MinStep [positive scalar, nonnegative integer] {auto}
Lower bound on the step size. This property applies only to the
variable-step solvers and defaults to one-fiftieth of the simulation
interval.

NumberNewtonIterations positive integer {1}
Number of Newton iterations. Specifies number of Newton’s
Method iterations to be performed by the ode14x implicit
fixed-step solver.

OutputPoints {specified} | all
Determine output points. When set to specified, the solver
produces outputs t, x, and y only at the times specified in
timespan. When set to all, t, x, and y also include the time steps
taken by the solver.

OutputVariables {txy} | tx | ty | xy | t | x | y
Set output variables. If 't', 'x', or 'y' is missing from the
property string, the solver produces an empty matrix in the
corresponding output t, x, or y.

Refine positive integer {1}
Output refine factor. This property increases the number of
output points by the specified factor, producing smoother output.
Refine applies only to the variable-step solvers. It is ignored if
output times are specified.

5-22

simset

RelTol positive scalar {1e-3}
Relative error tolerance. This property applies to all elements
of the state vector. The estimated error in each integration step
satisfies

e(i) <= max(RelTol*abs(x(i)),AbsTol(i))

This property applies only to the variable-step solvers and
defaults to 1e-3, which corresponds to accuracy within 0.1%.

Solver VariableStepDiscrete |
ode45 | ode23 | ode113 | ode15s | ode23s |
FixedStepDiscrete |
ode5 | ode4 | ode3 | ode2 | ode1

Method to advance time. This property specifies the solver that
is used to advance time.

SaveFormat {'Array'} | 'Structure' | 'StructureWithTime'
How to save output to workspace. Specifies format for exporting
model states and root-level outputs to the MATLAB workspace.
See “Exporting Data to the MATLAB Workspace” for more
information.

SrcWorkspace {base} | current | parent
Where to evaluate expressions. This property specifies the
workspace in which to evaluate MATLAB expressions defined
in the model.

Trace 'minstep', 'siminfo', 'compile' {''}
Tracing facilities. This property enables simulation tracing
facilities (specify one or more as a comma-separated list):

• The 'minstep' trace flag specifies that simulation stops
when the solution changes so abruptly that the variable-step
solvers cannot take a step and satisfy the error tolerances. By
default, Simulink issues a warning message and continues the
simulation.

• The 'siminfo' trace flag provides a short summary of the
simulation parameters in effect at the start of simulation.

5-23

simset

• The 'compile' trace flag displays the compilation phases of
a block diagram model.

ZeroCross {on} | off
Enable/disable location of zero crossings. This property applies
only to the variable-step solvers. If set to off, variable-step
solvers do not detect zero crossings for blocks having intrinsic
zero-crossing detection. The solvers adjust their step sizes only to
satisfy error tolerance.

SignalLogging {on} | off
Enable/disable signal logging. This parameter enables signal
logging for the model, overriding the Signal logging setting in
the Configuration Parameters dialog box.

SignalLoggingName string
Specify signal logging name. This parameter specifies the name
of the signal logging object used to record logged signal data in
the MATLAB workspace. It overrides the Signal logging name
setting in the Configuration Parameters dialog box.

Examples This command creates an options structure called myopts that defines
values for the MaxDataPoints and Refine parameters, using default
values for other parameters.

myopts = simset('MaxDataPoints', 100, 'Refine', 2);

This command simulates the vdp model for 10 seconds and uses the
parameters defined in myopts.

[t,x,y] = sim('vdp', 10, myopts);

The following command overrides the signal logging setting specified by
the vdp model.

sim('vdp', 10, simset(simget('vdp'), 'SignalLogging', 'on'))

See Also sim, simget

5-24

Simulink.BlockDiagram.getChecksum

Purpose Return checksum of model

Syntax [checksum,details] = Simulink.BlockDiagram.getChecksum(mdl)

Description [checksum,details] = Simulink.BlockDiagram.getChecksum(mdl)
returns the checksum of the specified model. Simulink computes the
checksum based on attributes of the model and the blocks the model
contains.

One use of this command is to determine why Simulink
Accelerator regenerates code. For an example, see the demo
slAccelDemoWhyRebuild.

Note Simulink.BlockDiagram.getChecksum compiles the specified
model, using the command model([], [], [], 'compileForRTW'), if
the model is not already in a compiled state. To get the checksum for
the model when Simulink compiles it for simulation, use the command
model([], [], [], 'compile') to place the model in a compiled state
before using Simulink.BlockDiagram.getChecksum.

This command accepts the argument mdl, which is the full name or
handle of the model for which you are returning checksum data.

This command returns the following output:

• checksum — Array of four 32-bit integers that represents the model’s
128-bit checksum.

• details — Structure of the form

ContentsChecksum: [1x1 struct]
InterfaceChecksum: [1x1 struct]
ContentsChecksumItems: [nx1 struct]
InterfaceChecksumItems: [mx1 struct]

5-25

Simulink.BlockDiagram.getChecksum

- ContentsChecksum — Structure of the following form that
represents a checksum that provides information about all blocks
in the model.

Value: [4x1 uint32]
MarkedUnique: [bool]

• Value — Array of four 32-bit integers that represents the
model’s 128-bit checksum.

• MarkedUnique — True if any blocks in the model have a
property that prevents code reuse.

- InterfaceChecksum — Structure of the following form that
represents a checksum that provides information about the model.

Value: [4x1 uint32]
MarkedUnique: [bool]

• Value — Array of four 32-bit integers that represents the
model’s 128-bit checksum.

• MarkedUnique — Always true. Present for consistency with
ContentsChecksum structure.

- ContentsChecksumItems and InterfaceChecksumItems
— Structure arrays of the following form that contain
information that Simulink uses to compute the checksum for
ContentsChecksum and InterfaceChecksum, respectively:

Handle: [char array]
Identifier: [char array]
Value: [type]

• Handle — Object for which Simulink added an item to the
checksum. For a block, the handle is a full block path. For a
block port, the handle is the full block path and a string that
identifies the port.

5-26

Simulink.BlockDiagram.getChecksum

• Identifier — Descriptor of the item Simulink added to the
checksum. If the item is a documented parameter, the identifier
is the parameter name.

• Value — Value of the item Simulink added to the checksum. If
the item is a parameter, Value is the value returned by

get_param(handle, identifier)

See Also Simulink.SubSystem.getChecksum

5-27

Simulink.BlockDiagram.getInitialState

Purpose Return initial state structure of the block diagram

Syntax x0 = Simulink.BlockDiagram.getInitialState(mdl)

Description x0 = Simulink.BlockDiagram.getInitialState(mdl) returns the
initial state structure of the block diagram specified by the input
argument mdl. This state structure can be used to specify the initial
state vector in the Configuration Parameters dialog box or to provide
an initial state condition to the linearization commands.

The command returns x0, a structure of the form

time: 0
signals: [1xn struct]

where n is the number of states contained in the model, including any
models referenced by Model blocks. The signals field is a structure
of the form

values: [1xm double]
dimensions: [1x1 double]
label: [char array]
blockName: [char array]
inReferencedModel: [bool]
sampleTime: [1x2 double]

• values — Numeric array of length m, where m is the number of states
in the signal

• dimensions — Length of the values vector

• label — Indication of whether the state is continuous (CSTATE) or
discrete (DSTATE)

• blockName — Full path to block associated with this state

• inReferencedModel — Indication of whether the state originates in
a model referenced by a Model block (1) or in the top-level model (0)

5-28

Simulink.BlockDiagram.getInitialState

• sampleTime — Array containing the sample time and offset of the
state.

Using the state structure simplifies specifying initial state values for
models with multiple states, as each state is associated with the full
path to its parent block.

See Also linmod

5-29

Simulink.SubSystem.getChecksum

Purpose Return checksum of subsystem

Syntax [checksum,details] = Simulink.SubSystem.getChecksum(subsys)

Description [checksum,details] = Simulink.SubSystem.getChecksum(subsys)
returns the checksum of the specified subsystem. Simulink computes
the checksum based on subsystem parameter settings and the blocks
the subsystem contains.

One use of this command is to determine why code generated for a
subsystem is not being reused. For an example, see “Determining
Why Subsystem Code Is Not Reused” in the Real-Time Workshop
documentation.

Note Simulink.SubSystem.getChecksum compiles the model that
contains the specified subsystem, using the command model([],
[], [], 'compileForRTW'), if the model is not already in a
compiled state. To get the checksum for the model when Simulink
compiles it for simulation, use the command model([], [], [],
'compile') to place the model in a compiled state before using
Simulink.SubSystem.getChecksum.

This command accepts the argument subsys, which is the full name
or handle of the atomic subsystem block for which you are returning
checksum data.

This command returns the following output:

• checksum — Structure of the form

Value: [4x1 uint32]
MarkedUnique: [bool]

- Value — Array of four 32-bit integers that represents the
subsystem’s 128-bit checksum.

5-30

Simulink.SubSystem.getChecksum

- MarkedUnique — True if the subsystem or the blocks it contains
have properties that would prevent the code generated for the
subsystem from being reused; otherwise, false.

• details — Structure of the form

ContentsChecksum: [1x1 struct]
InterfaceChecksum: [1x1 struct]
ContentsChecksumItems: [nx1 struct]
InterfaceChecksumItems: [mx1 struct]

- ContentsChecksum — Structure of the same form as checksum,
representing a checksum that provides information about all
blocks in the system.

- InterfaceChecksum — Structure of the same form as checksum,
representing a checksum that provides information about the
subsystem’s block parameters and connections.

- ContentsChecksumItems and InterfaceChecksumItems
— Structure arrays of the following form that Simulink
uses to compute the checksum for ContentsChecksum and
InterfaceChecksum, respectively:

Handle: [char array]
Identifier: [char array]
Value: [type]

• Handle — Object for which Simulink added an item to the
checksum. For a block, the handle is a full block path. For a
block port, the handle is the full block path and a string that
identifies the port.

• Identifier — Descriptor of the item Simulink added to the
checksum. If the item is a documented parameter, the identifier
is the parameter name.

• Value — Value of the item Simulink added to the checksum. If
the item is a parameter, Value is the value returned by

5-31

Simulink.SubSystem.getChecksum

get_param(handle, identifier)

See Also Simulink.BlockDiagram.getChecksum

5-32

slbuild

Purpose Build standalone and model reference targets

Syntax slbuild('model')
slbuild('model', 'ModelReferenceSimTarget')
slbuild('model', 'ModelReferenceRTWTarget')
slbuild('model', 'ModelReferenceRTWTargetOnly')

Description
Note Except where noted, this command requires a Real-Time
Workshop license.

slbuild('model') builds a standalone executable from model, using the
model’s Real-Time Workshop configuration settings.

Note The following commands honor the setting of the Rebuild
options on the Model Referencing pane of the Configuration
Parameters dialog for rebuilding the model reference target for this
model and its referenced models.

slbuild('model', 'ModelReferenceSimTarget') builds a model
reference simulation target for the model. This command does not
require a Real-Time Workshop license.

slbuild('model', 'ModelReferenceRTWTarget') builds model
reference simulation and Real-Time Workshop targets for model.

slbuild('model', 'ModelReferenceRTWTargetOnly') builds a
model reference RTW target for the model.

If the Rebuild option on the Model Referencing pane of the
Configuration Parameters dialog is set to Never, you can use two
additional arguments, 'UpdateThisModelReferenceTarget' and
'Buildcond', to specify a rebuild option for building a model reference
target for this 'model'. For example,

5-33

slbuild

slbuild('model','ModelReferenceSimTarget', ...
'UpdateThisModelReferenceTarget', Buildcond)

conditionally builds the simulation target for this 'model' based on the
value of Buildcond.

Note This option does not rebuild model reference targets for models
referenced by this model.

'Buildcond' must be one of the following:

• 'IfOutOfDateOrStructuralChange'

Causes slbuild to rebuild this model if it detects any changes.
This option is equivalent to the If any changes detected rebuild
option on the Model Referencing pane of the Configuration
Parameters dialog box.

• 'IfOutOfDate'

Causes slbuild to rebuild this model if it detects any changes in
known dependencies of this model. This option is equivalent to the If
any changes in known dependencies detected rebuild option on
the Model Referencing pane of the Configuration Parameters
dialog box.

• 'Force'

Causes slbuild to always rebuild the model. This option
is equivalent to the "Always" rebuild option on the Model
Referencing pane of the Configuration Parameters dialog box.

5-34

sldebug

Purpose Start a simulation in debug mode

Syntax sldebug('sys')

Description sldebug('sys') starts a simulation in debug mode. See “Simulink
Debugger” in the Simulink documentation and Chapter 7, “Simulink
Debugger Commands” in the Simulink Reference for information about
using the debugger.

Examples The following command:

sldebug('vdp')

loads the Simulink demo model vdp into memory and starts the
simulation in debug mode. Alternatively, you can achieve the same
result by using both the sim and simset commands:

sim('vdp', [0,10], simset('debug', 'on'))

See Also sim, simset

5-35

sldiagnostics

Purpose Display diagnostic information about a Simulink system

Syntax [txtRpt, sRpt] = sldiagnostics('sys')
[txtRpt, sRpt] = sldiagnostics('sys', options)

Description sldiagnostics('sys') displays the following diagnostic information
associated with the model or subsystem specified by sys:

• Number of each type of block

• Number of each type of Stateflow object

• Number of states, outputs, inputs, and sample times

• Names of libraries referenced and instances of the referenced blocks

• Time and additional memory used for each compilation phase of the
root model

If the model specified by sys is not loaded, sldiagnostics loads the
model, completes the diagnostics, and then closes the model. If sys
is a subsystem, the root model must be loaded for sldiagnostics to
operate successfully.

Note To see memory usage, you must first enable the memory integrity
checking option in MATLAB at startup. This is accomplished by
running MATLAB with the -check_malloc flag. For more information
about this startup option, see matlab (Windows) or matlab (UNIX) in
the MATLAB Function Reference.

sldiagnostics('sys', options) displays only the diagnostic
information associated with the specific operations listed as options
strings. The available options and their output are as follows:

5-36

sldiagnostics

Option Description

CountBlocks Lists all unique blocks in the system and the
number of occurrences of each. This includes
blocks that are nested in masked subsystems or
hidden blocks.

CountSF Lists all unique Stateflow objects in the system
and the number of occurrences of each.

Sizes Lists the number of states, outputs, inputs, and
sample times, as well as a flag indicating direct
feedthrough, used in the root model.

Libs Lists all unique libraries referenced in the root
model, as well as the names and numbers of the
library blocks.

CompileStats Lists the time and additional memory used for
each compilation phase of the root model. The
memory usage is displayed when the memory
integrity checking option is enabled in MATLAB at
startup. This information helps users troubleshoot
model compilation speed and memory issues.

Verbose Lists the results of the CompileStats diagnostic
during the compilation phase. This is useful for
diagnosing the compilation itself if it takes an
unreasonable amount of time or hangs.

RTWBuildStats Lists the same information as the CompileStats
diagnostic. When issued with the second output
argument sRpt, it captures the Real-Time
Workshop build statistics in sRpt.rtwbuild.

All Performs all diagnostics.

5-37

sldiagnostics

Note Running the CompileStats diagnostic before simulating a model
for the first time will show greater memory usage. However, subsequent
runs of the CompileStats diagnostic on the model will return a lesser
amount of memory usage.

[txtRpt, sRpt] = sldiagnostics('sys') or [txtRpt, sRpt] =
sldiagnostics('sys', options) returns the diagnostic information
as a textual report txtRpt and a structure array sRpt, which contains
the following fields that correspond to the diagnostic options:

• blocks

• stateflow

• sizes

• links

• compilestats

• rtwbuild

Examples The following command counts and lists each type of block used in the
sldemo_bounce model that comes with Simulink.

sldiagnostics('sldemo_bounce', 'CountBlocks')

The following command counts and lists both the unique blocks and
Stateflow objects used in the sf_boiler model that comes with
Stateflow; the textual report returned is captured as myReport.

myReport = sldiagnostics('sf_boiler', 'CountBlocks', 'CountSF')

The following commands open the f14 model that comes with Simulink,
and counts the number of blocks used in the Controller subsystem.

f14; sldiagnostics('f14/Controller', 'CountBlocks')

5-38

sldiagnostics

The following command runs the Sizes and CompileStats diagnostics
on the f14 model, capturing the results as both a textual report and
structure array.

[txtRpt, sRpt] = sldiagnostics('f14', 'Sizes', 'CompileStats')

See Also find_system, get_param

5-39

unpack

Purpose Extract signal logging objects from signal logs and write them into the
MATLAB workspace.

Syntax log.unpack
tsarray.unpack
log.unpack('systems')
log.unpack('all')

Description log.unpack or unpack(log) extracts the top level elements of the
Simulink.ModelDataLogs or Simulink.SubsysDataLogs object named
log (e.g., logsout).

log.unpack('systems') or unpack(log, ’systems’) extracts
Simulink.Timeseries and Simulink.TsArray objects from the
Simulink.ModelDataLogs or Simulink.SubsysDataLogs object
named log . This command does not extract Simulink.Timeseries
objects from Simulink.TsArray objects nor does it write intermediate
Simulink.ModelDataLogs or Simulink.SubsysDataLogs objects to
the MATLAB workspace.

log.unpack('all') or unpack(log, ’all’) extracts
all the Simulink.Timeseries objects contained by
the Simulink.ModelDataLogs, Simulink.TsArray, or
Simulink.SubsysDataLogs object named log .

tsarray.unpack extracts the time-series objects of class
Simulink.Timeseries from the Simulink.TsArray object named
tsarray.

See Also whos, who

5-40

who

Purpose List the contents of a signal log.

Syntax log.who
tsarray.who
log.who('systems')
log.who('all')

Description log.who or who(log) lists the names of the top-level signal logging
objects (i.e., objects of type Simulink.Timeseries, Simulink.TsArray,
Simulink.ModelDataLogs, or Simulink.SubsysDatalogs) contained by
log where log is the handle of a Simulink.ModelDataLogs object name.

tsarray.who or who(tsarray) lists the Simulink.TimeSeries objects
contained by the Simulink.TsArray object named tsarray.

log.who('systems') or who(log, 'systems') lists the names of all
signal logging objects contained by log except for Simulink.Timeseries
objects stored in Simulink.TsArray objects contained by log.

log.who('all') or who(log, 'all') lists the names of all signal
logging objects contained by log

See Also whos, unpack

5-41

whos

Purpose List the names and types of simulink data logging objects contained by
a Simulink.ModelDataLogs or Simulink.SubsysDataLogs object.

Syntax log.whos
tsarray.whos
log.whos('systems')
log.whos('all')

Description log.whos or whos(log) lists the names and types of
the top-level signal logging objects (i.e., objects of type
Simulink.Timeseries, Simulink.TsArray, Simulink.ModelDataLogs,
or Simulink.SubsysDatalogs) contained by log where log is the
handle of a Simulink.ModelDataLogs object name.

tsarray.whos or whos(tsarray) lists the names and types of
Simulink.TimeSeries objects contained by the Simulink.TsArray
object named tsarray.

log.who('systems') or who(log, 'systems') lists the names
and types of all signal logging objects contained by log except for
Simulink.Timeseries objects stored in Simulink.TsArray objects
contained by log.

log.who('all') or who(log, 'all') lists the names and types of all
signal logging objects contained by log.

See Also who, unpack

5-42

6

Mask Icon Drawing
Commands

The following sections describe commands that you can use to draw the icons
that represent masked blocks in a block diagram.

Command Summary (p. 6-2) Brief descriptions of commands

Mask Icon Drawing Commands —
Alphabetical List (p. 6-3)

Icon commands listed in alphabetical
order

6 Mask Icon Drawing Commands

Command Summary
This table summarizes the commands that you can use to create icons for
masked subsystems.

Command Usage

color Change the drawing color of subsequent mask icon
drawing commands.

disp Display text centered on a mask icon.

dpoly Display a transfer function on a mask icon.

droots Display a zero-pole representation on a mask icon.

fprintf Display variable text on a mask icon.

image Display an image on a mask icon.

patch Draw a color patch of a specified shape on a mask icon.

plot Display graphics on a mask icon.

port_label Display a port label on a mask icon.

text Display text at a specified location on a mask icon.

6-2

Mask Icon Drawing Commands — Alphabetical List

Mask Icon Drawing Commands — Alphabetical List

6-3

color

Purpose Change the drawing color of subsequent mask icon drawing commands

Syntax color(colorstr)

Description color(colorstr) sets the drawing color of all subsequent mask
drawing commands to the color specified by the string colorstr.

colorstr must be one of the following supported color strings.

blue
green
red
cyan
magenta
yellow
black

Entering any other string or specifying the color using RGB values
results in a warning at the MATLAB command prompt and the color
change is ignored. The specified drawing color does not influence the
color used by the patch or image drawing commands.

Examples The following commands

color('cyan');
droots([-1], [-2 -3], 4)
color('magenta')
port_label('input',1,'in')
port_label('output',1,'out')

draw the following mask icon.

6-4

color

See Also droots, port_label

6-5

disp

Purpose Display text on the icon of a masked subsystem

Syntax disp(text)
disp(text, 'texmode', 'on')

Description disp(text) displays text centered on the icon where text is any
MATLAB expression that evaluates to a string.

disp(text, 'texmode', 'on') allows you to use TeX formatting
commands in text. The TeX formatting commands in turn allow you
to include symbols and Greek letters in icon text. See “Mathematical
Symbols, Greek Letters, and TEX Characters” in the MATLAB
documentation for information on the TeX formatting commands
supported by Simulink.

Examples The following command

disp('{\itEquation:} \alpha^2 + \beta^2 \rightarrow \gamma^2,
\chi, \phi_3 = {\bfcool}', 'texmode','on')

draws the equation that appears on this masked block icon.

See Also fprintf, port_label, text

6-6

dpoly, droots

Purpose Display a transfer function or zero-pole representation on the icon of a
masked subsystem

Syntax dpoly(num, den)
dpoly(num, den, 'character')

droots(zero, pole, gain)
droots(zero, pole, gain,'z')
droots(zero, pole, gain,'z-')

Description dpoly(num, den) displays the transfer function whose numerator is
num and denominator is den.

dpoly(num, den, 'character') allows you to specify the name of the
transfer function’s independent variable. The default is s.

droots(zero, pole, gain) displays the transfer function whose zero is
a zero, pole is pole, and gain is gain.

droots(zero, pole, gain,'z') and droots(zero, pole, gain,'z-')
express the equation in terms of z or 1/z.

When the icon is drawn, the initialization commands are executed and
the resulting equation is drawn on the icon:

• To display a continuous transfer function in descending powers of
s, enter

dpoly(num, den)

For example, for num = [0 0 1]; and den = [1 2 1] the icon looks
like this:

• To display a discrete transfer function in descending powers of z,
enter

6-7

dpoly, droots

dpoly(num, den, 'z')

For example, for num = [0 0 1]; and den = [1 2 1]; the icon
looks like this:

• To display a discrete transfer function in ascending powers of 1/z,
enter

dpoly(num, den, 'z-')

For example, for num and den as defined previously, the icon looks
like this:

• To display a zero-pole gain transfer function, enter

droots(z, p, k)

For example, the preceding command creates this icon for these
values:

z = []; p = [-1 -1]; k = 1;

If the parameters are not defined or have no values when you create
the icon, Simulink displays three question marks (? ? ?) in the
icon. When the parameter values are entered in the mask dialog box,
Simulink evaluates the transfer function and displays the resulting
equation in the icon.

6-8

dpoly, droots

See Also disp, port_label, text

6-9

fprintf

Purpose Display variable text centered on the icon of a masked subsystem

Syntax fprintf(text)
fprintf(format, var)

Description The fprintf command displays formatted text centered on the icon and
can display format along with the contents of var.

Note While this command is identical in name to its corresponding
MATLAB function, it provides only the functionality described above.

Examples This command

fprintf('Hello');

displays the string 'Hello' on the icon.

This command

fprintf('Juhi = %d',17);

uses the decimal notation format (%d) to display the variable 17.

See Also disp, port_label, text

6-10

image

Purpose Display an image on the icon of a masked subsystem

Syntax image(a)
image(a, [x, y, w, h])
image(a, [x, y, w, h], rotation)

Description image(a) displays the image a, where a is an M-by-N-by-3 array of RGB
values. You can use the MATLAB commands imread and ind2rgb to
read and convert bitmap files (such as GIF) to the necessary matrix
format.

image(a, [x, y, w, h]) creates the image at the specified position
relative to the lower-left corner of the mask.

image(a, [x, y, w, h], rotation) allows you to specify whether the
image rotates ('on') or remains stationary ('off') as the icon rotates.
The default is 'off'.

Examples This command

image(imread('icon.tif'))

reads the icon image from a TIFF file named icon.tif in the MATLAB
path.

The following commands read and convert a GIF file, label.gif, to
the appropriate matrix format. You can type these commands in the
Initialization pane of the Mask Editor.

[data, map]=imread('label.gif');
pic=ind2rgb(data,map);

Then type the command

image(pic)

in the Icon pane of the Mask Editor to read the converted label image.

6-11

image

See Also patch, plot

6-12

patch

Purpose Draw a color patch of a specified shape on the icon of a masked
subsystem

Syntax patch(x, y)
patch(x, y, [r g b])

Description patch(x, y) creates a solid patch having the shape specified by the
coordinate vectors x and y. The patch’s color is the current foreground
color.

patch(x, y, [r g b]) creates a solid patch of the color specified by
the vector [r g b], where r is the red component, g the green, and
b the blue. For example,

patch([0 .5 1], [0 1 0], [1 0 0])

creates a red triangle on the mask’s icon.

Examples This command

patch([0 .5 1], [0 1 0], [1 0 0])

creates a red triangle on the mask’s icon.

See Also image, plot

6-13

plot

Purpose Draw a graph connecting a series of points

Syntax plot(Y)
plot(X1,Y1,X2,Y2,...)

Description plot(Y) plots, for a vector Y, each element against its index. If Y is a
matrix, it plots each column of the matrix as though it were a vector.

plot(X1,Y1,X2,Y2,...) plots the vectors Y1 against X1, Y2 against
X2, and so on. Vector pairs must be the same length and the list must
consist of an even number of vectors.

Plot commands can include NaN and inf values. When NaNs or infs are
encountered, Simulink stops drawing, then begins redrawing at the
next numbers that are not NaN or inf.

The appearance of the plot on the icon depends on the value of the
Drawing coordinates parameter. For more information, see “Icon
options” in in the Using Simulink documentation.

Simulink displays three question marks (? ? ?) in the block icon and
issues warnings in these situations:

• When the values for the parameters used in the drawing commands
are not yet defined (for example, when the mask is first created and
values have not yet been entered in the mask dialog box)

• When a masked block parameter or drawing command is entered
incorrectly

6-14

plot

Examples This command

plot([0 1 5], [0 0 4])

generates the plot that appears on the icon for the Ramp block, in the
Sources library.

See Also image

6-15

port_label

Purpose Draw a port label on the icon of a masked subsystem

Syntax port_label('port_type', port_number, 'label')
port_label('port_type', port_number, 'label','texmode','on')

Description port_label('port_type', port_number, 'label') draws a label on a
port. The input argument port_type can be any of the following.

• 'input': To label a Simulink input port

• 'output': To label a Simulink output port

• 'lconn': To label a Physical Modeling connection port on the left
side of the masked subsystem

• 'rconn': To label a Physical Modeling connection port on the right
side of the masked subsystem

The input argument port_number is an integer, and label is a string
specifying the port’s label.

Note Physical Modeling port labels are assigned based on the nominal
port location. If the masked subsystem has been rotated or flipped, for
example, a port labeled using 'lconn'as the port_type may not appear
on the left side of the block.

port_label('port_type', port_number, 'label','texmode','on')
lets you use TeX formatting commands in label. The TeX formatting
commands allow you to include symbols and Greek letters in the port
label. See “Mathematical Symbols, Greek Letters, and Tex Characters”
in the MATLAB documentation for information on the TeX formatting
commands supported by Simulink.

6-16

port_label

Examples The command

port_label('input', 1, 'a')

defines a as the label of input port 1.

The commands

disp('Card\nSwapper');
port_label('input',1,'\spadesuit','texmode','on');
port_label('output',1,'\heartsuit','texmode','on');

draw playing card symbols as the labels of the ports on a masked
subsystem.

See Also disp, fprintf, text

6-17

text

Purpose Display text at a specific location on the icon of a masked subsystem

Syntax text(x, y, 'text')
text(x, y, 'text', 'horizontalAlignment', 'halign',

'verticalAlignment', 'valign')
text(x, y, 'text', 'texmode', 'on')

Description The text command places a character string at a location specified
by the point (x,y). The units depend on the Drawing coordinates
parameter. For more information, see “Icon options”.

text(x,y, text, 'texmode', 'on') allows you to use TeX formatting
commands in text. The TeX formatting commands in turn allow you
to include symbols and Greek letters in icon text. See “Mathematical
Symbols, Greek Letters, and TEX Characters” in the MATLAB
documentation for information on the TeX formatting commands
supported by Simulink.

You can optionally specify the horizontal and/or vertical alignment of
the text relative to the point (x, y) in the text command.

The text command offers the following horizontal alignment options.

Option Aligns

'left' The left end of the text at the specified point

'right' The right end of the text at the specified point

'center' The center of the text at the specified point

The text command offers the following vertical alignment options.

Option Aligns

'base' The baseline of the text at the specified point

'bottom' The bottom line of the text at the specified point

'middle' The midline of the text at the specified point

6-18

text

Option Aligns

'cap' The capitals line of the text at the specified point

'top' The top of the text at the specified point

Note While this command is identical in name to its corresponding
MATLAB function, it provides only the functionality described above.

Examples The command

text(0.5, 0.5, 'foobar', 'horizontalAlignment', 'center')

centers foobar in the icon.

The command

text(.05,.5,'{\itEquation:} \Sigma \alpha^2 +
\beta^2 \rightarrow \infty, \Pi, \phi_3 = {\bfcool}',
'hor','left','texmode','on')

draws a left-aligned equation on the icon.

See Also disp, fprintf, port_label

6-19

7

Simulink Debugger
Commands

The following sections describe commands that you can use to pinpoint bugs
in a model.

Command Summary (p. 7-2) Brief descriptions of commands

Simulink Debugger Commands —
Alphabetical List (p. 7-5)

Simulink debugger commands listed
in alphabetical order

7 Simulink Debugger Commands

Command Summary
The following table lists the debugger commands. The table’s Repeat column
specifies whether pressing the Enter key at the command line repeats the
command. Detailed descriptions of the commands follow the table.

Command
Short
Form Repeat Description

animate ani No Enable/disable animation
mode.

ashow as No Show an algebraic loop.

atrace at No Set algebraic loop trace level.

bafter ba No Insert a breakpoint after a
method.

break b No Insert a breakpoint before a
method.

bshow bs No Show a specified block.

clear cl No Clear breakpoints from a
model.

continue c Yes Continue the simulation.

disp d Yes Display a block’s I/O when
the simulation stops.

ebreak eb No Break at recoverable solver
errors.

elist el No Display method execution
order.

emode em No Toggle between accelerated
and normal mode.

etrace et No Enable or disable method
tracing.

help ? or h No Display help for debugger
commands.

7-2

Command Summary

Command
Short
Form Repeat Description

nanbreak na No Set or clear nonfinite value
break mode.

next n Yes Go to start of the next time
step.

probe p No Display block data.

quit q No Abort simulation.

rbreak rb No Toggle solver reset
breakpoint.

run r No Run the simulation to
completion.

stimes sti No Display a model’s sample
times.

slist sli No Display a model’s sorted lists.

states state No Display current state values.

status stat No Display debugging options in
effect.

step s Yes Advance the simulation by
one or more methods.

stop sto No Stop the simulation.

strace i No Set solver trace level.

systems sys No List a model’s nonvirtual
systems.

tbreak tb No Set or clear a time
breakpoint.

trace tr Yes Display a block’s I/O each
time the block executes.

undisp und Yes Remove a block from the
debugger’s list of display
points.

7-3

7 Simulink Debugger Commands

Command
Short
Form Repeat Description

untrace unt Yes Remove a block from the
debugger’s list of trace points.

where w No Display the current location
of the simulation in the
simulation loop.

xbreak x No Break when the
debugger encounters a
step-size-limiting state.

zcbreak zcb No Toggle breaking at
nonsampled zero-crossing
events.

zclist zcl No List blocks containing
nonsampled zero crossings.

7-4

Simulink Debugger Commands — Alphabetical List

Simulink Debugger Commands — Alphabetical List

7-5

animate

Purpose Enable or disable animation mode

Syntax animate [delay | stop]

Arguments delay Length in seconds between method calls (1 second by
default).

stop Disable animation mode.

Description animate without any arguments enables animation mode. animate
delay enables animation mode and specifies delay as the time delay in
seconds between method calls. animate stop disables animation mode.

See Also continue

7-6

ashow

Purpose Show an algebraic loop

Syntax ashow <gcb | s:b | s#n | clear>

Arguments gcb Current block.

s:b The block whose system index is s and block index is b.

s#n The algebraic loop numbered n in system s.

clear Switch that clears loop coloring.

Description ashow without any arguments lists all of a model’s algebraic loops in the
MATLAB Command Window. ashow gcb or ashow s:b highlights the
algebraic loop that contains the specified block. ashow s#n highlights
the nth algebraic loop in system s. The ashow clear command removes
algebraic loop highlights from the model diagram.

See Also atrace, slist

7-7

atrace

Purpose Set algebraic loop trace level

Syntax atrace level

Arguments level Trace level (0 = none, 4 = everything).

Description The atrace command sets the algebraic loop trace level for a simulation.

Command Displays for Each Algebraic Loop

atrace 0 No information

atrace 1 The loop variable solution, the number of iterations
required to solve the loop, and the estimated
solution error

atrace 2 Same as level 1

atrace 3 Level 2 plus Jacobian matrix used to solve loop

atrace 4 Level 3 plus intermediate solutions of the loop
variable

See Also states, systems

7-8

bafter

Purpose Insert a breakpoint after a specified method

Syntax bafter
bafter m:mid
bafter <sid:bid | gcb> [mth] [tid:TID]
bafter <s:sid | gcs> [mth] [tid:TID]
bafter mdl [mth] [tid:TID]

Arguments mid Method ID

sid:bid Block ID

gcb Currently selected block

sid System ID

gcs Currently selected system

mdl Currently selected model

mth A method name, e.g., Outputs.Major

TID Task ID

Description bafter inserts a breakpoint after the current method.

bafter m:mid inserts a breakpoint after the method specified by mid
(see “Method ID”).

bafter sid:bid inserts a breakpoint after each invocation of the
method of the block specified by sid:bid (see “Block ID”) in major
time steps. bafter gcb inserts a breakpoint after each invocation of a
method of the currently selected block (see gcb) in major times steps.

bafter s:sid inserts a breakpoint after each method of the root system
or nonvirtual subsystem specified by the system ID: sid.

7-9

bafter

Note The systems command displays the system IDs for all nonvirtual
systems in the currently selected model.

bafter gcs inserts a breakpoint after each method of the currently
selected nonvirtual system.

bafter mdl inserts a breakpoint after each method of the currently
selected model.

The optional mth parameter allow you to set a breakpoint after a
particular block, system, or model method and task. For example,
bafter gcb Outputs sets a breakpoint after the Outputs method of
the currently selected block.

The optional TID parameter allows you to set a breakpoint after
invocation of a method by a particular task. For example, suppose that
the currently selected nonvirtual subsystem operates on task 2 and 3.
Then bafter gcs Outputs tid:2 sets a breakpoint after the invocation
of the subsystem’s Outputs method that occurs when task 2 is active.

See Also break, ebreak, tbreak, xbreak, nanbreak, zcbreak, rbreak, clear,
where, slist, systems

7-10

break

Purpose Insert a breakpoint before a specified method

Syntax break
break m:mid
break <sid:bid | gcb> [mth] [tid:TID]
break <s:sid | gcs> [mth] [tid:TID]
break mdl [mth] [tid:TID]

Arguments mid Method ID

sid:bid Block ID

gcb Currently selected block

sid System ID

gcs Currently selected system

mdl Currently selected model

mth A method name, e.g., Outputs.Major

TID task ID

Description break inserts a breakpoint before the current method.

break m:mid inserts a breakpoint before the method specified by mid
(see “Method ID”).

break sid:bid inserts a breakpoint before each invocation of the
method of the block specified by sid:bid (see “Block ID”) in major
time steps. break gcb inserts a breakpoint before each invocation of a
method of the currently selected block (see gcb) in major times steps.

break s:sid inserts a breakpoint at each method of the root system or
nonvirtual subsystem specified by the system ID: sid.

7-11

break

Note The systems command displays the system IDs for all nonvirtual
systems in the currently selected model.

break gcs inserts a breakpoint at each method of the currently selected
nonvirtual system.

break mdl inserts a breakpoint at each method of the currently selected
model.

The optional mth parameter allow you to set a breakpoint at a particular
block, system, or model method. For example, break gcb Outputs sets
a breakpoint at the Outputs method of the currently selected block.

The optional TID parameter allows you to set a breakpoint at the
invocation of a method by a particular task. For example, suppose that
the currently selected nonvirtual subsystem operates on task 2 and 3.
Then break gcs Outputs tid:2 sets a breakpoint at the invocation of
the subsystem’s Outputs method that occurs when task 2 is active.

See Also bafter, clear, ebreak, nanbreak, rbreak, systems, tbreak, where,
xbreak, zcbreak, slist

7-12

bshow

Purpose Show a specified block

Syntax bshow s:b

Arguments s:b The block whose system index is s and block index is b.

Description The bshow command opens the model window containing the specified
block and selects the block.

See Also slist

7-13

clear

Purpose Clear breakpoints from a model

Syntax clear
clear m:mid
clear id
clear <sid:bid | gcb>

Arguments mid Method ID

id Breakpoint ID

sid:bid Block ID

gcb Currently selected block

Description clear clears a breakpoint from the current method.

clear m:mid clears a breakpoint from the method specified by mid.

clear id clears the breakpoint specified by the breakpoint ID id.

clear sid:bid clears any breakpoints set on the methods of the block
specified by sid:bid.

clear gcb clears any breakpoints set on the methods of the currently
selected block.

See Also break, bafter, slist

7-14

continue

Purpose Continue the simulation

Syntax continue

Description The continue command continues the simulation from the current
breakpoint. If animation mode is not enabled, the simulation continues
until it reaches another breakpoint or its final time step. If animation
mode is enabled, the simulation continues in animation mode to the
first method of the next major time step, ignoring breakpoints.

See Also run, stop, quit, animate

7-15

disp

Purpose Display a block’s I/O when the simulation stops

Syntax disp
disp gcb
disp s:b

Arguments s:b The block whose system index is s and block index is b.

gcb Current block.

Description The disp command registers a block as a display point. The debugger
displays the inputs and outputs of all display points in the MATLAB
Command Window whenever the simulation halts. Invoking disp
without arguments shows a list of display points. Use undisp to
unregister a block.

See Also undisp, slist, probe, trace

7-16

ebreak

Purpose Enable (or disable) a breakpoint on solver errors.

Syntax ebreak

Description This command causes the simulation to stop if the solver detects
a recoverable error in the model. If you do not set or disable this
breakpoint, the solver recovers from the error and proceeds with the
simulation without notifying you.

See Also break, bafter, tbreak, xbreak, nanbreak, zcbreak, rbreak, clear,
where, slist, systems

7-17

elist

Purpose List simulation methods in the order in which they are executed during
a simulation

Syntax elist m:mid [tid:TID]
elist <gcs | s:sid> [mth] [tid:TID]
elist <gcb | sid:bid> [mth] [tid:TID]

Description elist m:mid lists the methods invoked by the system or nonvirtual
subsystem method corresponding to the method id mid (see the where
command for information on method IDs), e.g.,

The method list specifies the calling method followed by the methods
that it calls in the order in which they are invoked. The entry for the
calling method includes

• The name of the method

The name of the method is prefixed by the type of system that defines
the method, e.g., RootSystem.

• The name of the model or subsystem instance on which the method
is invoked

• The ID of the task that invokes the method

The entry for each called method includes

7-18

elist

• The ID (sid:bid) of the block instance on which the method is invoked

The block ID is prefixed by a number specifying the system that
contains the block (the sid). This allows Simulink to assign the same
block ID to blocks residing in different subsystems.

• The name of the method

The method name is prefixed with the type of block that defines the
method, e.g., Integrator.

• The name of the block instance on which the method is invoked

• The task that invokes the method

The optional task ID parameter (tid:TID) allows you to restrict the
displayed lists to methods invoked for a specified task. You can specify
this option only for system or atomic subsystem methods that invoke
Outputs or Update methods.

elist <gcs | s:sid> lists the methods executed for the currently
selected system (specified by the gcs command) or the system or
nonvirtual subsystem specified by the system ID sid, e.g.,

7-19

elist

The system ID of a model’s root system is 0. You can use the debugger’s
systems command to determine the system IDs of a model’s subsystems.

Note The elist and where commands use block IDs to identify
subsystems in their output. The block ID for a subsystem is not the
same as the system ID displayed by the systems command. Use the
elist sid:bid form of the elist command to display the methods
of a subsystem whose block ID appears in the output of a previous
invocation of the elist or where command.

elist <gcs | s:sid> mth lists methods of type mth to be executed for
the system specified by the gcs command or the system ID sid, e.g.,

Use elist gcb to list the methods invoked by the nonvirtual subsystem
currently selected in the model.

See Also where, slist, systems

7-20

emode

Purpose Toggle model execution between accelerated and normal mode

Syntax emode

Description Toggles the simulation between accelerated and normal mode when
using the Simulink Accelerator. See “Using the Simulink Accelerator
with the Simulink Debugger” in “Using Simulink” for more information.

7-21

etrace

Purpose Enable or disable method tracing

Syntax etrace level level-number

Description This command enables or disables method tracing, depending on the
value of level:

Level Description

0 Turn tracing off.

1 Trace model methods.

2 Trace model and system methods.

3 Trace model, system, and block methods.

When method tracing is on, the debugger prints a message at the
command line every time a method of the specified level is entered or
exited. The message specifies the current simulation time, whether
the simulation is entering or exiting the method, the method id and
name, and the name of the model, system, or block to which the method
belongs.

See Also elist, where, trace

7-22

help

Purpose Display help for debugger commands

Syntax help

Description The help command displays a list of debugger commands in the
command window. The list includes the syntax and a brief description
of each command.

7-23

nanbreak

Purpose Set or clear nonfinite value break mode

Syntax nanbreak

Description The nanbreak command causes the debugger to break whenever the
simulation encounters a nonfinite (NaN or Inf) value. If nonfinite break
mode is set, nanbreak clears it.

See Also break, bafter, ebreak, rbreak, tbreak, xbreak, zcbreak

7-24

next

Purpose Advance the simulation to the start of the next method at the current
level in the model’s execution list

Syntax next

Description The next command advances the simulation to the start of the next
method at the current level in the model’s method execution list.

Note The next command has the same effect as the step over
command. See step for more information.

See Also step

7-25

probe

Purpose Display block data.

Syntax probe
probe s:b
probe gcb
probe level level-type

Arguments s:b The block whose system index is s and block index is b.

gcb Currently selected block.

level-type The type of information displayed [io | all].

Description probe causes the debugger to enter an interactive probe mode. In this
mode, the debugger displays the I/O of any block you select with a click
of a mouse button. To exit probe mode, enter any command or press
the Enter key.

probe s:b displays the I/O of the block whose index is s:b.

probe gcb displays the I/O of the currently selected block.

probe level level-type specifies the type of information displayed,
depending on the value of level-type:

Level Displays

io Block’s I/O

all All information regarding a block’s current state,
including inputs and outputs, states, and zero
crossings

By default, level-type is set to all.

See Also disp, trace

7-26

quit

Purpose Abort simulation

Syntax quit

Description The quit command terminates the current simulation.

See Also stop

7-27

rbreak

Purpose Break when the simulation requires a solver reset.

Syntax rbreak

Description This command enables (or disables) a solver reset breakpoint if the
breakpoint is disabled (or enabled). The breakpoint causes the debugger
to halt the simulation whenever an event that requires a solver reset
occurs. The halt occurs before the solver is reset.

See Also break, bafter, ebreak, nanbreak, tbreak, xbreak, zcbreak

7-28

run

Purpose Run the simulation to completion

Syntax run

Description The run command runs the simulation from the current breakpoint to
its final time step. It ignores breakpoints and display points.

See Also continue, stop, quit

7-29

slist

Purpose Display the sorted list of a model’s root system and of each of its
nonvirtual subsystems

Syntax slist

Description The slist command displays the sorted list of a model’s root system
and each of its nonvirtual subsystems. For example, the sorted list
for the vdp model’s root system is

---- Sorted list for 'vdp' [9 nonvirtual blocks, directFeed=0]
0:0 'vdp/x1' (Integrator)
0:1 'vdp/Out1' (Outport)
0:2 'vdp/x2' (Integrator)
0:3 'vdp/Out2' (Outport)
0:4 'vdp/Scope' (Scope)
0:5 'vdp/Fcn' (Fcn)
0:6 'vdp/Product' (Product)
0:7 'vdp/Mu' (Gain)
0:8 'vdp/Sum' (Sum)

For each system (root or nonvirtual), the slist command displays a
title line followed by an entry for each block in the order in which the
blocks appear in the sorted list. The title line specifies the name of the
system, the number of nonvirtual blocks that the system contains, and
the number of blocks in the system that have direct feedthrough ports.
Each block entry lists the block’s id and the name and type of the block.
The block id consists of a system index and a block index separated by a
colon (s:b). The block index is the position of the block in the sorted list.
The system index is the order in which Simulink generated the system’s
sorted list. The system index has no special significance. It simply
allows blocks that appear in the same position in different sorted lists
to have unique identifiers.

A sorted list is a list of a root system or nonvirtual subsystem’s blocks
sorted according to data dependencies and other criteria. Simulink
uses sorted lists to create block method execution lists (see elist)
for root system and nonvirtual subsystem methods that invoke the

7-30

slist

corresponding methods of the blocks that the root system or subsystem
contains. In general, root system and nonvirtual subsystem methods
invoke the block methods in the same order as the blocks appear in
the sorted list. However, significant exceptions occur. For example,
execution lists for multitask models group all blocks operating at the
same rate (i.e., in the same task) together with slower groups appearing
later than faster groups. The grouping of methods by task can result
in an order of block method execution that differs from the order in
which blocks appear in the sorted list. However, within groups, methods
execute in the same order as the corresponding blocks appear in the
sorted list.

See Also systems, elist

7-31

states

Purpose Display current state values

Syntax states

Description The states command displays a list of the current states of the model.
The display lists the index, current value, system:block:element ID,
state vector name, and block name for each state.

Example The following command displays information about the states for the
hardstop demo:

(sldebug @41): >> states

Continuous States:

Idx Value (system:block:element Name 'BlockName')

0 -0.5 (0:1:0 CSTATE 'hardstop/position')

1 100 (0:9:0 CSTATE 'hardstop/velocity')

7-32

status

Purpose Display debugging options in effect

Syntax status

Description The status command displays a list of the debugging options in effect.

7-33

step

Purpose Advance the simulation by one or more methods

Syntax step [in into]
step over
step out
step top
step blockmth

Description This command advances the simulation

• Into (step [in into]), over (step over), or out of the method at
which the simulation is currently stopped (step out)

• To the top of the simulation loop (step top), i.e., to the start of the
first method executed at the start of the next time step

• To the next method that operates on a block (step blockmth)

The following diagram illustrates the effect of various forms of the
step command.

7-34

step

If this command advances the simulation to the start of a block method,
the debugger points the debug pointer at the block on which the method
operates.

See Also next, where, elist

7-35

stimes

Purpose Display the sample times defined by the model being debugged.

Syntax stimes

Description This command displays information about the sample times defined by
this model, including the sample time’s period, offset, and task ID.

Example The following command displays the sample times for the f14 demo:

(sldebug @0): >> stimes

--- Sample times for 'f14' [Number of sample times = 3]

1. [0 , 0] tid=0 (continuous sample time)

2. [0 , 1] tid=1 (continuous but fixed in minor step)

3. [0.1 , 0] tid=2

7-36

stop

Purpose Stop the simulation

Syntax stop

Description The stop command stops the simulation.

See Also continue, run, quit

7-37

strace

Purpose Set solver trace level

Syntax strace level

Arguments level Trace level (0 = none, 1 = everything).

Description The strace command causes the solver to display diagnostic
information in the MATLAB Command Window, depending on the value
of level. Valid values are 0 (no information) or 1 (maximum detail).

Command Displays

strace 0 No information

strace 1 Information about time steps, integration steps,
zero crossings, and solver resets

When diagnostic tracing is on, the debugger displays the sizes of major
and minor time steps:

[TM = 13.21072088374186] Start of Major Time Step

[Tm = 13.21072088374186] Start of Minor Time Step

The debugger also displays integration information, including the time
step of the integration method, the step size of the integration method,
the outcome of the integration step, the normalized error, and the index
of the state:

[Tm = 13.21072088374186] [H = 0.2751116230148764] Begin Integration Step

[Tf = 13.48583250675674] [Hf = 0.2751116230148764] Fail [Er = 1.0404e+000] [Ix = 1]

[Tm = 13.21072088374186] [H = 0.2183536061326544] Retry

[Ts = 13.42907448987452] [Hs = 0.2183536061326539] Pass [Er = 2.8856e-001] [Ix = 1]

When a zero crossing is detected, the debugger displays information
about the iterative search algorithm used to identify when the zero
crossing occurred. This includes the time step of the zero crossing, the

7-38

strace

step size of the zero crossing detection algorithm, the length of the time
interval bracketing the zero crossing, and a flag denoting the rising or
falling direction of the zero crossing:

[Tz = 3.615333333333301] Detected 1 Zero Crossing Event 0[F]

Begin iterative search to bracket zero crossing event

[Tz = 3.621111157580072] [Hz = 0.005777824246771424] [Iz = 4.2222e-003] 0[F]

[Tz = 3.621116982080098] [Hz = 0.005783648746797265] [Iz = 4.2164e-003] 0[F]

[Tz = 3.621116987943544] [Hz = 0.005783654610242994] [Iz = 4.2163e-003] 0[F]

[Tz = 3.621116987943544] [Hz = 0.005783654610242994] [Iz = 1.1804e-011] 0[F]

[Tz = 3.621116987949452] [Hz = 0.005783654616151157] [Iz = 5.8962e-012] 0[F]

[Tz = 3.621116987949452] [Hz = 0.005783654616151157] [Iz = 5.1514e-014] 0[F]

End iterative search to bracket zero crossing event

When solver resets occur, the debugger displays the time at which the
solver was reset:

[Tr = 6.246905153573676] Process Solver Reset

[Tr = 6.246905153573676] Reset Zero Crossing Cache

[Tr = 6.246905153573676] Reset Derivative Cache

For more information about the notation displayed by strace, type the
following command at the sldebug prompt:

help time

See Also atrace, etrace, states, trace, zclist

7-39

systems

Purpose List a model’s nonvirtual systems

Syntax systems

Description The systems command lists a model’s nonvirtual systems in the
MATLAB Command Window.

See Also slist

7-40

tbreak

Purpose Set or clear a time breakpoint

Syntax tbreak

tbreak t

Description The tbreak command sets a breakpoint at the specified time step. If
a breakpoint already exists at the specified time, tbreak clears the
breakpoint. If you do not specify a time, tbreak toggles a breakpoint
at the current time step.

See Also break, bafter, ebreak, xbreak, nanbreak, zcbreak, rbreak

7-41

trace

Purpose Display a block’s I/O each time the block executes

Syntax trace gcb
trace s:b

Arguments s:b The block whose system index is s and block index is b.

gcb Current block.

Description The trace command registers a block as a trace point. The debugger
displays the I/O of each registered block each time the block executes.

See Also disp, probe, untrace, slist, strace

7-42

undisp

Purpose Remove a block from the debugger’s list of display points

Syntax undisp gcb
undisp s:b

Arguments s:b The block whose system index is s and block index is b.

gcb Current block.

Description The undisp command removes the specified block from the debugger’s
list of display points.

See Also disp, slist

7-43

untrace

Purpose Remove a block from the debugger’s list of trace points

Syntax untrace gcb
untrace s:b

Arguments s:b The block whose system index is s and block index is b.

gcb Current block.

Description The untrace command removes the specified block from the debugger’s
list of trace points.

See Also trace, slist

7-44

where

Purpose Display the current location of the simulation in the simulation loop

Syntax where [detail]

Description The where command displays the current location of the simulation in
the simulation loop, for example,

The display consists of a list of simulation nodes with the last entry
being the node that is about to be entered or exited. Each entry contains
the following information:

• Method ID

The method ID identifies a specific invocation of a method.

• A symbol specifying its state:

- >> (active)

- >|(about to be entered)

- <|(about to be exited)

• Name of the method invoked (e.g., RootSystem.Start)

• Name of the block or system on which the method is invoked (e.g.,
Sum)

• System and block ID (sid:bid) of the block on which the method
is invoked

7-45

where

For example, 0:8 indicates that the specified method operates on
block 8 of system 0.

where detail, where detail is any nonnegative integer, includes
inactive nodes in the display.

See Also step

7-46

xbreak

Purpose Break when the debugger encounters a step-size-limiting state

Syntax xbreak

Description The xbreak command pauses execution of the model when the debugger
encounters a state that limits the size of the steps that the solver takes.
If xbreak mode is already on, xbreak turns the mode off.

See Also break, bafter, ebreak, zcbreak, tbreak, nanbreak, rbreak

7-47

zcbreak

Purpose Toggle breaking at nonsampled zero-crossing events

Syntax zcbreak

Description The zcbreak command causes the debugger to break when a
nonsampled zero-crossing event occurs. If zero-crossing break mode is
already on, zcbreak turns the mode off.

See Also break, bafter, xbreak, tbreak, nanbreak, zclist

7-48

zclist

Purpose List blocks containing nonsampled zero crossings

Syntax zclist

Description The zclist command displays a list of blocks in which nonsampled zero
crossings can occur. The command displays the list in the MATLAB
Command Window.

See Also zcbreak

7-49

8

Data Type Functions

The following sections describes functions that create MATLAB structures
or Simulink objects that define data types. You can use these functions in
Simulink models to specify user-defined data types.

8 Data Type Functions

Data Type Functions — Alphabetical List

8-2

fixdt

Purpose Create a Simulink.NumericType object describing a fixed-point or
floating-point data type

Syntax a = fixdt(Signed, WordLength)
a = fixdt(Signed, WordLength, FractionLength)
a = fixdt(Signed, WordLength, TotalSlope, Bias)
a = fixdt(Signed, WordLength, SlopeAdjustmentFactor,

FixedExponent, Bias)
a = fixdt(DataTypeNameString)
[DataType,IsScaledDouble] = fixdt(DataTypeNameString)

Description fixdt(Signed, WordLength) returns a Simulink.NumericType object
describing a fixed-point data type with unspecified scaling. The scaling
would typically be determined by another block parameter. Signed can
be 0 (false) for unsigned or 1 (true) for signed.

fixdt(Signed, WordLength, FractionLength) returns a
Simulink.NumericType object describing a fixed-point data type with
binary point scaling.

fixdt(Signed, WordLength, TotalSlope, Bias) or fixdt(Signed,
WordLength, SlopeAdjustmentFactor, FixedExponent, Bias)
returns a Simulink.NumericType object describing a fixed-point data
type with slope and bias scaling.

fixdt(DataTypeNameString) returns a Simulink.NumericType object
describing an integer, fixed-point, or floating-point data type specified
by a data type name. The data type name can be either the name of a
built-in Simulink data type or the name of a fixed-point data type that
conforms to the naming convention for fixed-point names established by
the Simulink Fixed Point product.

[DataType,IsScaledDouble] = fixdt(DataTypeNameString) returns
a Simulink.NumericType object describing an integer, fixed-point,
or floating-point data type specified by a data type name and a flag
that indicates whether the specified data type name was the name of
a scaled double data type.

See Also float, sfix, sfrac, sint, ufix, ufrac, uint

8-3

fixptbestexp

Purpose Determine the exponent that gives the best precision fixed-point
representation of a value

Syntax out = fixptbestexp(RealWorldValue,TotalBits,IsSigned)
out = fixptbestexp(RealWorldValue,FixPtDataType)

Description out = fixptbestexp(RealWorldValue,TotalBits,IsSigned)
determines the exponent that gives the best precision for the fixed-point
representation of the real-world value specified by RealWorldValue.
You specify the number of bits for the fixed-point number with
TotalBits, and you specify whether the fixed-point number is signed
with IsSigned. If IsSigned is 1, the number is signed. If IsSigned is 0,
the number is not signed. The exponent is returned to out.

out = fixptbestexp(RealWorldValue,FixPtDataType) determines
the exponent that gives the best precision based on the data type
specified by FixPtDataType.

Examples The following command returns the exponent that gives the best
precision for the real-world value 4/3 using a signed, 16-bit number:

out = fixptbestexp(4/3,16,1)
out =

-14

Alternatively, you can specify the fixed-point data type:

out = fixptbestexp(4/3,sfix(16))
out =

-14

This value means that the maximum precision representation of 4/3 is
obtained by placing 14 bits to the right of the binary point:

01.01010101010101

8-4

fixptbestexp

You would specify the precision of this representation in fixed-point
blocks by setting the scaling to 2^-14 or 2^fixptbestexp(4/3,16,1).

See Also fixptbestprec

8-5

fixptbestprec

Purpose Determine the maximum precision available for the fixed-point
representation of a value

Syntax out = fixptbestprec(RealWorldValue,TotalBits,IsSigned)
out = fixptbestprec(RealWorldValue,FixPtDataType)

Description out = fixptbestprec(RealWorldValue,TotalBits,IsSigned)
determines the maximum precision for the fixed-point representation
of the real-world value specified by RealWorldValue. You specify the
number of bits for the fixed- point number with TotalBits, and you
specify whether the fixed-point number is signed with IsSigned. If
IsSigned is 1, the number is signed. If IsSigned is 0, the number is not
signed. The maximum precision is returned to out.

out = fixptbestprec(RealWorldValue,FixPtDataType) determines
the maximum precision based on the data type specified by
FixPtDataType.

Examples Example 1.

The following command returns the maximum precision available for
the real-world value 4/3 using a signed, 8-bit number:

out = fixptbestprec(4/3,8,1)
out =

0.015625

Alternatively, you can specify the fixed-point data type:

out = fixptbestprec(4/3,sfix(8))
out =

0.015625

8-6

fixptbestprec

This value means that the maximum precision available for 4/3 is
obtained by placing six bits to the right of the binary point since 2-6

equals 0.015625:

01.010101

Example 2.

You can use the maximum precision as the scaling parameter in
fixed-point blocks. This enables you to use fixptbestprec to perform
a type of autoscaling if you would like to designate a known range of
your simulation. For example, if your known range is -13 to 22, and you
are using a safety margin of 30%:

knownMax = 22;
knownMin = -13;
localSafetyMargin = 30;
slope = max(fixptbestprec((1+localSafetyMargin/100)* ...
[knownMax,knownMin], sfix(16)));

The variable slope can then be used in the Output scaling value
parameter in a block mask in your model. Be sure to select the Lock
output scaling against changes by the autoscaling tool parameter
in the same block to prevent the scaling from being overridden by the
Fixed-Point Settings interface. If you know the range, you can use this
technique in place of relying on a model simulation to provide the range
to the autoscaling tool, as described in autofixexp in “Simulink Fixed
Point User’s Guide”.

See Also fixptbestexp

8-7

fixpt_evenspace_cleanup

Purpose Modify lookup table input data to be evenly spaced

Syntax xdata_adjusted = fixpt_evenspace_cleanup(xdata_original, xdt,
xscale)

Description xdata_adjusted = fixpt_evenspace_cleanup(xdata_original,
xdt, xscale) modifies lookup table input data to be evenly spaced if it
is not quite evenly spaced after quantization. For example, 0:0.005:1
appears evenly spaced, but if it is quantized with scaling 2^-12, it is not
evenly spaced. Loss of even spacing can make a significant impact on
the efficiency of your implementation. Code generated by Real-Time
Workshop to implement an uneven lookup table is more complicated.
In addition, unevenly spaced input data is stored in data memory. If
you modify the input data to remain evenly spaced after quantization,
Real-Time Workshop generates simpler code and excludes the input
data from memory, thereby saving significant amounts of data memory.

The modifications to the lookup table input data are likely to change
the numerical behavior of the table. The numerical changes may or
may not be trivial, so you should test the model using simulation, rapid
prototyping, or other appropriate methods. This function is intended for
use with nontunable data. Tunable data is always treated as if it were
unevenly spaced. Even if tunable data starts out evenly spaced, it may
later be tuned to values that are unevenly spaced.

It is important to note that the data is judged to be "almost" evenly
spaced relative to the scaling slope. Consider the data vector [0 2 5],
which has spacing value 2 and 3. A natural first impression is that the
data has significantly uneven spacing. However, the difference between
the maximum spacing 3 and the minimum spacing 2 equals 1. If the
scaling slope is 1 or greater, then a spacing variation of 1 represents a
one bit change or less. A spacing variation of one bit or less is judged
to be "almost" evenly spaced, and this function will adjust the data to
force it to be evenly spaced.

The required input parameters of this function are as follows.

8-8

fixpt_evenspace_cleanup

Input Value Example

xdata_original Input lookup data 0:0.005:1

xdt Input data type sfix(16)

xscale Input scaling 2^-12

See Also fixdt, fixpt_interp1, fixpt_look1_func_approx, sfix, ufix

8-9

fixpt_interp1

Purpose Implement a 1-D lookup table

Syntax y = fixpt_interp1(xdata,ydata,x,xdt,xscale,ydt,yscale,rndmeth)

Description fixpt_interp1(xdata,ydata,x,xdt,xscale,ydt,yscale,rndmeth)
implements a lookup table to find output(s) y for input(s) x. If x falls
between two xdata values, then y is found by interpolating between the
corresponding ydata pair. If x falls above the range given by xdata, y is
given as the maximum ydata value. If x falls below the range given by
xdata, y is given as the minimum ydata value.

If either the input data type, xdt, or the output data type, ydt, is
floating point, then floating-point calculation is used to perform
the interpolation. Otherwise, integer-only calculation is used. This
calculation handles the input scaling, xscale, and the output scaling,
yscale, appropriately, and obeys the designated rounding method,
rndmeth.

Examples Define xdata as a vector of 33 evenly spaced points between 0 and 8,
and ydata as the sinc of xdata.

xdata = linspace(0,8,33).';
ydata = sinc(xdata);

Now define your input x as a vector of 201 evenly spaced points between
-1 and 9.

x = linspace(-1,9,201).';

Notice that x includes some values that are both lower and higher than
the range of xdata.

You can now use fixpt_interp1 to interpolate outputs for x.

y = fixpt_interp1(xdata,ydata,x,sfix(8),2^-3,sfix(16),...
2^-14,'Floor')

8-10

fixpt_interp1

See Also fixpt_look1_func_approx, fixpt_look1_func_plot

8-11

fixpt_look1_func_approx

Purpose Optimize for a fixed-point function, the x values, or breakpoints, that
are generated for a lookup table

Syntax [xdata,ydata,errworst]=fixpt_look1_func_approx('funcstr',...
xmin,xmax,xdt,xscale,ydt,yscale,rndmeth,errmax,nptsmax)

[xdata,ydata,errworst]=fixpt_look1_func_approx('funcstr',...
xmin,xmax,xdt,xscale,ydt,yscale,rndmeth,errmax,[])

[xdata,ydata,errworst]=fixpt_look1_func_approx('funcstr',...
xmin,xmax,xdt,xscale,ydt,yscale,rndmeth,[],nptsmax)

[xdata,ydata,errworst]=fixpt_look1_func_approx('funcstr',...
xmin,xmax,xdt,xscale,ydt,yscale,rndmeth,errmax,nptsmax,spacing)

Description fixpt_look1_func_approx('funcstr',xmin,xmax,xdt,xscale,ydt,
yscale,rndmeth,errmax,nptsmax) optimizes the breakpoints of a
lookup table over a specified range. The lookup table satisfies the
maximum acceptable error, maximum number of points, and spacing
requirements given by the optional parameters. The breakpoints refer
to the x values of the lookup table. The command

[xdata,ydata,errworst]=fixpt_look1_func_approx('funcstr',...
xmin,xmax,xdt,xscale,ydt,yscale,rndmeth,errmax,[])

returns the x- and y- coordinates of the lookup table as vectors xdata
and ydata, respectively. It also returns the maximum absolute error of
the lookup table as a variable errworst.

The fixed-point approximation is found by interpolating between the
lookup table data points. The required input parameters are as follows.

8-12

fixpt_look1_func_approx

Input Value

'funcstr' Function of x funcstr is the function for which
breakpoints are approximated.

xmin Minimum value of x

xmax Maximum value of x

xdt Data type of x

xscale Scaling for the x values

ydt Data type of y

yscale Scaling for the y values

rndmeth Rounding mode supported by fixed-point Simulink
blocks: 'Toward Zero', 'Nearest', 'Floor' (default
value), 'Ceiling'

• xmin and xmax specify the range over which the breakpoints are
approximated.

• xdt, xscale, ydt, yscale, and rndmeth follow conventions used by
fixed-point Simulink blocks.

• rndmeth has a default value listed in the input table.

In addition to the required parameters, there are three optional inputs,
as follows.

Input Value

errmax Maximum acceptable error

nptsmax Maximum number of points

spacing Spacing: 'even', 'pow2' (even power of 2),
'unrestricted' (default value)

Of these, you must use at least one of the parameters errmax and
nptsmax. If you omit one of these, you must use brackets, [], in place of

8-13

fixpt_look1_func_approx

the omitted parameter. The function will then ignore that requirement
for the lookup table.

The outputs of the function are as follows.

Output Value

xdata The breakpoints for the lookup table

ydata The ideal function applied to the breakpoints

errworst The worst case error, which is the maximum absolute
error between the ideal function and the approximation
given by the lookup table

Criteria For Optimizing the Breakpoints: errmax, nptsmax, and
spacing

The approximation produced from the lookup table must satisfy the
requirements for the maximum acceptable error, errmax, the maximum
number of points, nptsmax, and the spacing, spacing. The requirements
are

• The maximum absolute error is less than errmax.

• The number of points required is less than nptsmax.

• The spacing is specified as unrestricted, even or even power of 2.

Modes for errmax and nptsmax

• If both errmax and nptsmax are specified

The returned breakpoints will meet both criteria if possible. The
errmax parameter is given priority, and nptsmax is ignored, if both
criteria cannot be met with the specified spacing.

• If only errmax is specified

The breakpoints that meet the error criteria, and have the least
number of points are returned

8-14

fixpt_look1_func_approx

• If only nptsmax is specified

The breakpoints that require nptsmax or fewer, and give the smallest
worst case error are returned

Modes for Spacing

If no spacing is specified, and more than one spacing method meets
the requirements given by errmax and nptsmax, power of 2 spacing is
chosen over even spacing, which in turn is chosen over uneven spacing.
This case occurs when the errmax and nptsmax are both specified, but
typically does not occur when only one is specified:

• If unrestricted is entered, the function chooses the spacing that
provides the best optimization.

• If even is entered, the function chooses an evenly spaced set of points,
including the pow2 spacing.

• If pow2 spacing is entered, the function chooses an even power of 2
spaced set of points.

Note The global optimum may not be found. The worst case error
can depend on fixed-point calculations, which are highly nonlinear.
Furthermore, the optimization approach is heuristic.

The spacing you choose depends on the parameters you want to
optimize: execution speed, function approximation error, ROM usage,
and RAM usage:

• The execution speed depends on the bisection search, and the
interpolation method.

• The error depends on how accurately the method approximates the
nonuniform curvature of the function.

• The ROM usage depends on the amount of data and command ROM
used.

8-15

fixpt_look1_func_approx

• The RAM usage depends on how much global and stack RAM is used.

When the lookup table has even power of two spacing, division is
replaced by a bit shift. As a result, the execution speed is faster than for
evenly spaced data.

Using the Approximation Function

1 Choose a function and use the eval('funcstr'); command to view
the function before creating the lookup table.

2 Define the remaining inputs.

3 Run the fixpt_look1_func_approx function.

4 Use the fixpt_look1_func_plot function to plot the function from
the selected breakpoints, and to calculate the error and the number
of points used.

5 Vary the inputs to produce sets of breakpoints that generate functions
with varying number of points required and worst case error.

6 Compare the number of points required and worst case error from
various runs to choose the best set of breakpoints.

Calculating the Output Function

To calculate the function, use the returned breakpoints with

• The eval function

• A function lookup table. The x values are the breakpoints from
the fixpt_look1_func_approx function, and the y values can be
supplied using the eval function.

See “Tutorial: Producing Lookup Table Data” in “Simulink Fixed Point
User’s Guide” for a tutorial on using fixpt_look1_func_approx.

The following table summarizes the effect of spacing on the execution
speed, error, and memory used.

8-16

fixpt_look1_func_approx

Parameter
Even Power of 2
Spaced Data

Evenly Spaced
Data

Unevenly Spaced
Data

Execution Speed The execution speed
is the fastest. The
position search
and interpolation
are the same as
for evenly spaced
data. However, to
increase the speed
more, the position
search is replaced
by a bit shift, and
the interpolation is
replaced with a bit
mask.

The execution speed
is faster than that
for unevenly spaced
data because the
position search
is faster and
the interpolation
requires a simple
division.

The execution speed
is the slowest of the
different spacings
because the position
search is slower, and
the interpolation
requires more
operations.

Error The error can
be larger than
that for unevenly
spaced data because
approximating
a function with
nonuniform
curvature requires
more points to
achieve the same
accuracy.

The error can
be larger than
that for unevenly
spaced data because
approximating
a function with
nonuniform
curvature requires
more points to
achieve the same
accuracy.

The error can be
smaller because
approximating
a function with
nonuniform
curvature requires
fewer points to
achieve the same
accuracy.

ROM Usage Uses less command
ROM, but more data
ROM.

Uses less command
ROM, but more data
ROM.

Uses more command
ROM, and less data
ROM.

RAM Usage Not significant. Not significant. Not significant.

8-17

fixpt_look1_func_approx

Examples This example produces a lookup table for a sine function. The inputs for
the example are as follows:

funcstr = 'sin(2*pi*x)';
xmin = 0;
xmax = 0.25;
xdt = ufix(16);
xscale = 2^-16;
ydt = sfix(16);
yscale = 2^-14;
rndmeth = 'Floor';
errmax = 2^-10;
spacing = 'pow2';

To create the lookup table, type

[xdata, ydata, errWorst]=fixpt_look1_func_approx(funcstr,...
xmin,xmax,xdt,xscale,ydt,yscale,rndmeth,errmax,[],spacing);

The brackets [] are a place holder for the nptsmax parameter, which is
not used in this example.

You can then plot the ideal function, the approximation, and the errors
by typing

fixpt_look1_func_plot(xdata,ydata,funcstr,xmin,xmax,xdt,...
xscale,ydt,yscale,rndmeth);

The fixpt_look1_func_plot function produces a plot of the fixed-point
sine function, using these breakpoints, and a plot of the error between
the ideal function and the fixed-point function. The maximum absolute
error and the number of points required are listed with the plot. The
error drops to zero at a breakpoint, and increases between breakpoints
due to the difference in curvature of the ideal function and the line
drawn between breakpoints.

The resulting plots are shown.

8-18

fixpt_look1_func_approx

The lookup table requires 33 points to achieve a maximum absolute
error of 2^-11.3922.

See Also fixpt_look1_func_plot

8-19

fixpt_look1_func_plot

Purpose Plot a function with x values generated by the
fixpt_look1_func_approx function

Syntax errworst = fixpt_look1_func_plot(xdata,ydata,'funcstr',
xmin,xmax,xdt,xscale,ydt,yscale,rndmeth)

Description fixpt_look1_func_plot(xdata,ydata,'funcstr',xmin,xmax,xdt,xscale,
ydt,yscale,rndmeth) plots a lookup table approximation
function and its error from the ideal function. You can use
the fixpt_look1_func_approx function to generate xdata
and ydata, the x and y data points for the lookup table. The
function returns the maximum absolute error as a variable
errworst. The inputs are as follows.

Input Value

xdata x values for the lookup table

ydata y values for the lookup table

'funcstr' Function of x

xmin Minimum input of interest

xmax Maximum input of interest

xdt Data type of x

xscale Scaling for the x values

ydt Data type of y

yscale Scaling for the y values

rndmeth Rounding mode supported by the blockset: 'Toward
Zero', 'Nearest', 'Floor', 'Ceiling'

The fixpt_look1_func_approx function applies the ideal function to
the points in xdata to produce ydata. While this is the easiest way to
generate ydata, you are not required to use these values for ydata as
input for the fixpt_look1_func_approx function. Choosing different

8-20

fixpt_look1_func_plot

values for ydata can, in some cases, produce a lookup table with a
smaller maximum absolute error.

See “Tutorial: Producing Lookup Table Data” in “Simulink Fixed Point
User’s Guide” for a tutorial on using fixpt_look1_func_plot. For an
example of the function, see fixpt_look1_func_approx function.

See Also fixpt_look1_func_approx

8-21

fixpt_set_all

Purpose Set a property for every fixed-point block in a subsystem

Syntax fixpt_set_all(SystemName,fixptPropertyName,fixptPropertyValue)

Description fixpt_set_all sets the property fixptPropertyName of every
applicable block in the model or subsystem SystemName to the value
fixptPropertyValue.

Examples To set every fixed-point block in a model called Filter_1 to round
toward the floor and to saturate upon overflow, type

fixpt_set_all('Filter_1','RndMeth','Floor')
fixpt_set_all('Filter_1','DoSatur','on')

8-22

float

Purpose Create a MATLAB structure describing a floating-point data type

Syntax a = float('single')
a = float('double')
a = float(TotalBits, ExpBits)

Description float('single') returns a MATLAB structure that describes the data
type of an IEEE single (32 total bits, 8 exponent bits).

float('double') returns a MATLAB structure that describes the data
type of an IEEE double (64 total bits, 11 exponent bits).

float(TotalBits, ExpBits) returns a MATLAB structure that
describes a nonstandard floating-point data type that mimics the IEEE
style. That is, the numbers are normalized with a hidden leading one
for all exponents except the smallest possible exponent. However, the
largest possible exponent might not be treated as a flag for Infs and
NaNs.

float is automatically called when a floating-point number is specified
in a block dialog box.

Examples Define a nonstandard, IEEE-style, floating-point data type with 31 total
bits (excluding the hidden leading one) and 9 exponent bits:

a = float(31,9)
a =

Class: 'FLOAT'
MantBits: 21
ExpBits: 9

See Also fixdt, sfix, sfrac, sint, ufix, ufrac, uint

8-23

fxptdlg

Purpose Invokes the Fixed-Point Settings interface

Syntax fxptdlg('model')

Description fxptdlg('model') brings up the Fixed-Point Settings interface for the
MDL-file model. You can also invoke this interface by

• Selecting Fixed-Point Settings in the Tools menu in the model
window

• Right-clicking in any subsystem and selecting Fixed-Point Settings
from the menu that pops up

With the Simulink Fixed Point product, the Fixed-Point Settings
interface provides convenient access to global data type overrides and
logging settings, the logged data, the automatic scaling script, and the
Plot System interface. You can invoke the Fixed-Point Settings interface
for any system or subsystem, and it controls the model specified by the
Select current system parameter.

If Simulink Fixed Point is installed, the Fixed-Point Settings interface
displays the name, minimum simulation value, maximum simulation
value, data type, and scaling of each block in the model that logs
data. Additionally, if a signal saturates or overflows, a message
is displayed for the associated block indicating how many times
saturation or overflow occurred. You can display a block’s dialog box by
double-clicking on the appropriate block entry in this pane.

Most of the functionality in the Fixed-Point Settings interface is for
use with the Simulink Fixed Point product. However, even if you do
not have Simulink Fixed Point, you can use data type override mode
to simulate a model that specifies fixed-point data types. In this mode,
Simulink replaces fixed-point values with floating-point values when
simulating the model. Data type override mode allows you to share
fixed-point models with people in your company who do not have
Simulink Fixed Point.

To simulate a model in data type override mode:

8-24

fxptdlg

1 Select Fixed-Point Settings from the Simulink Tools menu.

The Fixed-Point Settings dialog box appears.

2 Set the Logging mode parameter to Force off.

3 Set the Data type override parameter to True doubles or True
singles.

Note If you specify a fi object as a fixed-point parameter in your
model, you need a Fixed-Point Toolbox license to simulate the model in
data type override mode.

Parameters
and
Dialog
Box

8-25

fxptdlg

Select current system
Displays the names of all systems and subsystems in currently
opened models in a hierarchical format. The menu can be
expanded and collapsed using the + and - signs. The information
displayed in the rest of the Fixed-Point Settings interface applies
to the subsystem designated by this parameter.

Logging mode
Controls which blocks log data. The value of this parameter for
parent systems controls logging for all child subsystems, unless
Use local settings is selected:

• Use local settings — Data is logged according to the value
of this parameter set for each subsystem. Otherwise, settings
for parent systems always override those of child systems.

• Min, max and overflow — Minimum value, maximum value,
and overflow data is logged for all blocks in the current system
or subsystem.

• Overflow — Only overflow data is logged for all blocks in the
current system or subsystem.

• Force off — No data is logged for any block in the current
system or subsystem. Use this selection to work with models
containing fixed-point enabled blocks if you do not have a
Simulink Fixed Point license.

Data type override
Controls data type override of blocks that allow you to specify data
types in their block masks. The value of this parameter for parent
systems controls data type override for all child subsystems,
unless Use local settings is selected:

• Use local settings — Data types are overridden according to
the value of this parameter set for each subsystem. Otherwise,
settings for parent systems override those of child systems.

• Scaled doubles — The output data type of all blocks in
the current system or subsystem is overridden with doubles;

8-26

fxptdlg

however, the scaling and bias specified in the mask of each
block is maintained.

• True doubles — The output data type of all blocks in the
current system or subsystem is overridden with true doubles.
The overridden values have no scaling or bias.

• True singles — The output data type of all blocks in the
current system or subsystem is overridden with true singles.
The overridden values have no scaling or bias.

• Force off — No data type override is performed on any block
in the current system or subsystem.

Set this parameter to True doubles or True singles to work with
models containing fixed-point enabled blocks if you do not have a
Simulink Fixed Point license.

Note The following Simulink blocks allow you to set data types in
their block masks, but ignore the Data Type Override setting: Probe,
Trigger, Width.

Block Name
Displays blocks that log data in the selected system or subsystem.
The block path is described in terms of the blockset model name.
The minimum value, maximum value, data type, and scaling are
shown opposite each block name when the simulation is run.

Logging type
Controls the logging type:

• Overwrite log -- Information in the Simulation data
logged for current system pane is completely cleared before
new logging data is entered.

• Merge log -- New logging data is merged with any information
previously appearing in the Simulation data logged for
current system pane.

8-27

fxptdlg

Safety margin
The Safety margin parameter is used as part of the automatic
scaling procedure. Before automatic scaling is performed, you
must run the simulation to collect min/max data. To learn how to
do this, refer to “Tutorial: Feedback Controller Simulation”.

Simulation values are multiplied by the factor designated by
this parameter, allowing you to specify a range different from
that defined by the maximum and minimum values logged to the
workspace. For example, a value of 55 specifies that a range at
least 55 percent larger is desired. A value of -15 specifies that a
range up to 15 percent smaller is acceptable.

The Fixed-Point Settings interface contains eight buttons:

• Run runs the model and updates the display with the latest
simulation information.

• Pause pauses the simulation.

• Stop stops the simulation from running.

• Show plot dialog invokes the Plot systems interface, which
displays any To Workspace, Outport, or Scope blocks found in the
model.

• Open System invokes the Fixed-Point Settings interface for the
system or subsystem displayed in the Select current system
parameter.

• Autoscale Blocks invokes the automatic scaling script autofixexp.

• Close closes the interface.

• Help displays the HTML-based help for the fxptdlg function.

The Plot systems interface is shown below. In this example, the
interface is displaying variable names that correspond to Scope block
outputs from the fxpdemo_feedback demo.

8-28

fxptdlg

To plot the simulation results, select one or more variable names, and
then select the appropriate plot button:

• Plot Signals plots the raw signal data for the selected variable(s).

• Plot Doubles plots doubles data for the selected variable(s). Doubles
are generated when the Data type override parameter is set to
True doubles.

• Plot Both plots both raw signal data and doubles data for the
selected signal(s). Note that the doubles override does not overwrite
the raw data.

• Cancel allows you to exit the interface without plotting.

Examples To learn how to use the Fixed-Point Settings interface, see “Tutorial:
Feedback Controller Simulation” in “Simulink Fixed Point User’s
Guide”.

See Also showfixptsimerrors, showfixptsimranges

8-29

num2fixpt

Purpose Convert a number to the nearest value representable by a specified
fixed-point data type

Syntax outValue = num2fixpt(OrigValue, FixPtDataType, FixPtScaling,
RndMeth, DoSatur)

Description num2fixpt(OrigValue, FixPtDataType, FixPtScaling, RndMeth,
DoSatur) returns the result of converting OrigValue to the nearest
value representable by the fixed-point data type FixPtDataType. Both
OrigValue and outValue are of data type double. As illustrated in the
example that follows, you can use num2fixpt to investigate quantization
error that might result from converting a number to a fixed-point data
type. The arguments of num2fixpt include:

OrigValue Value to be converted to a fixed-point
representation. Must be specified using a double
data type.

FixPtDataType The fixed-point data type used to convert
OrigValue.

FixPtScaling Scaling of the output in either Slope or [Slope
Bias] format. If FixPtDataType does not specify a
generalized fixed-point data type using the sfix or
ufix command, FixPtScaling is ignored.

8-30

num2fixpt

RndMeth Rounding technique used if the fixed-point data
type lacks the precision to represent OrigValue. If
FixPtDataType specifies a floating-point data type
using the float command, RndMeth is ignored.
Valid values are Zero, Nearest, Ceiling, or Floor
(the default).

DoSatur Indicates whether the output should be saturated
to the minimum or maximum representable value
upon underflow or overflow. If FixPtDataType
specifies a floating-point data type using the float
command, DoSatur is ignored. Valid values are on
or off (the default).

Examples Suppose you wish to investigate the quantization effect associated with
representing the real-world value 9.875 as a signed, 8-bit fixed-point
number. The command

num2fixpt(9.875, sfix(8), 2^-1)

ans =

9.50000000000000

reveals that a slope of 2^-1 results in a quantization error of 0.375.
The command

num2fixpt(9.875, sfix(8), 2^-2)

ans =

9.75000000000000

8-31

num2fixpt

demonstrates that a slope of 2^-2 reduces the quantization error to
0.125. But a slope of 2^-3, as used in the command

num2fixpt(9.875, sfix(8), 2^-3)

ans =

9.87500000000000

eliminates the quantization error entirely.

See Also fixptbestexp, fixptbestprec

8-32

sfix

Purpose Create a MATLAB structure describing a signed generalized fixed-point
data type

Syntax a = sfix(TotalBits)

Description sfix(TotalBits) returns a MATLAB structure that describes the data
type of a signed generalized fixed-point number with a word size given
by TotalBits.

sfix is automatically called when a signed generalized fixed-point data
type is specified in a block dialog box.

Note A default binary point is not included in this data type description.
Instead, the scaling must be explicitly defined in the block dialog box.

Examples Define a 16-bit signed generalized fixed-point data type:

a = sfix(16)
a =

Class: 'FIX'
IsSigned: 1
MantBits: 16

See Also fixdt, float, sfrac, sint, ufix, ufrac, uint

8-33

sfrac

Purpose Create a MATLAB structure describing a signed fractional data type

Syntax a = sfrac(TotalBits)
a = sfrac(TotalBits, GuardBits)

Description sfrac(TotalBits) returns a MATLAB structure that describes the
data type of a signed fractional number with a word size given by
TotalBits.

sfrac(TotalBits, GuardBits) returns a MATLAB structure that
describes the data type of a signed fractional number. The total word
size is given by TotalBits with GuardBits bits located to the left of
the sign bit.

sfrac is automatically called when a signed fractional data type is
specified in a block dialog box.

The default binary point for this data type is assumed to lie immediately
to the right of the sign bit. If guard bits are specified, they lie to the left
of the binary point in addition to the sign bit.

Examples Define an 8-bit signed fractional data type with 4 guard bits. Note that
the range of this number is -24 = -16 to (1 - 2(1 - 8)).24 = 15.875:

a = sfrac(8,4)
a =

Class: 'FRAC'
IsSigned: 1
MantBits: 8

GuardBits: 4

See Also fixdt, float, sfix, sint, ufix, ufrac, uint

8-34

sint

Purpose Create a MATLAB structure describing a signed integer data type

Syntax a = sint(TotalBits)

Description sint(TotalBits) returns a MATLAB structure that describes the data
type of a signed integer with a word size given by TotalBits.

sint is automatically called when a signed integer is specified in a
block dialog box.

The default binary point for this data type is assumed to lie to the
right of all bits.

Examples Define a 16-bit signed integer data type:

a = sint(16)
a =

Class: 'INT'
IsSigned: 1
MantBits: 16

See Also fixdt, float, sfix, sfrac, ufix, ufrac, uint

8-35

ufix

Purpose Create a MATLAB structure describing an unsigned generalized
fixed-point data type

Syntax a = ufix(TotalBits)

Description ufix(TotalBits) returns a MATLAB structure that describes the data
type of an unsigned generalized fixed-point data type with a word size
given by TotalBits.

ufix is automatically called when an unsigned generalized fixed-point
data type is specified in a block dialog box.

Note The default binary point is not included in this data type
description. Instead, the scaling must be explicitly defined in the block
dialog box.

Examples Define a 16-bit unsigned generalized fixed-point data type:

a = ufix(16)
a =

Class: 'FIX'
IsSigned: 0
MantBits: 16

See Also fixdt, float, sfix, sfrac, sint, ufrac, uint

8-36

ufrac

Purpose Create a MATLAB structure describing an unsigned fractional data type

Syntax a = ufrac(TotalBits)
a = ufrac(TotalBits, GuardBits)

Description ufrac(TotalBits) returns a MATLAB structure that describes the
data type of an unsigned fractional number with a word size given by
TotalBits.

ufrac(TotalBits, GuardBits) returns a MATLAB structure that
describes the data type of an unsigned fractional number. The total
word size is given by TotalBits with GuardBits bits located to the left
of the binary point.

ufrac is automatically called when an unsigned fractional data type
is specified in a block dialog box.

The default binary point for this data type is assumed to lie immediately
to the left of all bits. If guard bits are specified, then they lie to the left
the default binary point.

Examples Define an 8-bit unsigned fractional data type with 4 guard bits. Note
that the range of this number is from 0 to (1 - 2-8).24 = 15.9375:

a = ufrac(8,4)
a =

Class: 'FRAC'
IsSigned: 0
MantBits: 8

GuardBits: 4

See Also fixdt, float, sfix, sfrac, sint, ufix, uint

8-37

uint

Purpose Create a MATLAB structure describing an unsigned integer data type

Syntax a = uint(TotalBits)

Description uint(TotalBits) returns a MATLAB structure that describes the data
type of an unsigned integer with a word size given by TotalBits.

uint is automatically called when an unsigned integer is specified in
a block dialog box.

The default binary point for this data type is assumed to lie to the
right of all bits.

Examples Define a 16-bit unsigned integer:

a = uint(16)
a =

Class: 'INT'
IsSigned: 0
MantBits: 16

See Also fixdt, float, sfix, sfrac, sint, ufix, ufrac

8-38

9

Data Object Classes

The following sections describe the properties and usage of the following
classes of Simulink data objects (see “Working with Data Objects” in “Using
Simulink” for general information on creating and using Simulink data
objects).

Class Summary (p. 9-2) Brief description of data object
classes

Classes — Alphabetical List (p. 9-5) Data object classes listed in
alphabetical order

9 Data Object Classes

Class Summary
The following table briefly describes the purpose of each Simulink data object
class.

Class Purpose

EventData Provides information about
block method execution events.

Simulink.AliasType Specifies an alternate name
for an existing data type.

Simulink.Annotation Specifies properties of a model
annotation

Simulink.BlockCompDworkData Provides postcompilation
information about a block’s
Dwork vector.

Simulink.BlockCompInputPortData Provides postcompilation
information about a block
input port.

Simulink.BlockCompOutputPortData Provides postcompilation
information about a block
output port.

Simulink.BlockData Provide run-time information
about block-related data, such
as block parameters.

Simulink.BlockPortData Describe a block input or
output port.

Simulink.BlockPreCompInputPortData Provides precompilation
information about a block
input port.

Simulink.BlockPreCompOutputPortData Provides precompilation
information about a block
output port.

Simulink.Bus Describes a signal bus.

9-2

Class Summary

Class Purpose

Simulink.BusElement Describe an element of a signal
bus.

Simulink.ConfigSet Access a model configuration
set.

Simulink.ModelAdvisor Run the Model Advisor
programmatically.

Simulink.ModelDataLogs Stores a model’s signal logs.

Simulink.ModelWorkspace Accesses a model’s workspace.

Simulink.MSFcnRunTimeBlock Get run-time information
about a Level-2 M-file
S-function block.

Simulink.NumericType Describes a numeric data type.

Simulink.Parameter Describes the value of a block
parameter.

Simulink.ParamRTWInfo Specify information needed to
generate code for a parameter.

Simulink.RunTimeBlock Allow Level-2 M-file S-function
and other M-file programs to
get information about a block
while a simulation running.

Simulink.ScopeDataLogs Log data displayed by a Scope
viewer.

Simulink.Signal Describes the value of a block
output.

Simulink.StructElement Describes an element of a data
structure.

Simulink.StructType Describes a data structure.

Simulink.SubsysDataLogs Stores a subsystem’s signal
logs.

9-3

9 Data Object Classes

Class Purpose

Simulink.TimeInfo Provide information
about the time data in a
Simulink.Timeseries object.

Simulink.Timeseries Log for an elementary signal.

Simulink.TsArray Log for a composite signal.

9-4

Classes — Alphabetical List

Classes — Alphabetical List

9-5

EventData

Purpose Provides information about block method execution events.

Description Simulink creates an instance of this class when a block method
execution event occurs during simulation and passes it to any listeners
registered for the event (see add_exec_event_listener). The instance
specifies the type of event that occurred and the block whose method
execution triggered the event. See “Accessing Block Data During
Simulation” in “Using Simulink” for more information.

Parent None

Children None

Property
Summary

Name Description

“Type” Type of method execution event that occurred.

“Source” Block that triggered the event.

Properties
Type

Description
Type of method execution event that occurred. Possible values are:

Event Occurs...

'PreOutputs' Before a block’s Outputs method executes.

'PostOutputs' After a block’s Outputs method executes.

'PreUpdate' Before a block’s Update method executes.

'PostUpdate' After a block’s Update method executes.

'PreDerivatives' Before a block’s Derivatives method executes.

'PostDerivatives' After a block’s Derivatives method executes.

9-6

EventData

Data Type
string

Access
RO

Source

Description
Block that triggered the event

Data Type
Simulink.RunTimeBlock

Access
RO

9-7

Simulink.AliasType

Purpose Create an alias for a signal and/or parameter data type

Description This class allows you to designate MATLAB variables as aliases for
signal and parameter data types. You do this by creating instances of
this class and assigning them to variables in the MATLAB or model
workspaces (see “Creating a Data Type Alias” on page 9-8). The
MATLAB variable to which a Simulink.AliasType object is assigned
is called a data type alias. The data type to which an alias refers is
called its base type. Simulink allows you to set the BaseType property
of the object that the variable references, thereby designating the data
type for which it is an alias.

Simulink lets you use aliases instead of actual type names in dialog
boxes and set_param commands to specify the data types of Simulink
block outputs and parameters. Using aliases to specify signal and
parameter data types can greatly simplify global changes to the
signal and parameter data types that a model specifies. In particular,
changing the data type of all signals and parameters whose data type is
specified by an alias requires only changing the base type of the alias.
By contrast, changing the data types of signals and parameters whose
data types are specified by an actual type name requires respecifying
the data type of each signal and parameter individually.

Note Suppose you specify an instance of the Simulink.AliasType
class as the value of a Simulink.Parameter object’s Data type
property. If you enter the parameter object in a subsystem’s mask, the
subsystem displays the data type’s base type instead of its alias name.

Creating a Data Type Alias

You can use either the Model Explorer or MATLAB commands (see
“MATLAB Commands for Creating Data Type Aliases” on page 9-9)
to create a data type alias.

To use the Model Explorer to create an alias:

9-8

Simulink.AliasType

1 Select Base Workspace (i.e., the MATLAB workspace) in the Model
Explorer’s Model Hierarchy pane.

You must create data type aliases in the MATLAB workspace. If you
attempt to create an alias in a model workspace, Simulink displays
an error.

2 Select Simulink.AliasType from the Model Explorer’s Add menu.

Simulink creates an instance of a Simulink.AliasType object and
assigns it to a variable named Alias in the MATLAB workspace.

3 Rename the variable to a more appropriate name, for example, a
name that reflects its intended usage.

To change the name, edit the name displayed in the Name field in
the Model Explorer’s Contents pane.

4 Enter the name of the data type that this alias represents in the
Base type field in the Model Explorer’s Dialog pane.

You can specify the name of any existing standard or user-defined
data type in this field. Skip this step if the desired base type is
double (the default).

5 Use the MATLAB save command to save the newly created alias in a
MAT-file that can be loaded by the models in which it is used.

MATLAB Commands for Creating Data Type Aliases

Use the following syntax to create a data type alias at the MATLAB
command line or in a MATLAB program

ALIAS = Simulink.AliasType;

where ALIAS is the name of the variable that you want to serve as the
alias. For example, the following line creates an alias names MyFloat.

MyFloat = Simulink.AliasType;

9-9

Simulink.AliasType

The following notations get and set the properties of a data type alias,
respectively,

PROPVALUE = ALIAS.PROPNAME;
ALIAS.PROPNAME = PROPVALUE;

where ALIAS is the name of the alias, PROPNAME is the name of the alias
object’s properties, and PROPVALUE is the property’s value. For example,
the following code saves the current value of MyFloat’s BaseType
property and assigns it a new value.

old = MyFloat.BaseType;
MyFloat.BaseType = 'single';

See “Properties” on page 9-12 for information on the names, permitted
values, and usage of the properties of data type alias objects.

Parent None

Children None.

9-10

Simulink.AliasType

Property
Dialog
Box

Base type
The data type to which this alias refers. The default is double. To
specify another data type, select the data type from the adjacent
pull-down list of standard data types or enter the data type’s
name in the edit field. Note that you can, with one exception,
specify a nonstandard data type, e.g, a data type defined by a
Simulink.NumericType object, by entering the data type’s name
in the edit field. The exception is a Simulink.NumericType whose
Category is Fixed-point: unspecified scaling.

Note Fixed-point: unspecified scaling is a partially
specified type whose definition is completed by the block that uses
the Simulink.NumericType. Forbidding its use in alias types
avoids creating aliases that have different base types depending
on where they are used.

Header file
Name of a user-supplied C header file that defines a data type
having the same name as this alias (i.e., as the MATLAB variable

9-11

Simulink.AliasType

that references this alias object). If this field is not empty, code
generated from this model defines the alias type by including the
specified header file. If this field is empty, the generated code
defines the alias type itself.

Description
Describes the usage of the data type referenced by this alias.

Properties Name Description

BaseType A string specifying the name of a standard or custom
data type. (Base Type)

Description A string that describes the usage of the data type.
May be a null string. (Description)

HeaderFile A string that specifies the name of a C header file
that defines a data type having the same name as the
alias. (Header File)

9-12

Simulink.Annotation

Purpose Specify properties of a model annotation

Description Instances of this class specify the properties of annotations. You can
use getCallbackAnnotation in an annotation callback function to get
the Simulink.Annotation instance for the annotation associated with
the callback function. You can use find_system and get_param to get
the Simulink.Annotation instance associated with any annotation in
a model. For example, the following code gets the annotation object
for the first annotation in the currently selected model and turns on
its drop shadow

ah = find_system(gcs, 'FindAll', 'on', 'type', 'annotation');
ao = get_param(ah(1), 'Object');
ao.DropShadow = 'on';

Children None.

Property
Summary

Property Description Values

Text String specifying text of
annotation. Same as Name.

string

ClickFcn Specifies MATLAB code to
be executed when a user
single-clicks this annotation.
Simulink stores the code
entered in this field with the
model. See “Associating Click
Functions with Annotations”
for more information.

string

Description String that describes this
annotation.

string

9-13

Simulink.Annotation

Property Description Values

FontAngle String specifying the angle
of the annotation’s font.
The default value, 'auto',
specifies use of the model’s
preferred font angle.

'normal' | 'italic' |
'oblique' | {'auto'}

FontName String specifying name of
annotation’s font. The default
value, 'auto', specifies use of
the model’s preferred font.

string

FontSize Integer specifying size of
annotation’s font in points.
The default value, -1, specifies
use of the model’s preferred
font size.

real {'-1'}

FontWeight String specifying the weight
of the annotation’s font.
The default value, 'auto',
specifies use of the model’s
preferred font weight.

'light' | 'normal' | 'demi' |
'bold' | {'auto'}

Handle Annotation handle. real

HiliteAncestors For internal use.

Name String specifying text of
annotation. Same as Text.

string

Selected String specifying whether
this annotation is currently
selected ('on’) or not selected
('off').

{'on'} | 'off'

Parent String specifying parent name
of annotation object.

string

Path Path to the annotation. string

9-14

Simulink.Annotation

Property Description Values

Position Two-element vector specifying
the x-y coordinates of this
annotation relative to the
top, left corner of the block
diagram, e.g., [236 83].

vector [left top right bottom]
not enclosed in quotation marks.
The maximum value for a
coordinate is 32767.

Horizontal-
Alignment

String specifying the
horizontal alignment of this
annotation, e.g., 'center'.

{'center'} | 'left'|'right'

VerticalAlignment String specifying the vertical
alignment of this annotation,
e.g., 'middle'.

{'middle'} |
'top'|'cap'|'baseline'|'bottom'

ForegroundColor String specifying foreground
color of this annotation.

RGB value array string |
[r,g,b,a] where r, g, b,
and a are the red, green, blue, and
alpha values of the color normalized
to the range 0.0 to 1.0, delineated
with commas. The alpha value is
optional and ignored.

Block background color can also be
'black', 'white', 'red', 'green',
'blue', 'cyan', 'magenta',
'yellow', 'gray', 'lightBlue',
'orange', 'darkGreen'.

9-15

Simulink.Annotation

Property Description Values

BackgroundColor String specifying background
color of this annotation.

RGB value array string |
[r,g,b,a] where r, g, b,
and a are the red, green, blue, and
alpha values of the color normalized
to the range 0.0 to 1.0, delineated
with commas. The alpha value is
optional and ignored.

Block background color can also be
'black', 'white', 'red', 'green',
'blue', 'cyan', 'magenta',
'yellow', 'gray', 'lightBlue',
'orange', 'darkGreen'.

DropShadow String specifying whether
to display a drop shadow.
Options are 'on' or 'off'.

'on' | {'off'}

TeXMode String specifying whether to
render TeX markup. Options
are 'on' or 'off'.

'on' | {'off'}

Type Annotation type. This is
always 'annotation'

string

LoadFcn String specifying M-code
to be executed when the
model containing this
annotation is loaded. See
“Annotation Callback
Functions” in the online
Simulink documentation.

string

9-16

Simulink.Annotation

Property Description Values

DeleteFcn String specifying M-code
to be executed before
deleting this annotation.
See “Annotation Callback
Functions” in the online
Simulink documentation.

string

RequirementInfo For internal use. string

Tag User-specified text that is
assigned to the annotation’s
Tag parameter and saved with
the annotation.

string

UseDisplayText-
AsClickCallback

String specifying whether to
use the contents of the Text
property as this annotation’s
click function. Options are
'on' or 'off'.

If set to 'on', the text of the
annotation is interpreted as a
valid MATLAB expression and
run. If set to 'off', clicking
on the annotation runs the
click function, if there is one.
If there is no click function,
clicking the annotation has no
effect.

See “Associating Click
Functions with Annotations”
in the Using Simulink
documentation for more
information.

'on' | {'off'}

UserData Any data that you want to
associate with this annotation.

vector

9-17

Simulink.BlockCompDworkData

Purpose Provides postcompilation information about a block’s Dwork vector.

Description Simulink returns an instance of this class when an M-file program,
e.g., a Level-2 M-file S-function, invokes the “Dwork” on page 9-117
method of a block’s run-time object after the model containing the block
has been compiled.

Parent Simulink.BlockData

Children None

Property
Summary

Name Description

“Usage” on page 9-18 Usage type of this Dwork vector.

“UsedAsDiscState” True if this Dwork vector is being used to
store the values of a block’s discrete states.

Properties
Usage

Description
Returns a string indicating how this Dwork vector is used. Permissible
values are:

• DWork

• DState

• Scratch

• Mode

Data Type
string

Access
RW for M-file S-function blocks, RO for other blocks.

9-18

Simulink.BlockCompDworkData

UsedAsDiscState

Description
True if this Dwork vector is being used to store the values of a block’s
discrete states.

Data Type
Boolean

Access
RW for M-file S-function blocks, RO for other blocks.

9-19

Simulink.BlockCompInputPortData

Purpose Provides postcompilation information about a block input port

Description Simulink returns an instance of this class when an M-file program,
e.g., a Level-2 M-file S-function, invokes the “InputPort” on page 9-118
method of a block’s run-time object after the model containing the block
has been compiled.

Parent Simulink.BlockPortData

Children None

Property
Summary

Name Description

“DirectFeedthrough” True if this port has direct feedthrough.

“Overwritable” True if this port is overwritable.

Properties
DirectFeedthrough

Description
True if this input port has direct feedthrough.

Data Type
Boolean

Access
RW for M-file S functions, RO for other blocks.

Overwritable

Description
True if this input port is overwritable.

Data Type
Boolean

Access
RW for M-file S functions, RO for other blocks.

9-20

Simulink.BlockCompOutputPortData

Purpose Provides postcompilation information about a block output port.

Description Simulink returns an instance of this class when an M-file program, e.g.,
a Level-2 M-file S-function, invokes the “OutputPort” on page 9-119
method of a block’s run-time object after the model containing the block
has been compiled.

Parent Simulink.BlockPortData

Children None

Property
Summary

Name Description

“Reusable” Specifies whether an output port’s memory
is reusable.

Properties
Reusable

Description
Specifies whether an output port’s memory is reusable. Options are:
NotReusableAndGlobal and ReusableAndLocal.

Data Type
string

Access
RW for M-file S functions, RO for other blocks.

9-21

Simulink.BlockData

Purpose Provide run-time information about block-related data, such as block
parameters

Description This class defines properties that are common to objects that provide
run-time information about a block’s ports and work vectors.

Parent None

Children Simulink.BlockPortData, Simulink.BlockCompDworkData

Property
Summary

Name Description

“Complexity” Numeric type (real or complex) of the block
data.

“Data” The block data.

“DataAsDouble” The block data in double form.

“Datatype” Data type of the block data.

“DatatypeID” Index of the data type of the block data.

“Dimensions” Dimensions of the block data.

“Name” Name of the block data.

“Type” Type of block data (e.g., a parameter).

Properties
Complexity

Description
Numeric type (real or complex) of the block data.

Data Type
string

Access
RW for M-file S functions, RO for other blocks.

9-22

Simulink.BlockData

Data

Description
The block data.

Data Type
The data type specified by the “Datatype” or “DatatypeID” properties of
this object.

Access
RW

DataAsDouble

Description
The block data’s in double form.

Data Type
double

Access
RO

Datatype

Description
Data type of the values of the block-related object.

Data Type
string

Access
RO

DatatypeID

Description
Index of the data type of the values of the block-related object.

Data Type
integer

9-23

Simulink.BlockData

Access
RW for M-file S functions, RO for other blocks

Dimensions

Description
Dimensions of the block-related object, e.g., parameter or DWork vector.

Data Type
array

Access
RW for M-file S functions, RO for other blocks

Name

Description
Name of block-related object, e.g., a block parameter or Dwork vector.

Data Type
string

Access
RW for M-file S functions, RO for other blocks

Type

Description
Type of block data. Possible values are:

Type Description

'BlockPreCompInputPortData' This object contains data for an
input port before the model is
compiled.

'BlockPreCompOutputPortData' This object contains data for an
output port before the model is
compiled.

9-24

Simulink.BlockData

Type Description

'BlockCompInputPortData' This object contains data for an
input port after the model is
compiled.

'BlockCompOutputPortData' This object contains data for an
output port after the model is
compiled.

'BlockPreCompDworkData' This object contains data for a
Dwork vector before the model is
compiled.

'BlockCompDworkData' This object contains data for a
Dwork vector after the model is
compiled.

'BlockDialogPrmData' This object describes a dialog box
parameter of a Level-2 M-file
S-function.

'BlockRuntimePrmData' This object describes a run-time
parameter of a Level-2 M-file
S-function.

'BlockCompContStatesData' This object describes the
continuous states of the block at
the current time step.

'BlockDerivativesData' This object describes the
derivatives of the block’s
continuous states at the current
time step.

Data Type
string

Access
RO

9-25

Simulink.BlockPortData

Purpose Describe a block input or output port

Description This class defines properties that are common to objects that provide
run-time information about a block’s ports.

Parent Simulink.BlockData

Children Simulink.BlockPreCompInputPortData,
Simulink.BlockPreCompOutputPortData,
Simulink.BlockCompInputPortData,
Simulink.BlockCompOutputPortData

Property
Summary

Name Description

“IsBus” True if this port is connected to a bus.

“IsSampleHit” True if this port produces output or
accepts input at the current simulation
time step.

“SampleTime” Sample time of this port.

“SampleTimeIndex” Sample time index of this port.

“SamplingMode” Sampling mode of the port.

Properties
IsBus

Description
True if this port is connected to a bus.

Data Type
Boolean

Access
RO

9-26

Simulink.BlockPortData

IsSampleHit

Description
True if this port produces output or accepts input at the current
simulation time step.

Data Type
Boolean

Access
RO

SampleTime

Description
Sample time of this port.

Data Type
[period offset] where period and offset are values of type double.
See “Specifying Sample Time” for more information.

Access
RW for M-file S functions, RO for other blocks

SampleTimeIndex

Description
Sample time index of this port.

Data Type
integer

Access
RO

SamplingMode

Description
Sampling mode of the port. Valid values are:

9-27

Simulink.BlockPortData

Value Description

'frame' Port accepts or outputs frame-based
signals. The use of frame-based signals
requires a Signal Processing Blockset
license.

'inherited' Sampling mode is inherited from the port
to which this port is connected.

'sample' Port accepts or outputs sampled data.

Data Type
string

Access
RW for M-file S functions, RO for other blocks

9-28

Simulink.BlockPreCompInputPortData

Purpose Provides precompilation information about a block input port

Description Simulink returns an instance of this class when an M-file program,
e.g., a Level-2 M-file S-function, invokes the “InputPort” on page 9-118
method of a block’s run-time object before the model containing the
block has been compiled.

Parent Simulink.BlockPortData

Children None

Property
Summary

Name Description

“DirectFeedthrough” True if this port has direct feedthrough.

“Overwritable” True if this port is overwritable.

Properties
DirectFeedthrough

Description
True if this input port has direct feedthrough.

Data Type
Boolean

Access
RW for M-file S functions, RO for other blocks

Overwritable

Description
True if this input port is overwritable.

Data Type
Boolean

Access
RW for M-file S functions, RO for other blocks

9-29

Simulink.BlockPreCompOutputPortData

Purpose Provide precompilation information about a block output port.

Description Simulink returns an instance of this class when an M-file program, e.g.,
a Level-2 M-file S-function, invokes the “OutputPort” on page 9-119
method of a block’s run-time object before the model containing the
block has been compiled.

Parent Simulink.BlockPortData

Children none

Property
Summary

Name Description

“Reusable” Specifies whether an output port’s memory is
reusable.

Properties
Reusable

Description
Specifies whether an output port’s memory is reusable. Options are:
NotReusableAndGlobal and ReusableAndLocal.

Data Type
string

Access
RW for M-file S functions, RO for other blocks

9-30

Simulink.Bus

Purpose Specify the properties of a signal bus

Description Objects of this class (in conjunction with objects of the
Simulink.BusElement class) specify the properties of a signal bus. You
can use these objects to enable Simulink to check the validity of buses
connected to the inputs of blocks in your model. You do this by entering
the name of a bus object defining a bus in the Bus object field of a
block’s parameter dialog box. When you update the model’s diagram or
start a simulation of the model, Simulink checks whether the buses
connected to the blocks have the properties specified by the bus objects.
If not, Simulink halts and displays an error message.

You can use the Model Explorer’s Add > Simulink Bus command (see
“Using the Model Explorer to Create Data Objects”), the Simulink
Bus Editor (see “Bus Editor”), or MATLAB commands (see “Working
with Data Objects”) to create bus objects. You must use the Bus Editor
or the MATLAB command line to set the properties of a bus object.
Simulink also provides a set of utility functions for creating and saving
bus objects. See the documentation for the following functions for more
information:

• Simulink.Bus.save

• Simulink.Bus.createObject

• Simulink.Bus.cellToObject

9-31

Simulink.Bus

Property
Dialog
Box

Bus elements
Table that displays the properties of the bus’s elements. You
cannot edit this table. You must use either the Simulink Bus
Editor (see “Bus Editor” in “Using Simulink”) or MATLAB
commands to add or delete bus elements or change the properties
of existing bus elements. To launch the bus editor, click the
Launch Bus Editor button at the bottom of this dialog box or
select Bus Editor from the model editor’s Tools menu.

Header file
Name of a C header file that declares the structure of this bus.
This field is intended for use by Real-Time Workshop (see “Code
Generation with User-Defined Data Types” “Real-Time Workshop
Embedded Coder User’s Guide”). Simulink ignores this field.

9-32

Simulink.Bus

Description
Description of this structure. This field is intended for you to use
to document this bus. Simulink itself does not use this field.

Properties Name Access Description

Description RW String that describes this bus. This
property is intended for user use.
Simulink itself does not use it.
(Description)

Elements RW An array of Simulink.BusElement
objects that define the names,
data types, dimensions, and other
properties of the bus’s elements. The
elements must have unique names.
(Bus elements)

HeaderFile RW String that specifies the name of a C
header file that declares the structure
of this bus. This property is intended
for use by Real-Time Workshop.
Simulink does not use it. (Header file)

See Also Simulink.BusElement

9-33

Simulink.BusElement

Purpose Describe an element of a signal bus

Description Objects of this class define elements of buses defined by objects of the
Simulink.Bus class.

Property
Summary

Name Description

“Complexity” Numeric type of this bus element.

“DataType” Data type of this bus element.

“Dimensions” Dimensions of this bus element.

“Name” Name of this bus element.

“SampleTime” Sample time of this bus element.

“SamplingMode” Sampling mode of this bus element.

Properties
Complexity

Numeric type ('real' or 'complex') of this element. Must be 'real'
if this bus element is itself a bus.

Data Type: string

Access: RW

DataType

Name of the data type of this element. The value of this field can be
the name of a

• built-in Simulink data type, e.g., double or uint8

• Simulink.NumericType object, with one exception. The exception
is a Simulink.NumericType whose Category is Fixed-point:
unspecified scaling.

9-34

Simulink.BusElement

Note Fixed-point: unspecified scaling is a partially specified
type whose definition is completed by the block that uses the
Simulink.NumericType. Forbidding its use for bus elements avoids
creating bus elements that have different data types depending on
where they are used.

• Simulink.Bus object. This allows you to create bus objects that
specify hierarchical buses, i.e., buses that contain other buses.

Data Type: string

Access: RW

Dimensions

A vector specifying the dimensions of this element. Must be 1 if this
element is itself a bus.

Data Type: array.

Access: RW

Name

Name of this element.

Data Type: string

Access: RW

SampleTime

Size of the interval between times when this signal’s value must be
recomputed. Must be -1 (inherited) if this bus element is itself a bus
or if the bus that includes this element passes through a block that
changes the bus’s sample time, such as a Rate Transition block. See
“Specifying Sample Time” for more information.

9-35

Simulink.BusElement

Data Type: double

Access: RW

SamplingMode

Sampling mode of this element. Must be sample-based if this element
is itself a bus. This field is intended to be used by applications based
on Simulink.

Data Type: string

Access: RW

See Also Simulink.Bus

9-36

Simulink.ConfigSet

Purpose Access a model configuration set.

Description Instances of this handle class allow you to write programs to create,
modify, and attach configuration sets to models. See “Configuration Set
API” for more information.

Property
Summary

Name Description

“Components” Components of the configuration set.

“Description” Description of the configuration set.

“Name” Name of the configuration set.

“SimulationMode” Mode used to simulation this
configuration.

Note You can use the Model Configuration dialog box to set the
Name, Description, and SimulationMode properties of a model’s active
configuration set. See “Model Configuration Dialog Box” in “Using
Simulink” for more information.

Method
Summary

Name Description

“attachComponent” Attach a component to a configuration set.

“copy” Create a copy of a configuration set.

“getComponent” Get a component of a configuration set.

“getFullName” Get the full pathname of a configuration set.

“getModel” Get the handle of the model that owns a
configuration set.

“get_param” Get the value of a configuration set parameter.

9-37

Simulink.ConfigSet

Name Description

“isActive” Determine whether a configuration set is the
active set of the model that owns it.

“isValidParam” Determine whether a specified parameter is a
valid parameter of a configuration set.

“setPropEnabled” Prevent or allow a user to change a parameter.

“set_param” Set the value of a configuration set parameter.

Properties
Components

Description
Array of Simulink.ConfigComponent objects representing the
components of the configuration set, e.g., solver parameters, data
import/export parameters, etc.

Data Type
array

Access
RW

Description

Description
Description of the configuration set. You can use this property to provide
additional information about a configuration set, such as its purpose.

Data Type
string

Access
RW

Name

Description
Configuration set’s name.

9-38

Simulink.ConfigSet

Data Type
string

Access
RW

SimulationMode

Description
Model’s simulation mode. Valid values are normal, accelerator, or
external.

Data Type
string

Access
RW

Methods
attachComponent

Purpose
Attach a component to this configuration set.

Syntax
attachComponent(component)

Arguments

component
Instance of Simulink.ConfigComponent class.

Description
This method replaces a component in this configuration set with a
component having the same name.

Example
The following example replaces the solver component of the active
configuration set of model A with the solver component of the active
configuration set of model B.

9-39

Simulink.ConfigSet

hCs = getActiveConfigSet('B');
hSolverConfig = hCs.getComponent('Solver');
hSolverConfig = hSolverConfig.copy;
hCs = getActiveConfigSet('A');
hCs.attachComponent(hSolverConfig);

copy

Purpose
Create a copy of this configuration set.

Syntax
copy

Description
This method creates a copy of this configuration set.

Note You must use this method to create copies of configuration sets.
This is because Simulink.ConfigSet is a handle class. See “Handle
Versus Value Classes” in “Using Simulink” for more information.

getComponent

Purpose
Get a component of this configuration set.

Syntax
getComponent(componentName)

Arguments

componentName
String specifying the name of the component to be returned.

Description
Returns the specified component. Omit the argument to get a list of the
names of the components that this configuration set contains.

9-40

Simulink.ConfigSet

Example
The following code gets the solver component of the active configuration
set of the currently selected model.

hCs = getActiveConfigSet(gcs);
hSolverConfig = hCs.getComponent('Solver');

The following code displays the names of the components of the
currently selected model’s active configuration set at the MATLAB
command line.

hCs = getActiveConfigSet(gcs);
hCs.getComponent

getFullName

Purpose
Get the full path name of a configuration set.

Syntax
getFullName

Description
This method returns a string specifying the full pathname of a
configuration set, e.g., 'vdp/Configuration'.

getModel

Purpose
Get the model that owns this configuration set.

Syntax
getModel

Description
Returns a handle to the model that owns this configuration set.

9-41

Simulink.ConfigSet

Example
The following command opens the block diagram of the model that owns
the configuration set referenced by the MATLAB workspace variable
hCs.

open_system(hCs.getModel);

get_param

Purpose
Get the value of a configuration set parameter.

Syntax
get_param(paramName)

Arguments

paramName
String specifying the name of the parameter whose value is to
be returned.

Description
This method returns the value of the specified parameter.
config.get_param('ObjectParameters') returns the names of the
valid parameters in the configuration set named config.

Example
The following command gets the name of the solver used by the selected
model’s active configuration.

hAcs = getActiveConfigSet(bdroot);
hAcs.get_param('SolverName');

Note You can also use the get_param model construction command
to get the values of parameters of a model’s active configuration set,
e.g., get_param(bdroot, 'SolverName') gets the solver name of the
currently selected model.

9-42

Simulink.ConfigSet

isActive

Purpose
Determine whether this configuration set is its model’s active
configuration set.

Syntax
isActive

Description
Returns true if this configuration set is the active configuration set of
the model that owns this configuration set.

isValidParam

Purpose
Determine whether a specified parameter is a valid parameter of this
configuration set. A parameter is valid if it is compatible with other
parameters in the configuration set. For example, if SolverType is set to
'variable-step', FixedStep is an invalid parameter.

Syntax
isValidParam(paramName)

Arguments

paramName
String specifying the name of the parameter whose validity is
to be determined.

Description
This method returns true if the specified parameter is a valid parameter
of this configuration set; otherwise, it returns false.

Example
The following code sets the parameter StopTime only if it is a valid
parameter of the currently selected model’s active configuration set.

hAcs = getActiveConfigSet(gcs);
if hAcs.isValidParam('StopTime')

9-43

Simulink.ConfigSet

set_param('StopTime', '20');
end

setPropEnabled

Purpose
Enable a configuration set parameter to be changed.

Syntax
setPropEnabled(paramName, isEnabled)

Arguments

paramName
Name of the parameter whose value is to be set.

isEnabled
Specify as true to enable parameter; as false, to disable the
parameter.

Description
This method sets the enabled status the parameter specified by
paramName to the value specified by isEnabled. Disabling a parameter
prevents the user from changing it.

Example
The following code prevents the user from setting the simulation stop
time of the currently selected model.

hAcs = getActiveConfigSet(gcs);
hAcs.setPropEnabled('StopTime', false);

set_param

Purpose
Set the value of a configuration set parameter.

Syntax
set_param(paramName, paramValue)

9-44

Simulink.ConfigSet

Arguments

paramName
Name of the parameter whose value is to be set.

paramValue
Value to assign to the parameter.

Description
This method sets the configuration set parameter specified by
paramName to the value specified by paramValue.

Example
The following command sets the simulation stop time of the selected
model’s active configuration.

hAcs = getActiveConfigSet(gcs);
hAcs.set_param('StopTime', '20');

Note You can also use the set_param model construction command to
set the parameters of the active configuration set, e.g., set_param(gcs,
'StopTime', '20') sets the simulation stop time of the currently
selected model.

9-45

Simulink.ModelAdvisor

Purpose Run Model Advisor from M-file

Description Use instances of this class in M-file programs to run the Model Advisor,
for example, to perform a standard set of checks. Simulink creates an
instance of this object for each model that you open in the current
MATLAB session. To get a handle to a model’s Model Advisor object,
execute the following command

ma = Simulink.ModelAdvisor.getModelAdvisor(model);

where model is the name of the model or subsystem that you want to
check. Your program can then use the Model Advisor object’s methods
to initialize and run the Model Advisor’s checks.

About Title IDs

Many Simulink.ModelAdvisor object methods require or return title
IDs. A title ID is a string that identifies a Model Advisor check or task.
A title ID is often, but not necessarily, the same as the title of the check
or task that it identifies. Hence, its name. A Simulink.ModelAdvisor
object includes methods that enable you to retrieve the title ID or IDs
for all checks and tasks, checks belonging to groups and tasks, the active
check, and selected checks and tasks. See the Simulink.ModelAdvisor
“Method Summary” for more information.

Method
Summary

Name Description

“closeReport” Close Model Advisor report.

“deselectCheck” Deselect check(s).

“deselectCheckAll” Deselect all checks.

“deselectCheckForGroup” Deselect a group of checks.

“deselectCheckForTask” Deselect checks that belong
to a specified task or set of
tasks.

“deselectTask” Deselect task(s).

9-46

Simulink.ModelAdvisor

Name Description

“deselectTaskAll” Deselect all tasks.

“displayReport” Display Model Advisor
report.

“exportReport” Copy report to a specified
location.

“getBaselineMode” Get baseline mode setting for
the Model Advisor.

“getCheckAll” Get the title IDs of the checks
performed by the Model
Advisor.

“getCheckForGroup” Get checks belonging to a
check group.

“getCheckForTask” Get checks belonging to a
task.

“getCheckResult” Get check results.

“getCheckResultData” Get check result data.

“getCheckResultStatus” Get pass/fail status of a check
or set of checks.

“getGroupAll” Get the title IDs of the groups
of tasks performed by the
Model Advisor.

“getModelAdvisor” Get the Model Advisor for a
model or subsystem.

“getSelectedCheck” Get selected checks.

“getSelectedSystem” on page 9-59 Get path of system currently
targeted by the Model
Advisor.

“getSelectedTask” Get selected tasks.

9-47

Simulink.ModelAdvisor

Name Description

“getTaskAll” Get the title IDs of the tasks
performed by the Model
Advisor.

“Simulink.ModelAdvisor.reportExists” Determine whether a report
exists for a system or
subsystem.

“runCheck” Run selected checks.

“runTask” Run checks for selected tasks.

“selectCheck” Select check(s).

“selectCheckAll” Select all checks.

“selectCheckForGroup” Select a group of checks.

“selectCheckForTask” Select checks that belong to a
specified task.

“selectTask” Select task(s).

“selectTaskAll” Select all tasks.

“setBaselineMode” Set baseline mode for the
Model Advisor.

“setCheckResult” Set result for the currently
running check.

“setCheckResultData” Set result data for the
currently running check.

“setCheckResultStatus” Set pass/fail status for the
currently running check.

“verifyCheckRan” Verify that checks have run.

“verifyCheckResult” Generate a baseline set of
check results or compare the
current set of results to the
baseline results.

9-48

Simulink.ModelAdvisor

Name Description

“verifyCheckResultStatus” Verify that a model has
passed or failed a set of
checks.

“verifyHTML” Generate a baseline report or
compare the current report
to a baseline report.

Methods closeReport
Purpose
Close Model Advisor report.

Syntax
closeReport

Description
Closes the report associated with this Model Advisor object, which
closes the Model Advisor window.

See Also
“displayReport”

deselectCheck
Purpose
Deselect a check.

Syntax
success = deselectCheck(titleID)

Arguments

titleID
String or cell array that specifies the title IDs of the checks to
be deselected

success
True (1) if the check is deselected.

9-49

Simulink.ModelAdvisor

Description
This method deselects the checks specified by titleID.

Note This method cannot deselect disabled checks.

See Also
“getCheckAll”, “deselectCheckForGroup”, “selectCheck”

deselectCheckAll
Purpose
Deselect all checks.

Syntax
success = deselectCheckAll

Arguments

success
True (1) if all checks are deselected.

Description
Deselects all checks that are not disabled.

See Also
“selectCheckAll”

deselectCheckForGroup
Purpose
Deselect a group of checks.

Syntax
success = deselectCheckForGroup(groupName)

Arguments

groupName
String or cell array that specifies the names of the groups to be
deselected

9-50

Simulink.ModelAdvisor

success
True (1) if the method succeeds in deselecting the specified group.

Description
Deselects a specified group of checks.

See Also
“selectCheckForGroup”

deselectCheckForTask
Purpose
Deselect checks that belong to a specified task or set of tasks.

Syntax
success = deselectCheckForTask(titleID)

Arguments

titleID
String or cell array of strings that specify the title IDs of tasks
whose checks are to be deselected.

success
True (1) if the specified tasks are deselected.

Description
Deselects checks belonging to the tasks specified by the titleID
argument.

See Also
“getTaskAll”, “selectCheckForTask”

deselectTask
Purpose
Deselect a task.

Syntax
success = deselectTask(titleID)

Arguments

9-51

Simulink.ModelAdvisor

titleID
String or cell array that specifies the title ID of tasks to be
deselected

success
True (1) if the method succeeded in deselecting the specified tasks

Description
Deselects the tasks specified by titleID.

See Also
“selectTask”, “getTaskAll”

deselectTaskAll
Purpose
Deselect all tasks.

Syntax
success = deselectTaskAll

Arguments

success
True (1) if this method succeeds in deselecting all tasks

Description
Deselects all tasks.

See Also
“selectTaskAll”

displayReport
Purpose
Display report in Model Advisor.

Syntax
displayReport

Description
Displays the report associated with this Model Advisor object in the
Model Advisor window. The report includes the most recent results
of running checks on the system associated with this Model Advisor

9-52

Simulink.ModelAdvisor

object and the current selection status of checks, groups, and tasks
for the system.

See Also
“Simulink.ModelAdvisor.reportExists”

exportReport
Purpose
Create a copy of a report generated by Model Advisor.

Syntax
[success message] = exportReport(destination)

Arguments

destination
Pathname of copy to be made of the report file

success
True (1) if this method succeeded in creating a copy of the report
at the specified location

message
Empty if the copy was successful; otherwise, the reason the copy
did not succeed.

Description
This method creates a copy of the last report generated by the Model
Advisor and stores the copy at the specified location.

See Also
“Simulink.ModelAdvisor.reportExists”

getBaselineMode
Purpose
Determine whether the Model Advisor is in baseline data generation
mode.

Syntax
mode = getBaselineMode

Arguments

9-53

Simulink.ModelAdvisor

mode
Boolean value indicating baseline mode

Description
The mode output variable returns true if the Model Advisor is in baseline
data mode. Baseline mode causes the Model Advisor’s verification
methods, e.g., “verifyHTML”, to generate baseline data.

See Also
“setBaselineMode”, “verifyHTML”, “verifyCheckResult”,
“verifyCheckResultStatus”

getCheckAll
Purpose
Get the title IDs of all checks.

Syntax
titleIDs = getCheckAll

Arguments

titleIDs
Cell array of strings specifying the title IDs of all checks performed
by the Model Advisor

Description
Returns a cell array of strings specifying the title IDs of all checks
performed by the Model Advisor.

See Also
“getTaskAll”, “getGroupAll”

getCheckForGroup
Purpose
Get checks that belong to a check group.

Syntax
titleIDs = getCheckForTask(groupName)

Arguments

9-54

Simulink.ModelAdvisor

groupName
String specifying the name of a group

titleIDs
Cell array of title IDs

Description
Returns a cell array of title IDs of the tasks belonging to the group
specified by groupName.

See Also
“getCheckForTask”

getCheckForTask
Purpose
Get the checks that belong to a task.

Syntax
checkIDs = getCheckForTask(taskID)

Arguments

taskID
Title ID of a task

checkIDs
Cell array of title IDs of checks belonging to the specified task

Description
Returns a cell array of title IDs of the checks belonging to the task
specified by taskID.

See Also
“getCheckForGroup”

getCheckResult
Purpose
Get the results of running a check or set of checks.

Syntax
result = getCheckResult(titleID)

Arguments

9-55

Simulink.ModelAdvisor

titleID
Title ID of a check or cell array of check title IDs

result
A check result or cell array of check results

Description
Gets check results for the specified checks. The format of the results
depends on the checks that generated the data.

Note This method is intended for accessing check results generated
by custom checks created with the Model Advisor’s customization API,
an optional feature available with Simulink Verification and Validation
(see the online Simulink Verification and Validation documentation for
more information).

See Also
“getCheckResultData”, “getCheckResultStatus”

getCheckResultData
Purpose
Get the data resulting from running a check or set of checks.

Syntax
result = getCheckResultData(titleID)

Arguments

titleID
Check title ID or cell array of check title IDs

result
Data from a check result or cell array of data from check results

Description
Gets the check result data for the specified checks. The format of the
data depends on the checks that generated the data.

9-56

Simulink.ModelAdvisor

Note This method is intended for accessing check result data generated
by custom checks created with the Model Advisor’s customization API,
an optional feature available with Simulink Verification and Validation
(see the online Simulink Verification and Validation documentation for
more information).

See Also
“getCheckResult”, “getCheckResultStatus”

getCheckResultStatus
Purpose
Get the pass/fail status of a check or set of checks.

Syntax
result = getCheckResultStatus(titleID)

Arguments

titleID
Check title ID or cell array of check title IDs

result
Boolean or a cell array of Boolean values indication the pass/fail
status of a check or set of checks

Description
Invoke this method after running a set of checks to determine whether
the checks passed or failed.

See Also
“getCheckResult”, “getCheckResultData”

getGroupAll
Purpose
Get all groups of checks performed by the Model Advisor.

Syntax
titleIDs = getGroupAll

9-57

Simulink.ModelAdvisor

Arguments

titleIDs
Cell array of title IDs of all groups of checks performed by the
Model Advisor.

Description
Returns a cell array of title IDs of all groups of checks performed by
the Model Advisor.

See Also
“getCheckAll”, “getTaskAll”

getModelAdvisor
Purpose
Get a Model Advisor object for a system or subsystem.

Syntax
obj = Simulink.ModelAdvisor.getModelAdvisor(system)

Arguments

system
Name of model for which the Model Advisor is to be gotten

obj
Model Advisor object

Description
This static method (see “Static Methods”) creates and returns an
instance of Simulink.ModelAdvisor class for the model or subsystem
specified by system.

getSelectedCheck
Purpose
Get the currently selected checks.

Syntax
titleIDs = getSelectedCheck

Arguments

9-58

Simulink.ModelAdvisor

titleIDs
Cell array of title IDs of currently selected checks

Description
Returns the checks currently selected in the Model Advisor.

See Also
“getSelectedTask”

getSelectedSystem
Purpose
Get system currently targeted by the Model Advisor.

Syntax
path = getSelectedSystem

Arguments

path
Path of the system selected system

Description
Gets the path of the system currently targeted by the Model
Advisor, i.e., the system or subsystem most recently selected for
checking either interactively by the user or programmatically via
Simulink.ModelAdisor.getModelAdvisor.

See Also
“getModelAdvisor”

getSelectedTask
Purpose
Get selected tasks.

Syntax
titleIDs = getSelectedTask

Arguments

titleIDs
Cell array of title IDs of currently selected tasks.

9-59

Simulink.ModelAdvisor

Description
Returns the tasks currently selected in the Model Advisor.

See Also
“getSelectedCheck”

getTaskAll
Purpose
Get the tasks performed by the Model Advisor.

Syntax
titleIDs = getTaskAll

Arguments

titleIDs
Cell array of title IDs of tasks performed by the Model Advisor.

Description
Returns a cell array of title IDs of tasks performed by the Model Advisor.

See Also
“getCheckAll”, “getGroupAll”

Simulink.ModelAdvisor.reportExists
Purpose
Determine whether a report exists for a model or subsystem.

Syntax
exists = reportExists('system')

Arguments

'system'
String specifying pathname of a system or subsystem

exists
True (1) if a report exists for system

Description

9-60

Simulink.ModelAdvisor

This method returns true (1) if a report file exists for the model
(system) or subsystem specified by system in the slprj/modeladvisor
subdirectory of MATLAB’s working directory.

See Also
“exportReport”

runCheck
Purpose
Run the currently selected checks.

Syntax
success = runCheck

Arguments

success
True (1) if the checks were run.

Description
Runs the checks currently selected in the Model Advisor. Invoking
this method is equivalent to selecting the Run Advisor button on the
Model Advisor window.

See Also
“selectCheck”

runTask
Purpose
Run the currently selected tasks.

Syntax
success = runTask

Arguments

success
True (1) if the tasks were run.

Description

9-61

Simulink.ModelAdvisor

Runs the tasks currently selected in the Model Advisor. Invoking this
method is equivalent to selecting the Run Advisor button on the Model
Advisor window.

See Also
“selectTask”

selectCheck
Purpose
Select a check.

Syntax
success = selectCheck(titleID)

Arguments

titleID
Title ID or cell array of title IDs of checks to be selected

success
True (1) if this method succeeded in selecting the specified checks

Description
This method cannot select a check that is disabled.

See Also
“selectCheckAll”, “selectCheckForGroup”, “deselectCheck”

selectCheckAll
Purpose
Select all checks.

Syntax
success = selectCheckAll

Arguments

success
True (1) if this method succeeded in selecting all checks.

Description
Selects all checks that are not disabled.

9-62

Simulink.ModelAdvisor

See Also
“selectCheck”, “selectCheckForGroup”, “deselectCheck”

selectCheckForGroup
Purpose
Select a group of checks.

Syntax
success = selectCheckForGroup(titleID)

Arguments

titleID
Title ID or cell array of group title IDs

success
True (1) if this method succeeded in selecting the specified groups

Description
Selects the groups specified by titleID.

See Also
“deselectCheckForGroup”

selectCheckForTask
Purpose
Select checks that belong to a specified task or set of tasks.

Syntax
success = selectCheckForTask(titleID)

Arguments

titleID
Title ID or cell array of title IDs of tasks whose checks are to be
selected

success
True (1) if this method succeeded in selecting the checks for the
specified tasks

Description

9-63

Simulink.ModelAdvisor

Selects checks belonging to the tasks specified by the titleID argument.

See Also
“deselectCheckForTask”

selectTask
Purpose
Select a task.

Syntax
success = selectTask(titleID)

Arguments

titleID
Title ID or cell array of title IDs of the task to be selected

success
True (1) if this method succeeds in selecting the specified tasks

Description
Selects a task.

See Also
“deselectTask”

selectTaskAll
Purpose
Select all tasks.

Syntax
success = selectTaskAll

Arguments

success
True (1) if this method succeeds in selecting all tasks

Description
Selects all tasks.

See Also
“deselectTaskAll”

9-64

Simulink.ModelAdvisor

setBaselineMode
Purpose
Set the baseline data generation mode for the Model Advisor.

Syntax
setBaselineMode(mode)

Arguments

mode
Boolean value indicating setting of Model Advisor’s baseline mode,
either on (true) or off (false)

Description
Sets the Model Advisor’s baseline mode to mode. Baseline mode causes
the Model Advisor’s verify methods to generate baseline comparison
data for verifying the results of a Model Advisor run.

See Also
“getBaselineMode”, “verifyCheckResult”, “verifyHTML”

setCheckResult
Purpose
Set the result for the currently running check.

Syntax
success = setCheckResult(result)

Arguments

result
String or cell array that specifies the result of the currently
running task

success
True (1) if this method succeeds in setting the check result

Description
Sets the check result for the currently running check. Only the check’s
callback function can invoke this method.

9-65

Simulink.ModelAdvisor

Note This method is intended for use with custom checks created with
the Model Advisor’s customization API, an optional feature available
with Simulink Verification and Validation (see the online Simulink
Verification and Validation documentation for more information).

See Also
“getCheckResult”, “setCheckResultData”, “setCheckResultStatus”

setCheckResultData
Purpose
Set the result data for the currently running check.

Syntax
success = setCheckResultData(data)

Arguments

data
Result data to be set

success
True (1) if this method succeeds in setting the result data for the
current check

Description
Sets the check result data for the currently running check. Only the
check’s callback function can invoke this method.

Note This method is intended for use with custom checks created with
the Model Advisor’s customization API, an optional feature available
with Simulink Verification and Validation and Verification (see the
online Simulink Verification and Validation documentation for more
information).

See Also

9-66

Simulink.ModelAdvisor

“getCheckResultData”, “setCheckResult”, “setCheckResultStatus”

setCheckResultStatus
Purpose
Set the pass/fail status for the currently running check.

Syntax
success = setCheckResultStatus(status)

Arguments

status
Boolean value that indicates the status of the check that just ran,
either pass (true) or fail (false)

success
True (1) if the status was set.

Description
Sets the pass/fail status for the currently running check to status.
Only the check’s callback function can invoke this method.

Note This method is intended for use with custom checks created with
the Model Advisor’s customization API, an optional feature available
with Simulink Verification and Validation (see the online Simulink
Verification and Validation documentation for more information).

See Also
“getCheckResultStatus”, “setCheckResult”, “setCheckResultStatus”

verifyCheckRan
Purpose
Verify that the Model Advisor has run a set of checks.

Syntax
[success, missingChecks, additionalChecks] =
verifyCheckRan(titleIDs)

Arguments

9-67

Simulink.ModelAdvisor

titleIDs
Cell array of title IDs of checks to verify

success
Boolean value specifying whether the checks ran

missingChecks
Cell array of title IDs for specified checks that ran

additionalChecks
Cell array of title IDs for unspecified checks that ran

Description
The output variable success returns true if all the checks specified by
titleIDs have run. If not, success returns false, missingChecks lists
specified checks that did not run. The additionalChecks argument
lists unspecified checks that ran.

See Also
“verifyCheckResultStatus”

verifyCheckResult
Purpose
Generate a baseline Model Advisor check results file or compare the
current check results to the baseline check results.

Syntax
[success message] = verifyCheckResult(baseline, checkIDs)

Arguments

baseline
Pathname of the baseline check results MAT-file

checkIDs
Cell array of check title IDs.

success
Boolean value specifying whether the method succeeded

message
String specifying an error message

9-68

Simulink.ModelAdvisor

Description
If the Model Advisor is in baseline mode (see “setBaselineMode”), this
method stores the most recent results of running the checks specified
by checkIDs in a MAT-file at the location specified by baseline. If the
method is unable to store the check results at the specified location, it
returns false in the output variable success and the reason for the
failure in the output variable message. If the Model Advisor is not
in baseline mode, this method compares the most recent results of
running the checks specified by checkIDs with the report specified by
baseline. If the current results match the baseline results, this method
returnstrue as the value of the success output variable.

Note You must run the checks specified by checkIDs (see “runCheck”)
before invoking verifyCheckResult.

This method enables you to compare the most recent check results
generated by the Model Advisor with a baseline set of check results. You
can use the method to generate the baseline report as well as perform
current-to-baseline result comparisons. To generate a baseline report,
put the Model Advisor in baseline mode, using “setBaselineMode”. Then
invoke this method with the baseline argument set to the location where
you want to store the baseline results. To perform a current-to-baseline
report comparison, first ensure that the Model Advisor is not in baseline
mode (see “getBaselineMode”). Then invoke this method with the path
of the baseline report as the value of the baseline input argument.

See Also
“setBaselineMode”, “getBaselineMode”, “runCheck”,
“verifyCheckResultStatus”

verifyCheckResultStatus
Purpose
Verify that a model has passed or failed a set of checks.

Syntax

9-69

Simulink.ModelAdvisor

[success message] = verifyCheckResultStatus(baseline,
checkIDs)

Arguments

baseline
Array of Boolean variables

checkIDs
Cell array of check title IDs.

success
Boolean value specifying whether the method succeeded

message
String specifying an error message

Description
This method compares the pass/fail (true/false) statuses from the most
recent running of the checks specified by checkIDs with the Boolean
values specified by status. If the statuses match the baseline, this
method returns true as the value of the success output variable.

Note You must run the checks specified by checkIDs (see “runCheck”)
before invoking verifyCheckResultStatus.

See Also
“runCheck”

verifyHTML
Purpose
Generate a baseline Model Advisor report or compare the current report
to a baseline report.

Syntax
[success message] = verifyHTML(baseline)

Arguments

9-70

Simulink.ModelAdvisor

baseline
Pathname of a Model Advisor report

success
Boolean value specifying whether the method succeeded

message
String specifying an error message

Description
If the Model Advisor is in baseline mode (see “setBaselineMode”), this
method stores the report most recently generated by the Model Advisor
at the location specified by baseline. If the method is unable to store
a copy of the report at the specified location, it returns false in the
output variable success and the reason for the failure in the output
variable message. If the Model Advisor is not in baseline mode, this
method compares the report most recently generated by the Model
Advisor with the report specified by baseline. If the current report has
exactly the same content as the baseline report, this method returns
true as the value of the success output variable.

This method enables you to compare a report generated by the Model
Advisor with a baseline report to determine if they differ. You can
use the method to generate the baseline report as well as perform
current-to-baseline report comparisons. To generate a baseline report,
put the Model Advisor in baseline mode. Then invoke this method
with the baseline argument set to the location where you want to
store the baseline report. To perform a current-to-baseline report
comparison, first ensure that the Model Advisor is not in baseline mode
(see “getBaselineMode”). The invoke this method with the path of the
baseline report as the value of the baseline input argument.

See Also
“setBaselineMode”, “getBaselineMode”, “verifyCheckResult”

9-71

Simulink.ModelDataLogs

Purpose Container for a model’s signal data logs

Description Simulink creates instances of this class to contain signal logs that it
creates while simulating a model (see “Logging Signals”). In particular,
Simulink creates an instance of this class for a top-level model and for
each model referenced by the top-level model that contains signals to
be logged. Simulink assigns the ModelDataLogs object for the top-level
model to a variable in the MATLAB workspace. The name of the
variable is the name specified in the Signal logging name field on the
Data Import/Export pane of the model’s Configuration Parameters
dialog box. The default value is logsout.

A ModelDataLogs object has a variable number of properties. The first
property, named Name, specifies the name of the model whose signal
data the object contains or, if the model is a referenced model, the name
of the Model block that references the model. The remaining properties
reference objects that contain signal data logged during simulation of
the model. The objects may be instances of any of the following types of
objects:

• Simulink.Timeseries

Log for a signal in this model.

• Simulink.TsArray

Container for the logs of the elements of a root-level composite signal
(e.g., a Mux or Bus Creator signal) in this model.

• Simulink.ModelDataLogs

Container for the logs of a model referenced by this model.

• Simulink.SubsysDataLogs

Container for the signal logs of a subsystem of this model.

• Simulink.ScopeDataLogs

Container for data displayed on Scope signal viewers (see “The Signal
& Scope Manager” in “Using Simulink”).

9-72

Simulink.ModelDataLogs

The names of the properties identify the data being logged as follows:

• For signal data logs, the name of the signal

• For a subsystem or model log container, the name of the subsystem or
model, respectively

• For a scope viewer data log, the name specified on the viewer’s
parameter dialog box

Note If a name contains spaces, the ModelDataLogs objects specifies
its name as ('name') where name is the actual name, e.g., ('Brake
Subsystem').

Consider, for example, the following model.

9-73

Simulink.ModelDataLogs

As indicated by the testpoint icons, this model specifies that Simulink
should log the signals named step and scope in the model’s root system
and the signal named clk in the subsystem named Delayed Out.
After simulation of this model, the MATLAB workspace contains the
following variable:

>> logsout

9-74

Simulink.ModelDataLogs

logsout =

Simulink.ModelDataLogs (siglgex):
Name Elements Simulink Class

scope 2 TsArray
step 1 Timeseries
('Delayed Out') 2 SubsysDataLogs

The logsout variable contains the signal data logged during the
simulation. You can use fully qualified object names or the Simulink
unpack command to access the signal data stored in logsout. For
example, to access the amplitudes of the clk signal in the Delayed Out
subsystem, enter

>> data = logsout.('Delayed Out').clk;

or

>> logsout.unpack('all');
>> data = clk;

You can use a custom logging name or signal name when logging a
signal. If you choose to use the signal name, and that signal name is a
multiline one, seen in the following:

include an sprintf('\n') between the two lines of the signal name
when accessing the logged data. For example,

logsout.(['scope' sprintf('\n') '(delayed out)'])

9-75

Simulink.ModelDataLogs

See Also Simulink.Timeseries, Simulink.TsArray,
Simulink.SubsysDataLogs, Simulink.ScopeDataLogs,
unpack

9-76

Simulink.ModelWorkspace

Purpose Describe a model workspace.

Description Instances of this class describe model workspaces. Simulink creates an
instance of this class for each model that you open during a Simulink
session. See “Working with Model Workspaces” in “Using Simulink”
for more information.

Property
Summary

Name Access Description

DataSource RW Specifies the source used to initialize this
workspace. Valid values are

• 'MDL-File'

• 'MAT-File'

• 'M-Code'

FileName RW Specifies the name of the MAT-file used
to initialize this workspace. Simulink
ignores this property if DataSource is
not 'MAT-File'.

MCode RW A string specifying M code used to
initialize this workspace. Simulink
ignores this property if DataSource is
not 'M-Code'.

Method
Summary

Name Description

“assignin” Assign a value to a variable in the model’s
workspace.

“clear” Clear the model’s workspace.

“evalin” Evaluate an expression in the model’s
workspace.

9-77

Simulink.ModelWorkspace

Name Description

“reload” Reload the model workspace from the
workspace’s data source.

“save” Save the model’s workspace to a specified
MAT-file.

“saveToSource” Save the workspace to the MAT-file that the
workspace designates as its data source.

“whos” List the variables in the model workspace.

Methods
assignin

Purpose
Assign a value to a variable in the model’s workspace.

Syntax
assignin('varname', varvalue)

Arguments

varname
Name of the variable to be assigned a value.

varvalue
Value to be assigned the variable.

Description
This method assigns the value specified by varvalue to the variable
whose name is varname.

See also
“evalin”

clear

Purpose
Clear the model’s workspace.

Syntax

9-78

Simulink.ModelWorkspace

clear

Description
This method empties the workspace of its variables.

evalin

Purpose
Evaluate an expression in the model’s workspace.

Syntax
evalin('expression')

Arguments

expression
A MATLAB expression to be evaluated.

Description
This method evaluates expression in the model workspace.

See also
“assignin”

reload

Purpose
Reload the model workspace from the workspace’s data source.

Syntax
reload

Description
This method reloads the model workspace from the data source specified
by its DataSource parameter.

See also
“saveToSource”

9-79

Simulink.ModelWorkspace

save

Purpose
Save the model’s workspace to a specified MAT-file.

Syntax
save('filename')

Arguments

filename
Name of a MAT-file.

Description
This method saves the model’s workspace to the MAT-file specified by
filename.

Note This method allows you to save the workspace to a file other than
the file specified by the workspace’s FileName property. If you want to
save the model workspace to the file specified by the file’s FileName
property, it is simpler to use the workspace’s saveToSource method.

Example

hws = get_param('mymodel','modelworkspace')
hws.DataSource = 'MAT-File';
hws.FileName = 'workspace';
hws.assignin('roll', 30);
hws.saveToSource;
hws.assignin('roll', 40);
hws.save('workspace_test.mat');

See also
“reload”, “saveToSource”

9-80

Simulink.ModelWorkspace

saveToSource

Purpose
Save the workspace to the MAT-file that it designates as its data source.

Syntax
saveToSource

Description
This method saves the model workspace designated by its FileName
property.

Example

hws = get_param('mymodel','modelworkspace')
hws.DataSource = 'MAT-File';
hws.FileName = 'params';
hws.assignin('roll', 30);
hws.saveToSource;

See also
“save”, “reload”

whos

Purpose
List the variables in the model workspace.

Syntax
whos

Description
This method lists the variables in the model’s workspace. The listing
includes the size and class of the variables.

9-81

Simulink.ModelWorkspace

Example

>> hws = get_param('mymodel','modelworkspace');
>> hws.assignin('k', 2);
>> hws.whos

Name Size Bytes Class

k 1x1 8 double array

9-82

Simulink.MSFcnRunTimeBlock

Purpose Get run-time information about a Level-2 M-file S-function block

Description This class allows a Level-2 M-file S-function or other M program to
obtain information from Simulink and provide information to Simulink
about a Level-2 M-file S-function block. Simulink creates an instance
of this class for each Level-2 M-file S-function block in a model.
Simulink passes the object to the callback methods of Level-2 M-File
S-Functions when it updates or simulates a model, allowing the callback
methods to get and provide block-related information to Simulink. See
“Writing Level-2 M-File S-Functions” in “Writing S-Functions” for more
information.

You can also use instances of this class in M-file programs to
obtain information about Level-2 M-File S-Function blocks during a
simulation. See “Accessing Block Data During Simulation” in “Using
Simulink” for more information.

Parent
Class

Simulink.RunTimeBlock

Derived
Classes

None

Property
Summary

Name Description

“DialogPrmsTunable” Specifies which of the S-function’s dialog
parameters are tunable.

“NextTimeHit” Time of the next sample hit for variable sample
time S-functions.

9-83

Simulink.MSFcnRunTimeBlock

Method
Summary

Name Description

“AutoRegRuntimePrms” Register this block’s
dialog parameters as
run-time parameters.

“AutoUpdateRuntimePrms” Update this block’s
run-time parameters.

“IsDoingConstantOutput” Determine whether
the current simulation
stage is the constant
sample time stage.

“IsMajorTimeStep” Determine whether
the current simulation
time step is a major
time step.

“IsSampleHit” Determine whether the
current simulation time
is one at which a task
handled by this block is
active.

“IsSpecialSampleHit” Determine whether the
current simulation time
is one at which multiple
tasks handled by this
block are active.

“RegBlockMethod” Register a callback
method for this block.

“RegisterDataTypeFxpBinaryPoint” Register fixed-point
data type with binary
point-only scaling.

9-84

Simulink.MSFcnRunTimeBlock

Name Description

“RegisterDataTypeFxpFSlopeFixExpBias” Register fixed-point
data type with [Slope
Bias] scaling specified
in terms of fractional
slope, fixed exponent,
and bias.

“RegisterDataTypeFxpSlopeBias” Register data type with
[Slope Bias] scaling.

“SetAccelRunOnTLC” Specify whether to
use this block’s TLC
file to generate the
simulation target for
the model that uses it.

“SetPreCompPortInfoToDefaults” Set compiled attributes
of this block’s ports to
default values.

“SetPreCompPortInfoToDynamic” Set precompiled
attributes of this block’s
ports to be inherited.

“SetSimViewingDevice” Specify whether block
is a viewer.

“WriteRTWParam” Write custom
parameter information
to Real-Time Workshop
file.

Properties
DialogPrmsTunable

Description
Specifies whether a dialog parameter of the S-function is tunable.
Tunable parameters are registered as run-time parameters when you

9-85

Simulink.MSFcnRunTimeBlock

call the “AutoRegRuntimePrms” method. Note that SimOnlyTunable
parameters are not registered as run-time parameters.

Data Type
array

Access
RW

NextTimeHit

Description
Time of the next sample hit for variable sample-time S-functions.

Data Type
double

Access
RW

Methods
AutoRegRuntimePrms

Purpose
Register a block’s tunable dialog parameters as run-time parameters.

Syntax
AutoRegRuntimePrms;

Description
Register this block’s tunable dialog parameters as run-time parameters.

AutoUpdateRuntimePrms

Purpose
Update a block’s run-time parameters.

Syntax
AutoRegRuntimePrms;

Description
Automatically update the values of the run-time parameters during
a call to mdlProcessParameters.

9-86

Simulink.MSFcnRunTimeBlock

IsDoingConstantOutput

Purpose
Determine whether this is in the constant sample time stage of a
simulation.

Syntax
bVal = IsDoingConstantOutput;

Description
Returns true if this is the constant sample time stage of a simulation,
i.e., the stage at the beginning of a simulation where Simulink computes
the values of block outputs that cannot change during the simulation
(see “Constant Sample Time” in “Using Simulink”). Use this method
in the mdlOutputs method of an S-function with port-based sample
times to avoid unnecessarily computing the outputs of ports that have
constant sample time, i.e., [inf, 0].

function Outputs(block)
.
.

if block.IsDoingConstantOutput
ts = block.OutputPort(1).SampleTime;
if ts(1) == Inf
%% Compute port's output.
end

end
.
.
%% end of Outputs

See “Specifying Port-Based Sample Times” in “Writing S-Functions”
for more information.

IsMajorTimeStep

Purpose.
Determine whether current time step is a major or a minor time step.

9-87

Simulink.MSFcnRunTimeBlock

Syntax
bVal = IsMajorTimeStep;

Description
Returns true if the current time step is a major time step; false, if it is
a minor time step. This method can be called only from mdlOutputs
and mdlUpdate.

IsSampleHit

Purpose
Determine whether the current simulation time is one at which a task
handled by this block is active.

Syntax
bVal = IsSampleHit(stIdx);

Arguments

stIdx
Index of sample time to be queried.

Description
Use in Outputs or Update block methods when the M-file S-function has
multiple sample times to determine whether a sample hit has occurred
at stIdx (similar to ssIsSampleHit for C-Mex S-functions.)

IsSpecialSampleHit

Purpose
Determine whether the current simulation time is one at which multiple
tasks implemented by this block are active.

Syntax
bVal = IsSpecialSampleHit(stIdx1,stIdx1);

Arguments

stIdx1
Index of sample time of first task to be queried.

9-88

Simulink.MSFcnRunTimeBlock

stIdx2
Index of sample time of second task to be queried.

Description
Use in Outputs or Update block methods to ensure the validity of data
shared by multiple tasks running at different rates. Returns true if a
sample hit has occurred at stIdx1 and a sample hit has also occurred
at stIdx2 in the same time step (similar to ssIsSpecialSampleHit for
C-Mex S-functions).

RegBlockMethod

Purpose
Register a block callback method.

Syntax
RegBlockMethod(methName, methHandle);

Arguments

methName
Name of method to be registered.

methHandle
MATLAB function handle of the callback method to be registered.

Description
Registers the block callback method specified by methName and
methHandle. Use this method in a Level-2 M-file S-function to specify
the block callback methods that the S-function implements.

RegisterDataTypeFxpBinaryPoint

Purpose
Register fixed-point data type with binary point-only scaling.

Syntax
dtID = RegisterDataTypeFxpBinaryPoint(isSigned,
wordLength, fractionalSlope, fixedExponent, bias,
obeyDataTypeOverride);

9-89

Simulink.MSFcnRunTimeBlock

Arguments

isSigned
true if the data type is signed.

false if the data type is unsigned.

wordLength
Total number of bits in the data type, including any sign bit.

fractionalLength
Number of bits in the data type to the right of the binary point.

obeyDataTypeOverride
true indicates that the Data Type Override setting for the
subsystem is to be obeyed. Depending on the value of Data Type
Override, the resulting data type could be True Doubles, True
Singles, ScaledDouble, or the fixed-point data type specified by
the other arguments of the function.

false indicates that the Data Type Override setting is to be
ignored.

Description
This method registers a fixed-point data type with Simulink and returns
a data type ID. The data type ID can be used to specify the data types of
input and output ports, run-time parameters, and DWork states. It can
also be used with all the standard data type access methods defined for
instances of this class, such as “DatatypeSize”.

Use this function if you want to register a fixed-point data type with
binary point-only scaling. Alternatively, you can use one of the other
fixed-point registration functions:

• Use “RegisterDataTypeFxpFSlopeFixExpBias” to register a data type
with [Slope Bias] scaling by specifying the word length, fractional
slope, fixed exponent, and bias.

• Use “RegisterDataTypeFxpSlopeBias” to register a data type with
[Slope Bias] scaling.

9-90

Simulink.MSFcnRunTimeBlock

If the registered data type is not one of the Simulink built-in data types,
a Simulink Fixed Point license is checked out.

RegisterDataTypeFxpFSlopeFixExpBias

Purpose
Register fixed-point data type with [Slope Bias] scaling specified in
terms of fractional slope, fixed exponent, and bias

Syntax
dtID = RegisterDataTypeFxpFSlopeFixExpBias(isSigned,
wordLength, fractionalSlope, fixedExponent, bias,
obeyDataTypeOverride);

Arguments

isSigned
true if the data type is signed.

false if the data type is unsigned.

wordLength
Total number of bits in the data type, including any sign bit.

fractionalSlope
Fractional slope of the data type.

fixedExponent
Exponent of the slope of the data type.

bias
Bias of the scaling of the data type.

obeyDataTypeOverride
true indicates that the Data Type Override setting for the
subsystem is to be obeyed. Depending on the value of Data Type
Override, the resulting data type could be True Doubles, True
Singles, ScaledDouble, or the fixed-point data type specified by
the other arguments of the function.

9-91

Simulink.MSFcnRunTimeBlock

false indicates that the Data Type Override setting is to be
ignored.

Description
This method registers a fixed-point data type with Simulink and returns
a data type ID. The data type ID can be used to specify the data types of
input and output ports, run-time parameters, and DWork states. It can
also be used with all the standard data type access methods defined for
instances of this class, such as “DatatypeSize”.

Use this function if you want to register a fixed-point data type by
specifying the word length, fractional slope, fixed exponent, and bias.
Alternatively, you can use one of the other fixed-point registration
functions:

• Use “RegisterDataTypeFxpBinaryPoint” to register a data type with
binary point-only scaling.

• Use “RegisterDataTypeFxpSlopeBias” to register a data type with
[Slope Bias] scaling.

If the registered data type is not one of the Simulink built-in data types,
a Simulink Fixed Point license is checked out.

RegisterDataTypeFxpSlopeBias

Purpose
Register data type with [Slope Bias] scaling.

Syntax
dtID = RegisterDataTypeFxpSlopeBias(isSigned, wordLength,
totalSlope, bias, obeyDataTypeOverride);

Arguments

isSigned
true if the data type is signed.

false if the data type is unsigned.

9-92

Simulink.MSFcnRunTimeBlock

wordLength
Total number of bits in the data type, including any sign bit.

totalSlope
Total slope of the scaling of the data type.

bias
Bias of the scaling of the data type.

obeyDataTypeOverride
true indicates that the Data Type Override setting for the
subsystem is to be obeyed. Depending on the value of Data Type
Override, the resulting data type could be True Doubles, True
Singles, ScaledDouble, or the fixed-point data type specified by
the other arguments of the function.

false indicates that the Data Type Override setting is to be
ignored.

Description
This method registers a fixed-point data type with Simulink and returns
a data type ID. The data type ID can be used to specify the data types of
input and output ports, run-time parameters, and DWork states. It can
also be used with all the standard data type access methods defined for
instances of this class, such as “DatatypeSize” on page 9-115.

Use this function if you want to register a fixed-point data type with
[Slope Bias] scaling. Alternatively, you can use one of the other
fixed-point registration functions:

• Use “RegisterDataTypeFxpBinaryPoint” to register a data type with
binary point-only scaling.

• Use “RegisterDataTypeFxpFSlopeFixExpBias” to register a data
type by specifying the word length, fractional slope, fixed exponent,
and bias

If the registered data type is not one of the Simulink built-in data types,
a Simulink Fixed Point license is checked out.

9-93

Simulink.MSFcnRunTimeBlock

SetAccelRunOnTLC

Purpose
Specify whether to use block’s TLC file to generate code for the Simulink
accelerator.

Syntax
SetAccelRunOnTLC(bVal);

Arguments

bVal
May be 'true' (use TLC file) or 'false' (run block in interpreted
mode).

Description
Specify if the block should use its TLC file to generate code that
runs with the accelerator. If this option is 'false', the block runs in
interpreted mode.

SetPreCompPortInfoToDefaults

Purpose
Set compiled attributes of this block to default values.

Syntax
SetPreCompPortInfoToDefaults;

Description
Initialize the compiled information (dimensions, data type, complexity,
and sampling mode) of this block’s ports to have default attributes
(double, real, sample-based scalars).

SetPreCompPortInfoToDynamic

Purpose
Set compiled attributes of this block to be inherited.

Syntax
SetPreCompPortInfoToDynamic;

9-94

Simulink.MSFcnRunTimeBlock

Description
Set the compiled information (dimensions, data type, complexity, and
sampling mode) of the block’s ports to be inherited.

SetSimViewingDevice

Purpose
Specify whether this block is a viewer.

Syntax
SetSimViewingDevice(bVal);

Arguments

bVal
May be 'true' (is a viewer) or 'false' (is not a viewer).

Description
Specify if the block is a viewer/scope. If this flag is specified, the block
will be used only during simulation and automatically stubbed out in
generated code.

WriteRTWParam

Purpose
Write a custom parameter to the Real-Time Workshop information file
used for code generation.

Syntax
WriteRTWParam(pType, pName, pVal)

Arguments

pType
Type of the parameter to be written. Valid values are 'string'
and 'matrix'.

pName
Name of the parameter to be written.

9-95

Simulink.MSFcnRunTimeBlock

pVal
Value of the parameter to be written.

Description
Use in the mdlRTW method of the M-file S-function to write out custom
parameters. These parameters are generally settings used to determine
how code should be generated in the TLC file for the S-function.

9-96

Simulink.NumericType

Purpose Specify a data type

Description This class lets you specify a data type. To do this, create an instance
of this class in the MATLAB workspace and set its properties to the
properties of the custom data type. Then assign this data type to all
signals and parameters of your model that you want to conform to the
data type. Assigning the data type in this way allows you to change the
data types of the signals and parameters in your model by changing the
properties of the object that describe them. You do not have to change
the model itself.

Property
Dialog
Box

Data type mode
Data type of this numeric type. The options are

Option Description

Boolean Same as the MATLAB boolean type.

Double Same as the MATLAB double type.

Single Same as the MATLAB single type.

9-97

Simulink.NumericType

Option Description

Fixed-point:
unspecified
scaling

A fixed-point data type with unspecified
scaling.

Fixed-point:
binary point
scaling

A fixed-point data type with binary-point
scaling.

Fixed-point:
slope and bias
scaling

A fixed-point data type with slope and
bias scaling.

Selecting a category causes Simulink to disable other controls on
the dialog box (see below) that apply to the category and to disable
controls that do not apply. Selecting a fixed-point category may,
depending on the other dialog box options that you select, cause
the model to run only on systems that have a Simulink Fixed
Point option installed.

Is alias
If this option is selected, Simulink uses the name of the workspace
variable that references this object as the name of the data
type. Otherwise, Simulink uses the category of the data type as
its name, or, if the category is a fixed-point category, Simulink
generates a name that encodes the type’s properties, using the
encoding specified by the Simulink Fixed Point product.

Header file
Name of a user-supplied C header file that defines a data type
having the same name as this numeric type (i.e., as the MATLAB
variable that references this object). If this field is not empty, code
generated from this model defines the numeric type by including
the specified header file. If this field is empty, the generated code
defines the numeric type itself.

9-98

Simulink.NumericType

Description
Description of this data type. This field is intended for use in
documenting this data type. Simulink ignores it.

Signed
Specifies whether the data type is signed or unsigned. This option
is enabled only for fixed-point data type categories.

9-99

Simulink.NumericType

Word-Length
Word length in bits of the fixed-point data type. This option is
enabled only for fixed-point data type categories.

Fraction length
Number of bits to the right of the binary point. This option is
enabled only if the data type category is Fixed-point: binary
point scaling.

9-100

Simulink.NumericType

Slope
Slope for slope and bias scaling. This option is enabled only if the
data type category is Fixed-point: slope and bias scaling.

Bias
Bias for slope and bias scaling. This option is enabled only if the
data type category is Fixed-point: slope and bias scaling.

9-101

Simulink.NumericType

Properties

Name Access Description

Bias RW Bias used for slope and bias scaling of
a fixed-point data type. This field is
intended for use by the Simulink Fixed
Point product. (Bias)

DataTypeMode RW String that specifies the data type of
this numeric type. Valid values are
'Double', 'Boolean', 'Single',
'Fixed-point: unspecified
scaling', 'Fixed-point: binary
point scaling', and 'Fixed-point:
slope and bias scaling'. (Data type
mode)

Description RW Description of this data type. (Description)

FixedExponent RW Exponent used for binary point scaling.
This property equals -FractionLength.
Setting this property causes Simulink
to set the FractionLength and Slope
properties accordingly, and vice versa.
This property appears only if the data type
category is Fixed-point: binary point
scaling or Fixed-point: slope and
bias scaling.

FractionLength RW Integer that specifies the size in
bits of the fractional portion of the
fixed-point number. This property equals
-FixedExponent. Setting this property
causes Simulink to set the FixedExponent
property accordingly, and vice versa. This
field is intended for use by the Simulink
Fixed Point product. (Fraction length)

9-102

Simulink.NumericType

Name Access Description

IsAlias RW Integer that specifies whether to use the
name of this object as the name of the data
type that it specifies. Valid values are 1
(yes) or 0 (no). (Is alias)

Signed RW Integer that specifies whether this data
type is signed or unsigned. Valid values
are 1 (yes) or 0 (no). (Signed)

Slope RW Slope for slope and bias scaling of
fixed-point numbers. This property
equals SlopeAdjustmentFactor
* 2^FixedExponent. If
SlopeAdjustmentFactor is 1.0,
Simulink displays the value of this
field as 2^SlopeAdjustmentFactor.
Otherwise, it displays it as a numeric
value. Setting this property causes
Simulink to set the FixedExponent and
SlopeAdjustmentFactor properties
accordingly, and vice versa. This property
appears only if Category is Fixed-point:
slope and bias scaling. (Slope)

SlopeAdjustmentFactor RW Slope for slope and bias scaling of
fixed-point numbers. Setting this property
causes Simulink to adjust the Slope
property accordingly, and vice versa.
This property appears only if Category
is Fixed-point: slope and bias
scaling.

WordLength RW Integer that specifies the word size of
this data type. This field is intended for
use by the Simulink Fixed Point product.
This property appears only if Category is
Fixed-point (Word Length).

9-103

Simulink.Parameter

Purpose Specify the value, value range, data type, and other properties of a
block parameter

Description This class enables you to create workspace objects that you can then
use as the values of block parameters, e.g., the value of a Gain block’s
Gain parameter. The advantage? Parameter objects let you specify
not only the value of a parameter but also other information about
the parameter, such as the parameter’s purpose, its dimensions, its
minimum and maximum values, etc. Some Simulink products use this
information. For example, Simulink and Real-Time Workshop use
information specified by Simulink.Parameter objects to determine
whether the parameter is tunable (see “Changing the Values of Block
Parameters During Simulation” in Using Simulink).

9-104

Simulink.Parameter

Property
Dialog
Box

Value
Value of the parameter. You can use MATLAB expressions
to specify the numeric type, dimensions, and data type of the
parameter (see “Data Types Supported by Simulink”). You
can also specify fixed-point values for block parameters (see
“Specifying Fixed-Point Values Directly” in the Simulink Fixed
Point documentation). The following examples illustrate this
syntax.

9-105

Simulink.Parameter

Expression Description

single(1.0) Specifies a single-precision value of 1.0

int8(2) Specifies an 8-bit integer of value 2

int32(3+2i) Specifies a complex value whose real and
imaginary parts are 32-bit integers

fi(2.3,true,16,3)Specifies a signed fixed-point numeric object
having a value of 2.3, a word length of 16 bits,
and a fraction length of 3.

Note If you specify a typed expression as the parameter object’s
Value property, it overrides the current setting of the Data type
property.

Data type
Data type of the parameter. You can either select a data type
from the adjacent pulldown list or enter a string. If you select
auto (the default), the block that references the parameter object
determines the data type of the variable used to represent this
parameter in code generated from the model. If you enter a string,
it must evaluate to one of the following:

• A built-in data type supported by Simulink (see “Data Types
Supported by Simulink”).

• A Simulink.NumericType object

• A Simulink.AliasType object

Note If you specify a parameter object’s data type using the
Data type property, it overrides any typed expression in the
Value property and changes the value to be untyped.

9-106

Simulink.Parameter

Units
Measurement units in which this value is expressed, e.g., inches.
This field is intended for use in documenting this parameter.
Simulink ignores it.

Dimensions
Dimensions of the parameter. Simulink determines the
dimensions from the entry in the Value field of this parameter.
You cannot set this field yourself.

Complexity
Numeric type (i.e., real or complex) of the parameter. Simulink
determines the numeric type of this parameter from the entry
in the Value field of this parameter. You cannot set this field
yourself.

Minimum
Minimum value that the parameter can have. Simulink generates
a warning if you assign a value to the parameter that is less than
the minimum value. When updating the diagram or starting a
simulation, Simulink generates an error if the parameter value
violates its minimum value.

Maximum
Maximum value that the parameter can have. Simulink generates
a warning if you assign a value to the parameter that is greater
than the maximum value. When updating the diagram or starting
a simulation, Simulink generates an error if the parameter
violates its maximum value.

Storage class
Storage class of this parameter. Simulink code generation
products use this property to allocate memory for this parameter
in generate code. See “Storage Classes of Tunable Parameters” in
“Real-Time Workshop User’s Guide” for more information.

Alias
Alternate name for this parameter. Simulink ignores this setting.

9-107

Simulink.Parameter

Description
Description of this parameter. This field is intended for use in
documenting this parameter. Simulink ignores it.

Properties Name Access Description

Value RW Value of this parameter. (Value)

DataType RW String specifying the data type of this
parameter. (Data type)

Dimensions RO Vector specifying the dimensions of this
parameter. (Dimensions)

Complexity RO String specifying the numeric type of this
parameter. Valid values are 'real’ or
'complex'. (Complexity)

Min RW Minimum value that this parameter can
have. (Minimum)

Max RW Maximum value that this parameter can
have. (Maximum)

DocUnits RW Measurement units in which this
parameter’s value is expressed. (Units)

RTWInfo RW Information used by Real-Time Workshop
for generating code for this parameter.
The value of this property is an object of
Simulink.ParamRTWInfo class.

Description RW String that describes this parameter.
This property is intended for user
use. Simulink itself does not use it.
(Description)

9-108

Simulink.ParamRTWInfo

Purpose Specify information needed to generate code for a parameter

Description Simulink creates an instance of this class for each instance of a
Simulink.Parameter object that it creates. Simulink uses the
Simulink.ParamRTWInfo object to store information needed to generate
code for the parameter specified by the Simulink.Parameter object.

You can set the properties of an instance of this class via the RTWInfo
property or the property dialog box of the Simulink.Parameter object
that uses it. For example, the following MATLAB expression sets the
StorageClass property of a Simulink.ParamRTWInfo object used by a
parameter object name gain.

gain.RTWInfo.StorageClass = 'ExportedGlobal';

Property
Dialog
Box

Use the Simulink.Parameter property dialog box to set the
StorageClass and Alias properties of objects of this class.

Properties Name Description

Alias Alternate name for this parameter.

CustomAttributes Custom storage class attributes of this
parameter. See “Custom Storage Classes” in
the Real-Time Workshop Embedded Coder
documentation for more information.

CustomStorageClass Custom storage class of this parameter.

StorageClass Storage class of this parameter. See “Storage
Classes of Tunable Parameters” in the
Real-Time Workshop documentation for more
information.

9-109

Simulink.RunTimeBlock

Purpose Allow Level-2 M-file S-function and other M-file programs to get
information about a block while a simulation running.

Description This class allows a Level-2 M-file S-function or other M program
to obtain information about a block. Simulink creates an instance
of this class or a derived class for each block in a model. Simulink
passes the object to the callback methods of Level-2 M-file S-functions
when it updates or simulates a model, allowing the callback methods
to get block-related information from and provide such information
to Simulink. See “Writing Level-2 M-File S-Functions” in Writing
S-Functions for more information. You can also use instances of this
class in M-file programs to obtain information about blocks during a
simulation. See “Accessing Block Data During Simulation” in Using
Simulink for more information.

Parent
Class

None

Derived
Classes

Simulink.MSFcnRunTimeBlock

Property
Summary

Name Description

“BlockHandle” Block’s handle.

“CurrentTime” Current simulation time.

“NumDworks” Number of discrete work vectors used by the
block.

“NumOutputPorts” Number of block output ports.

“NumContStates” Number of block’s continuous states.

“NumDiscStates” Number of block’s discrete states

“NumDlgParams” Number of parameters that can be entered on
S-function block’s dialog box.

9-110

Simulink.RunTimeBlock

Name Description

“NumInputPorts” Number of block’s input ports.

“NumRuntimePrms” Number of run-time parameters used by
block.

“SampleTimes” Sample times at which block produces
outputs.

Method
Summary

Name Description

“ContStates” Get a block’s continuous states.

“DataTypeIsFixedPoint” Determine whether a data type is
fixed point.

“DatatypeName” Get name of a data type supported
by this block.

“DatatypeSize” Get size of a data type supported by
this block.

“Derivatives” Get a block’s continuous state
derivatives.

“DialogPrm” Get a parameter entered on an
S-function block’s dialog box.

“Dwork” Get one of a block’s Dwork vectors.

“FixedPointNumericType” Determine the properties of a
fixed-point data type.

“InputPort” Get one of a block’s input ports.

“OutputPort” Get one of a block’s output ports.

“RuntimePrm” Get one of the run-time parameters
used by a block.

9-111

Simulink.RunTimeBlock

Properties
BlockHandle

Description
Block’s handle.

Access
RO

CurrentTime

Description
Current simulation time.

Access
RO

NumDworks

Description
Number of data work vectors.

Access
RW

See Also
ssGetNumDWork

NumOutputPorts

Description
Number of output ports.

Access
RW

See Also
ssGetNumOutputPorts

NumContStates

Description

9-112

Simulink.RunTimeBlock

Number of continuous states.

Access
RW

See Also
ssGetNumContStates

NumDiscStates

Description
Number of discrete states. In an M-file S-function, you need to use
Dworks to setup discrete states.

Access
RW

See Also
ssGetNumDiscStates

NumDlgParams

Description
Number of parameters declared on the block’s dialog. In the case
of the S-function, it returns the number of parameters listed as a
comma-separated list in the S-function parameters dialog field.

Access
RW

See Also
ssGetNumSFcnParams

NumInputPorts

Description
Number of input ports.

Access
RW

See Also
ssGetNumInputPorts

9-113

Simulink.RunTimeBlock

NumRuntimePrms

Description
Number of run-time parameters used by this block. See “Run-Time
Parameters” for more information.

Access
RW

See Also
ssGetNumSFcnParams

SampleTimes

Description
Blocks’s sample times.

Access
RW for M-file S-functions, RO for all other blocks.

Methods
ContStates

Purpose
Get a block’s continuous states.

Syntax
states = ContStates();

Description
Get vector of continuous states.

See Also
ssGetContStates

DataTypeIsFixedPoint

Purpose
Determine whether a data type is fixed point.

Syntax
bVal = DataTypeIsFixedPoint(dtID);

9-114

Simulink.RunTimeBlock

Arguments

dtID
Integer value specifying the ID of a data type.

Description
Returns true if the specified data type is a fixed-point data type.

DatatypeName

Purpose
Get the name of a data type.

Syntax
name = DatatypeName(dtID);

Arguments

dtID
Integer value specifying ID of a data type.

Description
Returns the name of the data type specified by dtID.

See Also
“DatatypeSize”

DatatypeSize

Purpose
Get the size of a data type.

Syntax
size = DatatypeSize(dtID);

Arguments

dtID
Integer value specifying the ID of a data type.

Description

9-115

Simulink.RunTimeBlock

Returns the size of the data type specified by dtID.

See Also
“DatatypeName”

Derivatives

Purpose
Get derivatives of a block’s continuous states.

Syntax
derivs = Derivatives();

Description
Get vector of state derivatives.

See Also
ssGetdX

DialogPrm

Purpose
Get an S-function’s dialog parameters.

Syntax
param = DialogPrm(pIdx);

Arguments

pIdx
Integer value specifying the index of the parameter to be returned.

Description
Get the specified dialog parameter. In the case of the S-function, each
DialogPrm corresponds to one of the elements in the comma-separated
list of parameters in the S-function parameters dialog field.

See Also
ssGetSFcnParam, “RuntimePrm”

9-116

Simulink.RunTimeBlock

Dwork

Purpose
Get one of a block’s Dwork vectors.

Syntax
dworkObj = Dwork(dwIdx);

Arguments

dwIdx
Integer value specifying the index of a work vector.

Description
Get information about the Dwork vector specified by dwIdx where dwIdx
is the index number of the work vector. This method returns an object
of type Simulink.BlockCompDworkData.

See Also
ssGetDWork

FixedPointNumericType

Purpose
Get the properties of a fixed-point data type.

Syntax
eno = FixedPointNumericType(dtID);

Arguments

dtID
Integer value specifying the ID of a fixed-point data type.

Description
Returns an object of Embedded.Numeric class that contains the
attributes of the specified fixed-point data type.

9-117

Simulink.RunTimeBlock

Note Embedded.Numeric is also the class of the numerictype objects
created by the Fixed-Point Toolbox. For information on the properties
defined by Embedded.Numeric class, see numerictype Object Properties
in the "Property Reference" in the “Fixed-Point Toolbox User’s Guide”.

InputPort

Purpose
Get an input port of a block.

Syntax
port = InputPort(pIdx);

Arguments

pIdx
Integer value specifying the index of an input port.

Description
Get the input port specified by pIdx, where pIdx is the index number of
the input port. For example,

port = rto.InputPort(1)

returns the first input port of the block represented by the run-time
object rto.

This method returns an object of type
Simulink.BlockPreCompInputPortData or
Simulink.BlockCompInputPortData, depending on whether the
model that contains the port is uncompiled or compiled. You can use
this object to get and set the input port’s uncompiled or compiled
properties, respectively.

See Also
ssGetInputPortSignalPtrs, Simulink.BlockPreCompInputPortData,
Simulink.BlockCompInputPortData, “OutputPort”

9-118

Simulink.RunTimeBlock

OutputPort

Purpose
Get an output port of a block.

Syntax
port = OutputPort(pIdx);

Arguments

pIdx
Integer value specifying the index of an output port.

Description
Get the output port specified by pIdx, where pIdx is the index number
of the output port. For example,

port = rto.InputPort(1)

returns the first output port of the block represented by the run-time
object rto.

This method returns an object of type
Simulink.BlockPreCompOutputPortData or
Simulink.BlockCompOutputPortData, depending on whether the
model that contains the port is uncompiled or compiled, respectively.
You can use this object to get and set the output port’s uncompiled or
compiled properties, respectively.

See Also
ssGetInputPortSignalPtrs,
Simulink.BlockPreCompOutputPortData,
Simulink.BlockCompOutputPortData

RuntimePrm

Purpose
Get an S-function’s run-time parameters.

Syntax

9-119

Simulink.RunTimeBlock

param = RuntimePrm(pIdx);

Arguments

pIdx
Integer value specifying the index of a run-time parameter.

Description
Get the run-time parameter whose index is pIdx.

See Also
ssGetRunTimeParamInfo

9-120

Simulink.ScopeDataLogs

Purpose Log data displayed by a Scope viewer.

Description Simulink creates instances of this class to log data displayed on Scope
viewers (see “The Signal & Scope Manager” in Using Simulink). In
particular, if you have enabled data logging for a model, Simulink
creates an instance of this class for each scope viewer enabled for
logging in the model and assigns it to a property of the model’s
Simulink.ModelDataLogs object. The instance created for each
viewer has a Name property whose value is the name specified on
the History pane of the viewer’s parameter dialog box (see Scope for
more information). The instance also has an axes property for each
of the scope’s axes labeled Axes1, Axes2, etc. The value of each axes
property is itself a Simulink.ScopeDataLogs object that contains
Simulink.Timeseries objects, one for each signal displayed on the axes.
The time series objects contain the signal data displayed on the axes.

Consider, for example, the following model:

This model displays signals out1 and out2 on a single scope viewer
that has only one set of axes.

9-121

Simulink.ScopeDataLogs

The model enables data logging for the scope viewer under the variable
name ScopeData and for the model as a whole under the default
variable name logsout.

9-122

Simulink.ScopeDataLogs

After simulation of the model, the MATLAB workspace contains
a Simulink.ModelDataLogs object named logsout containing
a Simulink.ScopeDataLogs object that in turn contains a
Simulink.ScopeDataLogs object that contains Simulink.Timeseries
objects that contain the times series data for signals out1 and out 2.

You can use Simulink data object dot notation to access the data, e.g.,

>> logsout.ScopeData.axes1

ans =

Simulink.ScopeDataLogs (axes1):
Name Elements Simulink Class

out1 1 Timeseries
out2 1 Timeseries

9-123

Simulink.Signal

Purpose Specify the attributes of a signal

Description Objects of this class allow you to specify the attributes that a signal or
discrete state should have, e.g., its data type, numeric type, dimensions,
and so on. You do this by giving the signal or discrete state the same
name as the base (MATLAB) workspace variable that references the
Simulink.Signal object. You can use signal objects both for specifying
and checking signal properties.

Using Signal Objects to Specify Signal Properties

You can use signal objects to assign values to properties left unassigned
by signal sources, i.e., that are assigned a value of -1 (inherited) or
auto. To do this for a particular signal, create a signal object that has
the same name as the signal and set the properties of the object that
correspond to the properties left unspecified by the signal source.

You can also use a Signal Specification block to specify properties
left unspecified by a signal source. The advantage of using signal objects
is that it allows you to change signal property values without having to
edit the model and it simplifies the model’s diagram. The advantage of
a Signal Specification block is that it displays the values assigned to the
signal’s properties on the block diagram itself.

9-124

Simulink.Signal

The following model illustrates the respective advantages of the two
ways of assigning attributes to a signal.

2

Out2

1

Out1

Ts:4 Dt:uint8

Signal Specification

1

Gain1

1

Gain

2

In2
Ts: −1

Dt: auto

1

In1
Ts: −1

Dt: auto

single
s1

single

uint8 ufix16_En7uint8

9-125

Simulink.Signal

In this example, the signal object named s1 specifies the sample time
and data type of the signal emitted by input port In1 and a Signal
Specification block specifies the sample time and data type of the signal
emitted by input port In2. As this example illustrates, you have to
display the signal object in the Model Explorer to determine many of its
properties whereas the Signal Specification block displays the property
values on the diagram itself. On the other hand, the use of a signal
object to specify the sample time and data type properties of signal s1
allows you to change the sample time or data type without having to edit
the model. For example, you could use the Model Explorer, the MATLAB
command line, or an M-file program to change these properties.

Using Signal Objects to Check Signal Properties

You can use signal objects to ensure that signal sources assign desired
properties to a signal or state. To do this, create a signal object that has
the same name as the signal or state to be validated and that specifies
the desired properties. Then, whenever you update the diagram
containing the signal or state, Simulink checks the properties of the
signal specified by the signal’s or state’s source against the properties
specified by the signal object. For most properties, if the source specifies
a value other than inherited or auto for the property and the values
specified by the source and the signal object differ, Simulink displays
an error message. This enables you to quickly determine whether the
actual attributes of your model’s signals are the attributes you intend
them to have.

9-126

Simulink.Signal

Property
Dialog
Box

Data type
Data type of the signal. The default entry, auto, specifies that
Simulink should determine the data type. Use the adjacent
pull-down list to specify built-in data types (e.g., uint8). To
specify a custom data type, enter a MATLAB expression that
specifies the type, e.g., a base workspace variable that references
a Simulink.NumericType object.

9-127

Simulink.Signal

Units
Measurement units in which the value of this signal is expressed,
e.g., inches. This field is intended for use in documenting this
signal. Simulink ignores it.

Dimensions
Dimensions of this signal. Valid values are -1 (the default)
specifying any dimensions, N specifying a vector signal of size N,
or [M N] specifying an MxN matrix signal.

Complexity
Numeric type of the signal. Valid values are auto (determined by
Simulink), real, or complex.

Sample time
Rate at which the value of this signal should be computed. See
“Specifying Sample Time” in Using Simulink for information on
how to specify the sample time.

Sample mode
Sample mode of this signal. Simulink ignores the setting of this
field.

Minimum
Minimum value that the signal can have. When updating the
diagram or starting a simulation, Simulink generates an error if
the signal’s initial value is less than the minimum value and its
storage class is other than Auto or SimulinkGlobal.

Maximum
Maximum value that the signal can have. When updating the
diagram or starting a simulation, Simulink generates an error if
the signal’s initial value is greater than the maximum value and
its storage class is other than Auto or SimulinkGlobal.

Initial value
Signal or state value before a simulation takes its first time step.
You can specify any MATLAB string expression that evaluates to
a double numeric scalar value or array.

9-128

Simulink.Signal

Valid:

1.5
[1 2 3]
1+0.5

foo = 1.5;
s1.InitialValue = 'foo';

Invalid:

uint(1)
foo = '1.5';
s1.InitialValue = 'foo';

If necessary, Simulink converts the initial value to ensure type,
complexity, and dimension consistency with the corresponding
block parameter value. If you specify an invalid value or
expression, an error message appears when you update the model.

Initial value settings for signal objects that represent the following
signals and states override the corresponding block parameter
initial values if undefined (specified as []):

• Output signals of conditionally executed subsystems and Merge
blocks

• Block states

Storage class
Storage class of this signal. See “Storage Classes of Tunable
Parameters” in the Real-Time Workshop User’s Guide for more
information.

Alias
Alternate name for this signal. Simulink ignores this setting.
This property is used for code generation.

9-129

Simulink.Signal

Description
Description of this signal. This field is intended for use in
documenting this signal. This property is used by the Simulink
Report Generator and for code generation.

Properties Name Access Description

DataType RW String specifying the data type of this
signal. (Data type)

Description RW Description of this signal. This field is
intended for use in documenting this
signal. (Description)

Dimensions RW Scalar or vector specifying the
dimensions of this signal. (Dimensions)

Complexity RW String specifying the numeric type of
this signal. Valid values are 'auto',
'real', or 'complex'. (Complexity)

Min RW Minimum value that this signal can
have. (Minimum)

Max RW Maximum value that this signal can
have. (Maximum)

DocUnits RW Measurement units in which this
signal’s value is expressed. (Units)

RTWInfo RW Information used by Real-Time
Workshop for generating code for this
signal. The value of this property is an
object of Simulink.ParamRTWInfo class.

SampleTime RW Rate at which this signal should be
updated. (Sample time)

Sampling
Mode

RW Sampling mode of this signal. (Sample
mode)

9-130

Simulink.StructElement

Purpose Describe an element of a data structure

Description Objects of this class describe elements of structures described by objects
of the Simulink.StructType class.

Property
Dialog
Box

Name
Name of the element.

Dimensions
A vector specifying the dimensions of the element.

Data type
Name of the data type of this element.

Complexity
Numeric type (i.e., real or complex) of this element.

9-131

Simulink.StructElement

Properties Name Access Description

Name RW String specifying the name of this element.
(Name)

Dimensions RW A vector specifying the dimensions of this
element. (Dimensions)

DataType RW String that specifies the name of the data
type of this element. (Data type)

Complexity RW String that specifies the numeric type
('real' or 'complex') of this element.
(Complexity)

See Also Simulink.StructType

9-132

Simulink.StructType

Purpose Describe a data structure used as the value of a signal or parameter

Description An object of this class describes a signal whose values are data
structures (i.e., aggregates of data of different types as opposed to
arrays of values of the same type). This class is intended to support
development and use of custom blocks (e.g., S-Function blocks) that
accept or output data structures. The class allows users of such blocks
to determine the structure of the signals connected to them.

You can use either the Model Explorer or the MATLAB command
line to create an instance of this class. To define the elements of a
structure, create an array of instances of Simulink.StructElement at
the MATLAB command line and assign the array as the value of the
structure’s Elements property. For example, the following commands
define a structure that contains a floating point and an integer element.

v = Simulink.StructElement;
v.Name = 'v';
v.DataType = 'single';
n = Simulink.StructElement;
n.Name = 'n';
n.DataType = 'uint8';

s = Simulink.StructType;
s.Elements = [v n];

You can use a structure type object to specify the data type of Inport and
Signal Specification blocks. To do this, enter the name of the variable
that references the structure type object as the data type in the block’s
parameter dialog box.

The Simulink S-function API lets you create S-functions capable of
generating and manipulating signal structures (see the simstruct.h
header file for more information). You can connect signal structures
created by S-function blocks to any standard Simulink block that
accepts any data type. This includes virtual blocks and the Switch block
configured to require the same data type on all its data inputs.

9-133

Simulink.StructType

Property
Dialog
Box

Struct elements
Table that displays the properties of the structure’s elements. You
cannot edit this table. To add or delete this structure’s elements
or change the properties of elements, you must use MATLAB
commands, e.g.,

state.Elements(1).DataType = 'double';

Header file
Name of a C header file that declares this structure. This field is
intended for use by Real-Time Workshop. Simulink ignores it.

Description
Description of this structure. This field is intended for you to use
to document this structure. Simulink itself does not use this field.

9-134

Simulink.StructType

Properties Name Access Description

Elements RW An array of Simulink.StructElement
objects that define the names, data types,
dimensions, and numeric types of the
structure’s elements. The elements must
have unique names. (Struct elements)

Description RW String that describes this structure.
This property is intended for user
use. Simulink itself does not use it.
(Description)

HeaderFile RW String that specifies the name of a C
header file that declares this structure.
(Header file)

See Also Simulink.StructElement

9-135

Simulink.SubsysDataLogs

Purpose Log signals in a subsystem

Description Simulink creates instances of this class to contain logs for signals
belonging to a subsystem (see “Logging Signals” in Using Simulink).
Objects of this class have a variable number of properties. The first
property, named Name, is the name of the subsystem whose log data this
object contains. The remaining properties are signal log or signal log
container objects containing the data logged for the subsystem specified
by this object’s Name property.

Consider, for example, the following model.

After simulation of this model, the MATLAB workspace contains a
Simulink.ModelDataLogs object, named logsout, that contains a
Simulink.SubsysDataLogs object, named Gain, that contains the log
data for signals a and g in the subsystem named Gain.

>> logsout.Gain

ans =

Simulink.SubsysDataLogs (Gain):
Name Elements Simulink Class

9-136

Simulink.SubsysDataLogs

a 1 Timeseries
g 2 TsArray

You can use either fully qualified log names or the unpack command
to access the signal logs contained by a SubsysDataLogs object. For
example, to access the amplitudes logged for signal a in the preceding
example, you could enter the following at the MATLAB command line:

>> data = logsout.Gain.a.Data;

or

>> logsout.unpack('all');
data = a.Data;

See Also Simulink.ModelDataLogs, Simulink.Timeseries, Simulink.TsArray,
unpack

9-137

Simulink.TimeInfo

Purpose Provide information about the time data in a Simulink.Timeseries
object

Description Simulink creates instances of these objects to describe the time data
that it includes in Simulink.Timeseries objects.

Properties Name Access Description

Units RW The units, e.g., 'seconds', in which the
time series data are expressed in the
associated Simulink.Timeseries object.

Start RW If the associated signal is not in a
conditionally executed subsystem, this
field contains the simulation time of
the first signal value recorded in the
associated Simulink.Timeseries object.
If the signal is in a conditionally executed
subsystem, this field contains an array of
times when the system became active.

End RW If the associated signal is not in a
conditionally executed subsystem, this
field contains the simulation time of the
last signal value recorded in the associated
Simulink.Timeseries object. If the signal
is in a conditionally executed subsystem,
this field contains an array of times when
the system became inactive.

9-138

Simulink.TimeInfo

Name Access Description

Increment RW The interval between simulation times
at which signal data is logged in the
associated Simulink.Timeseries object.
If the signal is aperiodic (continuous signal
with variable-step solver), this property
has a value of NaN. A signal is periodic if it
has a discrete sample time (not continuous
or constant) or is continuous with a
fixed-step solver.

Length W The number of signal samples recorded
in the associated Simulink.Timeseries
object, i.e., the length of the arrays
referenced by the object’s Time and Data
properties.

See Also Simulink.Timeseries

9-139

Simulink.Timeseries

Purpose Log signal data

Description Simulink creates instances of this class to store signal data that it logs
while simulating a model (see “Logging Signals” in Using Simulink).

Note The MATLAB Time Series Tools can import and manipulate
instances of this class. See Using Time Series Tools in the MATLAB
Data Analysis documentation for further details.

Properties Name Access Description

Name RW Name of this signal log.

BlockPath RW Path of the block that output the signal
logged in this signal log.

PortIndex RW Index of the output port that emitted the
signal logged in this signal log.

SignalName RW Name of the signal logged in this signal
log.

ParentName RW Name of the parent of the signal recorded
in this log, if the signal is an element of a
composite signal; otherwise, the same as
SignalName.

TimeInfo RW An object of Simulink.TimeInfo class
that describes the time data in this log.

Time RW An array containing the simulation times
at which signal data was logged.

Data RW An array containing the signal data.

See Also Simulink.ModelDataLogs, Simulink.TimeInfo, unpack

9-140

Simulink.TsArray

Purpose Log composite virtual signals

Description Simulink creates instances of this class to contain the data that it
logs for a composite virtual signal, e.g., the output of a Mux or of
a virtual Bus Creator block (see “Logging Signals”). Objects of the
Simulink.TsArray class have a variable number of properties. The
first property, called Name, specifies the log name of the composite
signal. The remaining properties reference logs for the elements of the
composite signal, i.e., Simulink.Timeseries objects for elementary
signals and Simulink.TSArray objects for elements that are themselves
composite signals, e.g., a bus. The name of each property is the log
name of the corresponding signal.

Consider, for example, the following model.

This model specifies that Simulink should log the values of the
composite signal b2 during simulation. After simulation of this model,
the MATLAB workspace contains a Simulink.ModelDataLogs object,
named logsout, that contains a Simulink.TsArray object, named b2,
that contains the logs for the elements of b2, i.e., for the elementary
signal x1 and the bus signal b1. Entering the fully qualified name of the
Simulink.TsArray object, i.e., logsout.b2, at the MATLAB command
line reveals the structure of the signal log for this model.

9-141

Simulink.TsArray

>> logsout.b2
Simulink.TsArray (untitled/Bus Creator1):

Name Elements Simulink Class

x1 1 Timeseries
b1 2 TsArray

You can use either fully qualified log names or the unpack command to
access the signal logs contained by a Simulink.TsArray object. For
example, to access the amplitudes logged for signal x1 in the preceding
example, you could enter the following at the MATLAB command line:

>> data = logsout.b2.x1.Data;

or

>> logsout.unpack('all');
data = x1.Data;

See Also Simulink.ModelDataLogs, Simulink.Timeseries, unpack

9-142

10

Model and Block
Parameters

The following sections list parameters that you can set for Simulink models
and blocks, using the set_param command.

Model Parameters (p. 10-2) Parameters specific to models.

Common Block Parameters (p. 10-56) Parameters that all blocks have.

Block-Specific Parameters (p. 10-68) Parameters that a specific block has.

Mask Parameters (p. 10-168) Parameters of a masked subsystem.

10 Model and Block Parameters

Model Parameters
This table lists and describes parameters that describe a model. The
parameters appear in the order they are defined in the model file, as described
in Chapter 11, “Model File Format”. The table also includes model callback
parameters (see “Using Callback Functions”). The Description column
indicates where you can set the value on the Configuration Parameters
dialog box. Examples showing how to change parameters follow the table (see
“Examples of Setting Model Parameters” on page 10-55).

Parameter values must be specified as quoted strings. The string contents
depend on the parameter and can be numeric (scalar, vector, or matrix), a
variable name, a filename, or a particular value. The Values column shows
the type of value required, the possible values (separated with a vertical line),
and the default value, enclosed in braces.

Model Parameters

Parameter Description Values

AbsTol Absolute error tolerance. Setting
for the Absolute tolerance on the
Solver pane of the Configuration
Parameters dialog box.

string {'auto'}

AccelMakeCommand Program that builds the Simulink
Accelerator target for this model.

string {'make_rtw'}

AccelSystemTargetFile TLC file used to build the Simulink
Accelerator target for this model.

string {'accel.tlc'}

AccelTemplateMakefile Template for the makefile used to
build the Simulink Accelerator target
for this model.

string
{'accel_default_tmf'}

AlgebraicLoopMsg Specifies diagnostic action to take
when there is an algebraic loop.
Set by the Algebraic loop option
on the Diagnostics pane of the
Configuration Parameters dialog
box.

'none' | {'warning'} |
'error'

10-2

Model Parameters

Model Parameters (Continued)

Parameter Description Values

AnalyticLinearization For internal use.

ArrayBoundsChecking Setting for the Array bounds
exceeded diagnostic on the
Diagnostics Data Validity pane
of the Configuration Parameters
dialog box.

{'none'} | 'warning' |
'error'

ArtificialAlgebraic-
LoopMsg

Setting for the Minimize algebraic
loop diagnostic on the Diagnostics
pane of the Configuration
Parameters dialog box.

'none' | {'warning'} |
'error'

AssertControl See AssertionControl parameter
for more information.

AssertionControl Setting for the Model Verification
block enabling control on the
Diagnostics Data Validity pane
of the Configuration Parameters
dialog box.

{'UseLocalSettings'}
| 'EnableAll' |
'DisableAll'

BlockDescription-
StringDataTip

Specifies whether to display the
user description string for a block
as a data tip. Set by the User
Description String command on
the model editor’s View->Block
Data Tips Options menu.

'on' | {'off'}

BlockDiagramType Type of block diagram (read only). 'model' | 'library'

BlockNameDataTip Specifies whether to display the
block name as a data tip. Set by the
Block Name command on the model
editor’s View->Block Data Tips
Options menu.

'on' | {'off'}

10-3

10 Model and Block Parameters

Model Parameters (Continued)

Parameter Description Values

BlockParametersDataTip Specifies whether to display a block’s
parameter in a data tip. Set by the
Parameter Names and Values
command on the model editor’s
View->Block Data Tips Options
menu.

'on' | {'off'}

BlockPriority-
ViolationMsg

Setting for the Block priority
violation diagnostic on the
Diagnostics pane of the
Configuration Parameters
dialog box.

'none' | {'warning'} |
'error'

BlockReduction Enables block reduction optimization.
Set by the Block reduction option
on the Optimization pane of the
Configuration Parameters dialog
box.

{'on'} | 'off'

BlockReductionOpt See BlockReduction parameter for
more information.

Blocks Names of the blocks that this model
contains.

cell array {{}}

BooleanDataType Enable Boolean mode. Set by
the Implement logic signals as
boolean data (vs. double) option
on the Optimization pane of the
Configuration Parameters dialog
box.

{'on'} | 'off'

Browser Deprecated.

BrowserHandle Deprecated.

10-4

Model Parameters

Model Parameters (Continued)

Parameter Description Values

BrowserLookUnderMasks Show masked subsystems in the
Model Browser. Set by the Show
Masked Subsystems command on
the model editor’s View->Model
Browser Options menu.

'on' | {'off'}

BrowserShowLibraryLinks Show library links in the Model
Browser. Set by the Show Library
Links command on the model
editor’s View->Model Browser
Options menu.

'on' | {'off'}

BusObjectLabelMismatch Set by the Element name
mismatch option on the
Connectivity panel of the
Diagnostics pane of the
Configuration Parameters
dialog box.

{'none'} | 'warning'|
'error'

BufferReusableBoundary For internal use.

BufferReuse Enable reuse of block I/O buffers. Set
by the Reuse block outputs option
on the Optimization pane of the
Configuration Parameters dialog
box.

{'on'} | 'off'

CheckExecutionContext-
RuntimeOutputMsg

Set by the Check runtime output
of execution context option on the
Compatibility Diagnostics pane
of the Configuration Parameters
dialog box.

{'on'} | 'off'

CheckExecutionContext-
PreStartOutputMsg

Set by the Check preactivation
output of execution context option
on the Compatibility Diagnostics
pane of the Configuration
Parameters dialog box.

{'on'} | 'off'

10-5

10 Model and Block Parameters

Model Parameters (Continued)

Parameter Description Values

CheckForMatrix-
Singularity

See CheckMatrixSingularityMsg
parameter for more information.

CheckMatrix-
SingularityMsg

Set by the Division by singular
matrix option on the Data Validity
pane of the Configuration
Parameters dialog box.

{'none'} | 'warning' |
'error'

CheckModelReference-
TargetMessage

Message behavior when the Never
rebuild targets diagnostic is set
to never in the Model Referencing
pane of the Configuration
Parameters dialog box.

'none' | 'warning' |
{'error'}

CheckSSInitial-
OutputMsg

Enable checking for undefined
initial subsystem output. Set by
the Check undefined subsystem
initial output option on the
Compatibility Diagnostics pane
of the Configuration Parameters
dialog box.

{'on'} | 'off'

CloseFcn Close callback. Created on the
Callbacks pane of the Model
Properties dialog box. See “Creating
Model Callback Functions” in the
Using Simulink documentation for
further information.

command or variable

ConditionallyExecute-
Inputs

Enable conditional input branch
execution optimization. Set
by the Conditional input
branch execution control on
the Optimization pane of the
Configuration Parameters dialog
box.

{'on'} | 'off'

10-6

Model Parameters

Model Parameters (Continued)

Parameter Description Values

ConfigurationManager Configuration manager for this
model.

string {'None'}

ConsecutiveZCsStep-
RelTol

Relative tolerance associated
with the time difference between
zero crossing events. Set by the
Consecutive zero crossings
relative tolerance option on the
Solver pane of the Configuration
Parameters dialog box.

string {'10*128*eps'}

ConsistencyChecking Consistency checking. Set by the
Solver data inconsistency option
on the Diagnostics pane of the
Configuration Parameters dialog
box.

{'none'} | 'warning' |
'error'

CovCompData If CovHTMLOptions is set to off,
and CovCumulativeReport is set to
on, this parameter specifies cvdata
objects containing additional model
coverage data to include in the model
coverage report.
Specified by the Additional data to
include in report (cvdata objects)
field in the Report pane of the
Coverage Settings dialog box.

string

10-7

10 Model and Block Parameters

Model Parameters (Continued)

Parameter Description Values

CovCumulativeReport If CovHTMLReporting is set
to on, this parameter allows
the CovCumulativeReport and
CovCompData parameters to specify
the number of coverage results
displayed in the model coverage
report.
If set to on, display the
coverage results for the last
simulation in the report.
If set to off, display the coverage
results from successive simulations
in the report. Set by the radial
buttons Cumulative runs (on)/Last
runs (off) in the Report pane of the
Coverage Settings dialog box.

'on' | {'off'}

CovCumulativeVarName If covSaveCumulativeToWorkSpace
Var is set to on, model coverage saves
the results of successive simulations
in the workspace variable specified
by this property. Entered in the field
below the selected Save cumulative
results in workspace variable
check box on the Results pane of the
Coverage Settings dialog box.

string
{'covCumulativeData'}

10-8

Model Parameters

Model Parameters (Continued)

Parameter Description Values

CovHTMLOptions If CovHTMLReporting is set to on,
use this parameter to select from
a set of display options for the
resulting model coverage report. In
the Report pane of the Coverage
Settings dialog box, select Settings
to receive a dialog box for selecting
these options.

String of appended
character sets separated
by a space. HTML options
are enabled or disabled
through a value of 1 or
0, respectively, in the
following character sets
(default values shown):

• '-aTS=1'

Include each test in the
model summary

• '-bRG=1'

Produce bar graphs in
the model summary

• '-bTC=0'

Use two color bar graphs
(red, blue)

• '-hTR=0'

Display hit/count ratio in
the model summary

• '-nFC=0'

Do not report fully
covered model objects

• '-scm=1'

Include cyclomatic
complexity numbers
in summary

• '-bcm=1'

Include cyclomatic
complexity numbers
in block details

10-9

10 Model and Block Parameters

Model Parameters (Continued)

Parameter Description Values

CovHtmlReporting Set to on to tell Simulink to create
an HTML report containing the
coverage data in the MATLAB Help
browser at the end of the simulation.
Set by the Generate HTML report
check box on the Report pane of the
Coverage Settings dialog box.

{'on'} | 'off'

CovMetricSettings Selects coverage metrics for coverage
report. Coverage metrics are
enabled by selecting the check boxes
for individual coverages in the
Coverage Metrics section of the
Coverage pane of the Coverage
Settings dialog box. Options 's'
and 'w' are enabled by selecting the
check boxes Treat Simulink logic
blocks as short-circuited and
Warn when unsupported blocks
exist in model, respectively, in
the Options pane of the Coverage
Settings dialog box. Option 'e' is
disabled by selecting the check box
Display coverage results using
model coloring in the Results pane
of the Coverage Settings dialog
box.

string {'dw'}

Each order-independent
character in the string
enables a coverage metric
or option as follows:

• 'd'

Enable decision coverage

• 'c'

Enable condition
coverage

• 'm'

Enable MCDC coverage

• 't'

Enable lookup table
coverage

• 'r'

Enable signal range
coverage

10-10

Model Parameters

Model Parameters (Continued)

Parameter Description Values

• 's'

Treat Simulink logic
blocks as short-circuited

• 'w'

Warn when unsupported
blocks exist in model

• 'e'

Eliminate model coloring
for coverage results

CovNameIncrementing If CovSaveSingleToWorkspaceVar is
set to on, setting this parameter to
on tells Model Coverage to increment
the workspace variable specified in
CovSaveName to store the results
succeeding simulations. Entered
in the Increment variable name
with each simulation check box
below the selected Save last run in
workspace variable check box on
the Results pane of the Coverage
Settingsdialog box.

'on' | {'off'}

CovPath Model path of the subsystem
for which Simulink gathers and
reports coverage data. Set by
browsing for the path in Coverage
Instrumentation Path on the
Coverage pane of the Coverage
Settings dialog box.

string {'/'}

10-11

10 Model and Block Parameters

Model Parameters (Continued)

Parameter Description Values

CovReportOnPause Specifies that when you pause during
simulation the model coverage
report appears in updated form with
coverage results up to the current
pause or stop time. Set by selecting
the Update results on pause check
box on the Results pane of the
Coverage Settings dialog box.

{'on'} | 'off'

covSaveCumulativeTo-
WorkspaceVar

If set to on, causes Model Coverage
to accumulate and save the
results of successive simulations
in the workspace variable in
CovCumulativeVarName. Set by
selecting the Save cumulative
results in workspace variable
check box on the Results pane of the
Coverage Settings dialog box.

{'on'} | 'off'

CovSaveName If CovSaveSingleToWorkspaceVar is
set to on, Model Coverage saves the
results of the last simulation run in
the workspace variable specified by
this property. Entered in the field
below the selected Save last run in
workspace variable check box on
the Results pane of the Coverage
Settings dialog box.

string {'covdata'}

CovSaveSingleTo-
WorkspaceVar

If enabled, tells Model Coverage to
save the results of the last simulation
run in the workspace variable
specified by the CovSaveName
property. Set by selecting the Save
last run in workspace variable
check box on the Results pane of the
Coverage Settings dialog box.

{'on'} | 'off'

10-12

Model Parameters

Model Parameters (Continued)

Parameter Description Values

Created Date and time model was created. string

Creator Name of model creator. string {''}

CurrentBlock For internal use.

CurrentOutputPort For internal use.

DataTypeOverride Specifies data type used to override
fixed-point data types. Set by the
Data type override control on the
Fixed-Point Settings dialog box.

{'UseLocalSettings'}
| 'ScaledDoubles'
| 'TrueDoubles' |
'TrueSingles' |
'ForceOff'

Decimation Decimation factor. Set by the
Decimation field on the Data
Import/Export pane of the
Configuration Parameters dialog
box.

string {'1'}

DeleteChildFcn Delete child callback. string {''}

Description Description of this model. Set by
the Description pane of theModel
Properties dialog box.

string

Dirty If the parameter is on, the model has
unsaved changes.

'on' | {'off'}

DiscreteInherit-
ContinuousMsg

Specifies diagnostic action to
take when a Unit Delay block
inherits a continuous sample time.
Set by the Discrete used as
continuous control on the Sample
Time Diagnostics pane of the
Configuration Parameters dialog
box.

'none' | {'warning'} |
'error'

DisplayBdSearchResults For internal use.

DisplayBlockIO For internal use.

10-13

10 Model and Block Parameters

Model Parameters (Continued)

Parameter Description Values

DisplayCallgraph-
Dominators

For internal use

DisplayCompileStats For internal use.

DisplayCondInputTree For internal use.

DisplayCondStIdTree For internal use.

DisplayErrorDirections For internal use.

DisplayInvisible-
Sources

For internal use.

DisplaySortedLists For internal use.

DisplayVectorAnd-
FunctionCounts

For internal use.

DisplayVect-
PropagationResults

For internal use.

Echo For internal use.

EnableOverflow-
Detection

For internal use.

ExecutionContextIcon Toggles display of execution context
icons on this model’s block diagram.

'on' | {'off'}

ExpressionFolding Enables expression folding. Set
by the Eliminate superfluous
temporary variables option on
the Optimization pane of the
Configuration Parameters dialog
box.

{'on'} | 'off'

10-14

Model Parameters

Model Parameters (Continued)

Parameter Description Values

ExternalInput Names of MATLAB workspace
variables used to designate data
and times to be loaded from the
workspace. Set by the Input option
on the Data Import/Export pane
of the Configuration Parameters
dialog box.

scalar or vector {'[t, u]'}

ExtMode... Parameters whose names start with
ExtMode apply to Simulink External
Mode. See External Mode in the
Real-Time Workshop User’s Guide
for more information.

ExtrapolationOrder Extrapolation order of the ode14x
implicit fixed-step solver. Set by the
Extrapolation order control on the
Solver pane of the Configuration
Parameters dialog box.

1 | 2 | 3 | {4}

FcnCallInpInside-
ContextMsg

Specifies diagnostic action to take
when Simulink has to compute
any of a function-call subsystem’s
inputs directly or indirectly
during execution of a call to a
function-call subsystem. Set by the
Context-dependent inputs control
on the Connectivity Diagnostics
pane of the Configuration
Parameters dialog box.

{'Use local settings'}
| 'Enable All' |
'Disable All'

FileName For internal use.

10-15

10 Model and Block Parameters

Model Parameters (Continued)

Parameter Description Values

FinalStateName Names of final states to be saved
to the workspace. Set by the
Final states option on the Data
Import/Export pane of the
Configuration Parameters dialog
box.

string {'xFinal'}

FixedStep Fixed step size. Set by the Fixed
step size (fundamental sample
time) field on the Solver pane of the
Configuration Parameters dialog
box.

string {'auto'}

FixPtInfo For internal use.

FollowLinksWhen-
OpeningFromGotoBlocks

Specifies whether to search for Goto
tags in libraries referenced by the
model when opening the From block
dialog box.

'on' | {'off'}

ForceArrayBounds-
Checking

For internal use.

ForceConsistency-
Checking

For internal use.

ForceModelCoverage For internal use.

ForwardingTable Specifies the forwarding table for this
library. See “Forwarding Tables” in
Using Simulink for more information.

{{'old_path_1',
'new_path_1'} ...
{'old_path_n',
'new_path_n'}}

ForwardingTableString For internal use.

GridSpacing Spacing of model editor grid in pixels. integer {20}

Handle Handle of this model’s block diagram. double

s For internal use.

10-16

Model Parameters

Model Parameters (Continued)

Parameter Description Values

HiliteFcnCallInp-
InsideContext

Enables highlighting of Function-Call
Subsystems when one or more inputs
depend on source blocks that appear
in their own calling context.

'on' | {'off'}

IgnoreBidirectional-
Lines

For internal use.

InheritedTsInSrcMsg Message behavior when the sample
time is inherited. Set by the
Source block specifies -1 sample
time control on the Sample
Time Diagnostics pane of the
Configuration Parameters dialog
box.

'none' | {'warning'} |
'error'

InitFcn Function that is called when this
model is first compiled for simulation.

string {''}

InitialState Initial state name or values. Set
by the Initial state field on the
Data Import/Export pane of the
Configuration Parameters dialog
box.

variable or vector
{'xInitial'}

InitialStep Initial step size. Set by the Initial
step size field on the Solver pane
of the Configuration Parameters
dialog box.

string {'auto'}

InlineParams Enable inline of parameters
in generated code. Set by the
Inline parameters check box on
the Optimization pane of the
Configuration Parameters dialog
box.

'on' | {'off'}

10-17

10 Model and Block Parameters

Model Parameters (Continued)

Parameter Description Values

InspectSignalLogs Enable Simulink to display logged
signals in the MATLAB Time
Series Tools viewer at the end of a
simulation or whenever you pause
the simulation. Set by the Inspect
signal logs when simulation is
paused/stopped check box on the
Data Import/Export pane of the
Configuration Parameters dialog
box.

'on' | {'off'}

Int32ToFloatConvMsg Message behavior when a
32-bit integer is converted to a
single-precision float. Set by the
32-bit integer to single precision
float conversion control on the
Type Conversionpane of the
Configuration Parameters dialog
box.

'none' | {'warning'}

IntegerOverflowMsg Message behavior when there is
an integer overflow. Set by the
Data overflow control on the
Diagnostics Data Validity pane
of the Configuration Parameters
dialog box.

'none' | {'warning'} |
'error'

InvalidFcnCallConnMsg Message behavior when there is
an invalid function call connection.
Set by the Invalid function
call connection control on the
Connectivity Diagnostics pane
of the Configuration Parameters
dialog box.

'none' | 'warning' |
{'error'}

Jacobian For internal use.

10-18

Model Parameters

Model Parameters (Continued)

Parameter Description Values

LastModifiedBy User name of the person who last
modified this model.

string

LastModifiedDate Date used for version control. string

LibraryLinkDisplay Shows which blocks in the model are
linked or have disabled or modified
links. Set by the Library Link
Display option under the Format
menu.

{'none'} | 'user' |
'all'

LibraryType For internal use. {'none'} |
'BlockLibrary' |
'IOLibrary'

LimitDataPoints Limit output. Set by the Limit data
points to last check box on the
Data Import/Export pane of the
Configuration Parameters dialog
box.

{'on'} | 'off'

LinearizationMsg For internal use.

Lines For internal use.

LoadExternalInput Load input from workspace. Set
by the Input check box on the
Data Import/Export pane of the
Configuration Parameters dialog
box.

'on' | {'off'}

LoadInitialState Load initial state from workspace.
Set by the Initial state check box
on the Data Import/Export pane
of the Configuration Parameters
dialog box.

'on' | {'off'}

Location For internal use.

10-19

10 Model and Block Parameters

Model Parameters (Continued)

Parameter Description Values

Lock Lock/unlock a block library. Setting
this parameter on prevents a user
from inadvertently changing a
library.

'on' | {'off'}

MaxConsecutiveMinStep Maximum number of minimum
step size violations allowed during
simulation. Set by the Number
of consecutive min step size
violations allowed control on the
Solver pane of the Configuration
Parameters dialog box. This option
is displayed when the solver option
type is Variable-step and the solver
is an ode one.

string {'1'}

MaxConsecutiveZCs Maximum number of consecutive
zero crossings allowed during
simulation. Set by the Number
of consecutive zero crossings
allowed control on the Solver pane
of the Configuration Parameters
dialog box. This option is displayed
when the solver option type is
Variable-step and the solver is an
ode one.

string {'1000'}

10-20

Model Parameters

Model Parameters (Continued)

Parameter Description Values

MaxConsecutiveZCsMsg Specifies diagnostic action to take
when Simulink detects the maximum
number of consecutive zero crossings
allowed. Set by the Consecutive
zero crossings violation control
on the Diagnostics pane of the
Configuration Parameters dialog
box. This option is displayed
when the solver option type is
Variable-step and the solver is an
ode one.

'warning' | {'error'}

MaxDataPoints Maximum number of output data
points to save. Set by the Limit
data points to last field on the
Data Import/Export pane of the
Configuration Parameters dialog
box.

string {'1000'}

MaxNumMinSteps Maximum number of times the solver
uses the minimum step size.

string {'-1'}

MaxOrder Maximum order for ode15s. Set by
the Maximum order option on the
Solver pane of the Configuration
Parameters dialog box.

1 | 2 | 3 | 4 | {5}

MaxStep Maximum step size. Set by the Max
step size field on the Solver pane
of the Configuration Parameters
dialog box.

string {'auto'}

MdlSubVersion For internal use

MinMaxOverflow-
ArchiveData

For internal use

10-21

10 Model and Block Parameters

Model Parameters (Continued)

Parameter Description Values

MinMaxOverflow-
ArchiveMode

Logging type for fixed-point logging.
Set by the Logging type option in
the Fixed-Point Settings dialog
box.

{'Overwrite'} | 'Merge'

MinMaxOverflowLogging Setting for fixed-point logging. Set
by the Logging mode option in the
Fixed-Point Settings dialog box.

{'UseLocalSettings'}
| 'MinMaxAndOverflow'
| 'OverflowOnly' |
'ForceOff'

MinStep Minimum step size for the solver. Set
by the Min step size field on the
Solver pane of the Configuration
Parameters dialog box.

string {'auto'}

MinStepSizeMsg Message shown when minimum
step size is violated. Set by the
Min step size violation option
on the Diagnostics pane of the
Configuration Parameters dialog
box.

{'warning'} | 'error'

ModelBrowserVisibility Show the Model Browser. Set by
the Model Browser command of
the model’s View->Model Browser
Options menu.

'on' | {'off'}

ModelBrowserWidth Width of the Model Browser pane
in the model window. To display
the Model Browser pane, see
the ModelBrowserVisibility
parameter.

integer {200}

ModelDataFile For internal use. string {''}

ModelDependencies List of model dependencies. Set by
the Model dependencies field on
the Model Referencing pane of the
Configuration Parameters dialog
box.

string {''}

10-22

Model Parameters

Model Parameters (Continued)

Parameter Description Values

ModelReferenceCS-
MismatchMessage

Message shown when there is a
model configuration mismatch.
Set by the Model configuration
mismatch option on the Model
Referencing Diagnostics pane of
the Configuration Parameters
dialog box.

{'none'} | 'warning' |
'error'

ModelReferenceData-
LoggingMessage

Message shown when there is
unsupported data logging. Set
by the Unsupported data
logging option on the Model
Referencing Diagnostics pane of
the Configuration Parameters
dialog box.

'none' | {'warning'} |
'error'

ModelReferenceExtr-
NoncontSigs

Specifies diagnostic action to take
when a discrete signal appears to
pass through a Model block to the
input of a block with continuous
states. Set by the Extraneous
discrete derivative signals control
on the Diagnostics pane of the
Configuration Parameters dialog
box.

'none' | 'warning' |
{'error'}

ModelReferenceIO-
MismatchMessage

Message shown when there is a
port and parameter mismatch.
Set by the Port and parameter
mismatch option on the Model
Referencing Diagnostics pane of
the Configuration Parameters
dialog box.

{'none'} | 'warning' |
'error'

10-23

10 Model and Block Parameters

Model Parameters (Continued)

Parameter Description Values

ModelReferenceIOMsg Message shown when there is an
invalid root Inport/Outport block
connection. Set by the Invalid
root Inport/Outport block
connection option on the Model
Referencing Diagnostics pane of
the Configuration Parameters
dialog box.

{'none'} | 'warning' |
'error'

ModelReferenceMin-
AlgLoopOccurrences

See
ModelrefMinAlgLoopOccurrences
parameter for more information.

ModelReferenceNum
InstancesAllowed

Total number of instances allowed
per top model. Set by the Total
number of instances allowed
per top model option on the
Model Referencing pane of the
Configuration Parameters dialog
box.

'Zero' | 'Single' |
{'Multi'}

ModelReferencePass-
RootInputsByReference

See
ModelrefPassRootInputsByReference
parameter for more information.

ModelReferenceSim-
TargetVerbose

Print detailed information when
generating simulation targets for
models referenced by a top-level
model.

'on' | {'off'}

ModelReferenceSymbol-
NameMessage

For internal use.

ModelReferenceTarget-
Type

For internal use.

10-24

Model Parameters

Model Parameters (Continued)

Parameter Description Values

ModelReferenceVersion-
MismatchMessage

Message shown when there is a
model block version mismatch.
Set by the Model block version
mismatch option on the Model
Referencing Diagnostics pane of
the Configuration Parameters
dialog box.

{'none'} | 'warning' |
'error'

ModelrefMinAlgLoop-
Occurrences

Toggles the minimization of
algebraic loop occurrences. Set
by the Minimize algebraic loop
occurrences check box on the
Model Referencing pane of the
Configuration Parameters dialog
box.

'on' | {'off'}

ModelrefPassRoot-
InputsByReference

Toggles the passing of scalar root
inputs by value. Set by the Pass
scalar root inputs by value check
box on the Model Referencing pane
of the Configuration Parameters
dialog box.

{'on'} | 'off'

ModelVersion Version number of model. string {'1.1'}

ModelVersionFormat Format of model’s version number. string
{'1.%<AutoIncrement:
0>'}

ModelWorkspace References this model’s model
workspace object.

an instance of the
Simulink.ModelWorkspace
class

ModifiedBy Last modifier of this model. string

10-25

10 Model and Block Parameters

Model Parameters (Continued)

Parameter Description Values

ModifiedByFormat Format for the display of last
modifier. This is set by the Last
saved by parameter on the History
pane of theModel Properties dialog
box. See “Model History Controls” in
the Using Simulink documentation
for further information.

This can also be set by the Last
saved by on theModel history field
on the History pane of the Model
Explorer dialog box.

string {'%<Auto>'}

ModifiedComment Field for user comments. string {''}

ModifiedDate Date of last model modification. string

ModifiedDateFormat Format of modified date. string {'%<Auto>'}

ModifiedHistory Area for keeping notes about the
history of the model. This is set by the
History pane of theModel Properties
dialog box. See “Model History
Controls” in “Using Simulink”the
Using Simulink documentation for
further information.

This can also be set by the Model
history field on the History pane of
the Model Explorer dialog box.

string {''}

10-26

Model Parameters

Model Parameters (Continued)

Parameter Description Values

MultiTaskDSMMsg Specifies diagnostic action to take
when one task reads data from a
Data Store Memory block to which
another task writes data. Set by the
Multitask data store control on the
Diagnostics Data Validity pane
of the Configuration Parameters
dialog box.

'none' | {'warning'} |
'error'

MultiTaskRateTransMsg Specifies diagnostic action to take
when an invalid rate transition takes
place between two blocks operating
in single-tasking mode. Set by the
Multitask rate transition control
on the Sample Time Diagnostics
pane of the Configuration
Parameters dialog box.

'warning' | {'error'}

Name Model name. string

NumberNewtonIterations Number of Newton’s Method
iterations performed by the ode14x
implicit fixed-step solver. Set by
the Number Newton’s iterations
control on the Solver pane of
the pane of the Configuration
Parameters dialog box.

integer {1}

ObjectParameters Names/attributes of model
parameters.

structure

Open For internal use.

OptimizeBlockIOStorage Enables signal storage reuse
optimization. Set by the Signal
storage reuse control on the
Optimization pane of the
Configuration Parameters
dialog box.

{'on'} | 'off'

10-27

10 Model and Block Parameters

Model Parameters (Continued)

Parameter Description Values

OutputOption Time step output options for
variable-step solvers. Set by the
Output options option on the
Data Import/Export pane of the
Configuration Parameters dialog
box.

'AdditionalOutputTimes'
|
{'RefineOutputTimes'} |
'SpecifiedOutputTimes'

OutputSaveName Workspace variable to store the model
outputs. Set by the Output field
on the Data Import/Export pane
of the Configuration Parameters
dialog box.

variable {'yout'}

OutputTimes Output times set when
Output options on the Data
Import/Export pane of the
Configuration Parameters dialog
box is set to Produce additional
output. Set by the Output times
option on the Data Import/Export
pane of the Configuration
Parameters dialog box.

string {'[]'}

PaperOrientation Printing paper orientation. 'portrait' |
{'landscape'} |
'rotated'

PaperPosition Position of diagram on paper. [left, bottom, width,
height]

PaperPositionMode Paper position mode. {'auto'} | 'manual' |
'tiled'

PaperSize Size of PaperType in PaperUnits. [width height] (read
only)

10-28

Model Parameters

Model Parameters (Continued)

Parameter Description Values

PaperType Printing paper type. 'usletter' | 'uslegal'
| 'a0' | 'a1' | 'a2'
| 'a3' | 'a4' | 'a5'
| 'b0' | 'b1' | 'b2'
| 'b3' | 'b4' | 'b5'
| 'arch-A' | 'arch-B'
| 'arch-C' | 'arch-D'
| 'arch-E' | 'A' | 'B'
| 'C' | 'D' | 'E' |
'tabloid'

PaperUnits Printing paper size units. 'normalized' |
{'inches'} |
'centimeters' |
'points'

ParameterArgumentNames List of parameters used as arguments
when this model is called as a
reference. Set in the Model
arguments (for referencing
this model) field in the Model
Workspace pane of the Model
Explorer.

string {''}

ParameterDowncastMsg Specifies diagnostic action to take
when a parameter downcast occurs
during simulation. Set by the
Detect downcast control on the
Diagnostics Data Validity pane
of the Configuration Parameters
dialog box.

'none' | 'warning' |
{'error'}

10-29

10 Model and Block Parameters

Model Parameters (Continued)

Parameter Description Values

ParameterOverflowMsg Specifies diagnostic action to take
when a parameter overflow occurs
during simulation. Set by the
Detect overflow control on the
Diagnostics Data Validity pane
of the Configuration Parameters
dialog box.

'none' | 'warning' |
{'error'}

ParameterPrecision-
LossMsg

Specifies diagnostic action to take
when parameter precision loss
occurs during simulation. Set by the
Detect precision loss control on the
Diagnostics Data Validity pane
of the Configuration Parameters
dialog box.

'none' | {'warning'} |
'error'

ParameterUnderflowMsg Specifies diagnostic action to take
when a parameter underflow occurs
during simulation. Set by the
Detect underflow control on the
Diagnostics Data Validity pane
of the Configuration Parameters
dialog box.

{'none'} | 'warning' |
'error'

ParamWorkspaceSource For internal use.

Parent Name of the model or subsystem that
owns this object. The value of this
parameter for a model is an empty
string.

string {''}

10-30

Model Parameters

Model Parameters (Continued)

Parameter Description Values

PositivePriorityOrder Choose the appropriate priority
ordering for the real-time
system targeted by this model.
The Real-Time Workshop
uses this information to
implement asynchronous data
transfers. Set by Configuration
Parameters > Solver > Solver
Options > Higher priority value
indicates higher task priority.

'on' | {'off'}

PostLoadFcn Function invoked just after this
model is loaded. Created on the
Callbacks pane of the Model
Properties dialog box. See “Creating
Model Callback Functions” in the
Using Simulink documentation for
further information.

string {''}

PostSaveFcn Function invoked just after this
model is saved to disk.

string {''}

PreLoadFcn Preload callback. Created on the
Callbacks pane of the Model
Properties dialog box. See “Creating
Model Callback Functions” in the
Using Simulink documentation for
further information.

command or variable {''}

PreSaveFcn Function invoked just before this
model is saved to disk. Created on
the Callbacks pane of the Model
Properties dialog box. See “Creating
Model Callback Functions” in the
Using Simulink documentation for
further information.

string {''}

10-31

10 Model and Block Parameters

Model Parameters (Continued)

Parameter Description Values

ProdBitPerChar Specifies the length in bits of the
C char data type supported by the
production hardware device type
targeted by this model. Set by the
char control in the Embedded
Hardware panel of the Hardware
Implementation pane of the
Configuration Parameters dialog
box.

integer {8}

ProdBitPerInt Specifies the length in bits of the
C int data type supported by the
production hardware device type
targeted by this model. Set by
the int control in the Embedded
Hardware panel of the Hardware
Implementation pane of the
Configuration Parameters dialog
box.

integer {32}

ProdBitPerLong Specifies the length in bits of the
C long data type supported by the
production hardware device type
targeted by this model. Set by the
long control in the Embedded
Hardware panel of the Hardware
Implementation pane of the
Configuration Parameters dialog
box.

integer {32}

10-32

Model Parameters

Model Parameters (Continued)

Parameter Description Values

ProdBitPerShort Specifies the length in bits of the C
short data type supported by the
production hardware device type
targeted by this model. Set by the
short control in the Embedded
Hardware panel of the Hardware
Implementation pane of the
Configuration Parameters dialog
box.

integer {16}

ProdEndianess Specifies the significance of the
first byte of a data word of the
target hardware. Set by the Byte
ordering control in the Embedded
Hardware panel of the Hardware
Implementation pane of the
Configuration Parameters dialog
box.

{'Unspecified'} |
'LittleEndian' |
'BigEndian'

ProdEqTarget Specifies that the hardware used
to test the code generated from
this model is the same as the
production hardware or has the
same characteristics. Set by the
None control in the Emulation
Hardware panel of the Hardware
Implementation pane of the
Configuration Parameters dialog
box.

{'on'} | 'off'

ProdHWDeviceType Predefined hardware device to
specify the C language constraints
for your microprocessor. Set by
the Device type option on the
Hardware Implementation pane
of the Configuration Parameters
dialog box.

string {'32-bit
Generic'}

10-33

10 Model and Block Parameters

Model Parameters (Continued)

Parameter Description Values

ProdHWWordLengths Number of bits used for char, short,
int, and long, respectively (set by the
hardware device type).

string {'8,16,32,32'}

ProdIntDivRoundTo Specifies how an ANSI C conforming
compiler used to compile code for
the production hardware targeted
by this model rounds the result
of dividing one signed integer by
another to produce a signed integer
quotient. Set by the Signed integer
division rounds to control in the
Embedded Hardware panel of the
Hardware Implementation pane
of the Configuration Parameters
dialog box.

'Floor' | 'Zero' |
{'Undefined'}

ProdShiftRightIntArith Specifies whether the C compiler
implements a signed integer right
shift as an arithmetic right shift.
Set by the Shift right on a signed
integer as arithmetic shift control
in the Embedded Hardware panel
of the Hardware Implementation
pane of the Configuration
Parameters dialog box.

{'on'} | 'off'

ProdWordSize Specifies the word length in bits of
the production hardware device type
targeted by this model. Set by the
native word size control in the
Embedded Hardware panel of the
Hardware Implementation pane
of the Configuration Parameters
dialog box.

integer {32}

Profile Enables the simulation profiler for
this model.

'on' | {'off'}

10-34

Model Parameters

Model Parameters (Continued)

Parameter Description Values

ReadBeforeWriteMsg Specifies diagnostic action to take
when the model attempts to read data
from a data store before it has stored
data at the current time step. Set
by the Detect read before write
control on the Diagnostics Data
Validity pane of the Configuration
Parameters dialog box.

{'UseLocalSettings'}
| 'DisableAll' |
'EnableAllAsWarning'
| 'EnableAllAsError'

10-35

10 Model and Block Parameters

Model Parameters (Continued)

Parameter Description Values

RecordCoverage A value of on causes Simulink to
gather and report model coverage
data during simulation. The format
of this report is controlled by the
values of the following parameters:

CovCompData

CovCumulativeReport

CovCumulativeVarName

CovHTMLOptions

CovHTMLReporting

CovMetricSettings

CovNameIncrementing

CovPath

CovReportOnPause

covSaveCumulativeToWorkSpace
Var

CovSaveName

CovSaveSingleToWorkspaceVar

If the value is off, no model coverage
data is collected or reported and
the preceding coverage report
parameters have no effect.

'on' | {'off'}

Refine Refine factor. Set by the Refine
factor field on the Data
Import/Export pane of the
Configuration Parameters dialog
box.

string {'1'}

10-36

Model Parameters

Model Parameters (Continued)

Parameter Description Values

RelTol Relative error tolerance. Set by the
Relative tolerance field on the
Solver pane of the Configuration
Parameters dialog box.

string {'1e-3'}

ReportName Name of the associated file for the
Report Generator

string
{'simulink-default.rpt'}

ReqHilite Highlights all the blocks in the
Simulink diagram that have
requirements associated with
them. Set by the Highlight
model command on the
Tools->Requirements menu.

'on' | {'off'}

RequirementInfo For internal use.

RootOutportRequire-
BusObject

Specifies diagnostic action to take
when a bus enters a root model
Outport block for which a bus object
has not been specified. Set by the
Unspecified bus object at root
Outport block control on the
Connectivity Diagnostics pane
of the Configuration Parameters
dialog box.

'none' | {'warning'} |
'error'

RTPrefix Specifies diagnostic action to take
when Simulink encounters an object
name that begins with rt. Set by
the "rt" prefix for identifiers
control on the Diagnostics Data
Validity pane of the Configuration
Parameters dialog box.

'none' | 'warning' |
{'error'}

RTW... See the Real-Time Workshop
documentation for more information
on parameters whose names begin
with RTW.

10-37

10 Model and Block Parameters

Model Parameters (Continued)

Parameter Description Values

SampleTimeColors Set by the Sample Time Colors option
under the Format > Port/Signal
Displays menu.

'on' | {'off'}

SampleTimeConstraint Set by the Periodic Sample
Time Constraint option on the
Configuration Parameters dialog
box. This option is displayed when
the solver option type is Fixed-step

{'unconstrained'}
| 'STIndependent' |
'Specified'

SavedCharacterEncoding Specifies the character set used
to encode this model. See the
slCharacterEncoding command for
more information.

string

SaveDefaultBlockParams For internal use.

SaveFinalState Save final states to workspace. Set
by the Final states check box on the
Data Import/Export pane of the
Configuration Parameters dialog
box.

'on' | {'off'}

SaveFormat Format used to save data to
the MATLAB workspace. Set
by the Format option on the
Data Import/Export pane of the
Configuration Parameters dialog
box.

{'Array'} | 'Structure'
| 'StructureWithTime'

SaveOutput Save simulation output to workspace.
Set by the Output check box on the
Data Import/Export pane of the
Configuration Parameters dialog
box.

{'on'} | 'off'

10-38

Model Parameters

Model Parameters (Continued)

Parameter Description Values

SaveState Save states to workspace. Set
by the States check box on the
Data Import/Export pane of the
Configuration Parameters dialog
box.

'on' | {'off'}

SaveTime Save simulation time to workspace.
Set by the Time check box on the
Data Import/Export pane of the
Configuration Parameters dialog
box.

{'on'} | 'off'

ScreenColor Background color of the model
window. Set by the Screen color
option under the Format menu.

'black' | {'white'}
| 'red' | 'green'
| 'blue' | 'cyan' |
'magenta' | 'yellow' |
'gray' | 'lightBlue' |
'orange' | 'darkGreen'
| [r,g,b,a] where r, g,
b, and a are the red, green,
blue, and alpha values of
the color normalized to the
range 0.0 to 1.0. The alpha
value is ignored.

ScrollbarOffset For internal use.

SFcnCompatibilityMsg See SfunCompatibilityCheckMsg
parameter for more information.

SfunCompatibility-
CheckMsg

Specifies diagnostic action to take
when S-function upgrades are
needed. Set by the S-function
upgrades needed option on the
Compatibility Diagnostics pane
of the Configuration Parameters
dialog box.

{'none'} | 'warning' |
'error'

ShowGrid Show the Model Editor grid. 'on' | {'off'}

10-39

10 Model and Block Parameters

Model Parameters (Continued)

Parameter Description Values

ShowLinearization-
Annotations

Toggles linearization icons in the
model.

{'on'} | 'off'

ShowLineDimensions Show signal dimensions on this
model’s block diagram. Set by the
Signal Dimensions command on
the Format->Port/Signal Displays
menu.

'on' | {'off'}

ShowLineDimensions-
OnError

For internal use.

ShowLineWidths Deprecated. Use
ShowLineDimensions instead.

ShowLoopsOnError Highlight invalid loops graphically. {'on'} | 'off'

ShowModelReference-
BlockIO

Toggles display of I/O mismatch
on block. Set by the Model
Block I/O Mismatch item on the
Format->Block Displays menu.

'on' | {'off'}

ShowModelReference-
BlockVersion

Toggles display of version on block.
Set by the Model Block Version
item on the Format->Block
Displays menu.

'on' | {'off'}

Shown For internal use.

ShowPageBoundaries Toggles display of page boundaries on
the Model Editor’s canvas. Set by the
Show Page Boundaries command
on the Model Editor’s View menu.

'on' | {'off'}

ShowPortDataTypes Show data types of ports on this
model’s block diagram. Set by the
Port Data Types command on the
Format->Port/Signal Displays
menu.

'on' | {'off'}

10-40

Model Parameters

Model Parameters (Continued)

Parameter Description Values

ShowPortDataTypesOn-
Error

For internal use.

ShowStorageClass Show storage classes of signals on
this model’s block diagram. Set by
the Storage Class command on the
Format->Port/Signal Displays
menu.

'on' | {'off'}

ShowTestPointIcons Show test point icons on this
model’s block diagram. Set by the
Testpoint Indicators command on
the Format->Port/Signal Displays
menu.

'on' | {'off'}

ShowViewerIcons Show viewer icons on this model’s
block diagram. Set by the Viewer
Indicators command on the
Format->Port/Signal Displays
menu.

'on' | {'off'}

SignalInfNanChecking Specifies diagnostic action to take
when the value of a block output is
Inf or NaN at the current time step.
Set by the Inf or NaN block output
option on the Diagnostics Data
Validity pane of the Configuration
Parameters dialog box.

{'none'} | 'warning' |
'error'

SignalLabelMismatchMsg Specifies diagnostic action to
take when there is a signal label
mismatch. Set by the Signal
label mismatch option on the
Connectivity Diagnostics pane
of the Configuration Parameters
dialog box.

{'none'} | 'warning' |
'error'

10-41

10 Model and Block Parameters

Model Parameters (Continued)

Parameter Description Values

SignalLogging Globally enable signal logging for
this model. Set by the Signal
logging check box on the Data
Import/Export pane of the
Configuration Parameters dialog
box.

{'on'} | 'off'

SignalLoggingName Name for saving signal logging data
to the MATLAB workspace. Set by
the Signal logging field on the
Data Import/Export pane of the
Configuration Parameters dialog
box.

string {'logsOut'}

SignalResolution-
Control

Control which named states and
signals get resolved to Simulink
signal objects. Set by the Signal
resolution drop-down list on the
Diagnostics Data Validity pane
of the Configuration Parameters
dialog box.

'UseLocalSettings'
| 'TryResolveAll'
| {'TryResolveAll-
WithWarning'}

SigSpecEnsureSample-
TimeMsg

Specifies diagnostic action to take
when the sample time of the source
port of a signal specified by a Signal
Specification block differs from
the signal’s destination port. Set
by the Enforce sample times
specified by Signal Specification
blocks control on the Sample
Time Diagnostics pane of the
Configuration Parameters dialog
box.

'none' | {'warning'} |
'error'

10-42

Model Parameters

Model Parameters (Continued)

Parameter Description Values

SimulationCommand Executes a simulation command. 'start' | 'stop' |
'pause' | 'continue'
| 'step' | 'update'
| 'WriteDataLogs'
| 'SimParamDialog'
| 'connect' |
'disconnect' |
'WriteExtModeParamVect'
| 'AccelBuild'

SimulationMode Indicates whether Simulink should
run in normal, accelerated, or
external mode.

{'normal'} |
'accelerator' |
'external'

SimulationStatus Indicates simulation status. {'stopped'} |
'updating' |
'initializing' |
'running' | 'paused'
| 'terminating' |
'external' |

SimulationTime Current time value for the
simulation.

double {0}

SingleTaskRateTransMsg Specifies diagnostic action to take
when a rate transition takes place
between two blocks operating in
single-tasking mode. Set by the
Single task rate transition control
on the Sample Time Diagnostics
pane of the Configuration
Parameters dialog box.

{'none'} | 'warning' |
'error'

10-43

10 Model and Block Parameters

Model Parameters (Continued)

Parameter Description Values

Solver Solver used for the simulation. Set
by the Solver drop-down list on the
Solver pane of the Configuration
Parameters dialog box.

'VariableStepDiscrete'
| {'ode45'} | 'ode23' |
'ode113' | 'ode15s' |
'ode23s' | 'ode23t'
| 'ode23tb' |
'FixedStepDiscrete'
| 'ode5' | 'ode4'
| 'ode3' | 'ode2' |
'ode1' | 'ode14x'

SolverMode Solver mode for this model. Set by
the Tasking mode for periodic
sample times option on the
Solver pane of the Configuration
Parameters dialog box. This option
is displayed when the solver option
type is Fixed-step.

{'Auto'} |
'SingleTasking' |
'MultiTasking'

SolverName Solver used for the simulation.
See Solver parameter for more
information.

SolverPrmCheckMsg Enables diagnostics to control when
Simulink automatically selects solver
parameters. Set by the Automatic
solver parameter selection option
on the Diagnostics pane of the
Configuration Parameters dialog
box.
This option notifies you if

• Simulink changes a user-modified
parameter to make it consistent
with other model settings

• Simulink automatically selects
solver parameters for the model,
such as FixedStepSize

'none' | {'warning'} |
'error'

10-44

Model Parameters

Model Parameters (Continued)

Parameter Description Values

SolverResetMethod Set by the Solver reset method
option on the Solver pane of
the Configuration Parameters
dialog box. This option is displayed
when the solver option type is
Variable-step and the solver is
either ode15s (Stiff/NDF), ode23t
(Mod. Stiff/Trapezoidal), or ode23tb
(Stiff/TR-BDF2).

{'Fast'} | 'Robust'

SolverType Solver type used for the simulation.
Set by the Type drop-down list on the
Solver pane of the Configuration
Parameters dialog box.

{'Variable-step'} |
'Fixed-step'

SortedOrder Show the sorted order of this model’s
blocks on the block diagram. Set
by the Sorted Order command on
the model editor’s Format->Block
Displays menu.

'on' | {'off'}

StartFcn Start simulation callback. Created
on the Callbacks pane of the Model
Properties dialog box. See “Creating
Model Callback Functions” in the
Using Simulink documentation for
further information.

command or variable {''}

StartTime Simulation start time. Set by the
Start time field on the Solver pane
of the Configuration Parameters
dialog box.

string {'0.0'}

StateSaveName State output name to be saved to
workspace. Set by the States field
on the Data Import/Export pane
of the Configuration Parameters
dialog box.

variable {'xout'}

10-45

10 Model and Block Parameters

Model Parameters (Continued)

Parameter Description Values

StatusBar Show/hide the status bar on the
model editor window. Set by the
Status Bar command on the model
editor’s View menu.

{'on'} | 'off'

StopFcn Stop simulation callback. Created
on the Callbacks pane of the Model
Properties dialog box. See “Creating
Model Callback Functions” in the
Using Simulink documentation for
further information.

command or variable {''}

StopTime Simulation stop time. Set by the
Stop time field on the Solver pane
of the Configuration Parameters
dialog box.

string {'10.0'}

StrictBusMsg Specifies diagnostic action to
take when Simulink detects
buses created by Mux blocks.
Set by the Mux blocks used to
create bus signals control on the
Connectivity Diagnostics pane
of the Configuration Parameters
dialog box.

{'None'} | 'Warning' |
'ErrorLevel1'

Tag User-specified text that is assigned
to the model’s Tag parameter and
saved with the model.

string {''}

10-46

Model Parameters

Model Parameters (Continued)

Parameter Description Values

TargetBitPerChar Specifies the length in bits of the
C char data type supported by the
emulation hardware device type
targeted by this model. Set by the
char control in the Emulation
Hardware panel of the Hardware
Implementation pane of the
Configuration Parameters dialog
box.

integer {8}

TargetBitPerInt Specifies the length in bits of the
C int data type supported by the
emulation hardware device type
targeted by this model. Set by
the int control in the Emulation
Hardware panel of the Hardware
Implementation pane of the
Configuration Parameters dialog
box.

integer {32}

TargetBitPerLong Specifies the length in bits of the
C long data type supported by the
emulation hardware device type
targeted by this model. Set by the
long control in the Emulation
Hardware panel of the Hardware
Implementation pane of the
Configuration Parameters dialog
box.

integer {32}

10-47

10 Model and Block Parameters

Model Parameters (Continued)

Parameter Description Values

TargetBitPerShort Specifies the length in bits of the C
short data type supported by the
emulation hardware device type
targeted by this model. Set by the
short control in the Emulation
Hardware panel of the Hardware
Implementation pane of the
Configuration Parameters dialog
box.

integer {16}

TargetEndianess Specifies the significance of the
first byte of a data word of the
target hardware. Set by the Byte
ordering control in the Emulation
Hardware panel of the Hardware
Implementation pane of the
Configuration Parameters dialog
box.

{'Unspecified'} |
'LittleEndian' |
'BigEndian'

TargetFcnLib For internal use.

TargetHWDeviceType Specifies the characteristics of
hardware used to emulate the
production hardware. Set by
the Device type control in the
Emulation Hardware panel of the
Hardware Implementation pane
of the Configuration Parameters
dialog box.

string {'32-bit
Generic'}

10-48

Model Parameters

Model Parameters (Continued)

Parameter Description Values

TargetIntDivRoundTo Specifies how an ANSI C conforming
compiler used to compile code for
the emulation hardware targeted
by this model rounds the result
of dividing one signed integer by
another to produce a signed integer
quotient. Set by the Signed integer
division rounds to control in the
Emulation Hardware panel of the
Hardware Implementation pane
of the Configuration Parameters
dialog box.

'Floor' | 'Zero' |
{'Undefined'}

TargetShiftRight-
IntArith

Specifies whether the C compiler
implements a signed integer right
shift as an arithmetic right shift.
Set by the Shift right on a signed
integer as arithmetic shift control
in the Emulation Hardware panel
of the Hardware Implementation
pane of the Configuration
Parameters dialog box.

{'on'} | 'off'

TargetTypeEmulation
WarnSuppressLevel

Specifies whether Real-Time
Workshop displays or suppresses
warning messages when emulating
integer sizes in rapid prototyping
environments.

integer {0}

TargetWordSize Specifies the word length in bits of
the emulation hardware device type
targeted by this model. Set by the
native word size control in the
Emulation Hardware panel of the
Hardware Implementation pane
of the Configuration Parameters
dialog box.

integer {32}

10-49

10 Model and Block Parameters

Model Parameters (Continued)

Parameter Description Values

TasksWithSame-
PriorityMsg

Specifies diagnostic action to take
when tasks have equal priority.
Set by the Tasks with equal
priority control on the Sample
Time Diagnostics pane of the
Configuration Parameters dialog
box.

'none' | {'warning'} |
'error'

TiledPageScale Scales the size of the tiled page
relative to the model.

string {'1'}

TiledPaperMargins Controls the size of the margins
associated with each tiled page. Each
element in the vector represents a
margin at the particular edge.

[left, top, right,
bottom]

TimeAdjustmentMsg Specifies diagnostic action to
take if Simulink makes a minor
adjustment to a sample hit time
while running the model. Set by the
Sample hit time adjusting option
on the Diagnostics pane of the
Configuration Parameters dialog
box.

{'none'} | 'warning' |
'error'

TimeSaveName Simulation time name. Set by
the Time field on the Data
Import/Export pane of the
Configuration Parameters dialog
box.

variable {'tout'}

TLC... Parameters whose names begin with
TLC are used for code generation.
See the Real-Time Workshop
documentation for more information.

10-50

Model Parameters

Model Parameters (Continued)

Parameter Description Values

Toolbar Show/hide the toolbar on the Model
Editor window. Set by the Toolbar
command on the model editor’s View
menu.

{'on'} | 'off'

TryForcingSFcnDF This flag is used for backward
compatibility with user S-functions
that were written prior to R12.

'on' | {'off'}

TunableVars List of global (tunable) parameters.
Set in the Model Parameter
Configuration dialog box.

string {''}

TunableVarsStorage-
Class

List of storage classes for their
respective tunable parameters.
Set in the Model Parameter
Configuration dialog box.

string {''}

TunableVarsType-
Qualifier

List of storage type qualifiers for
their respective tunable parameters.
Set in the Model Parameter
Configuration dialog box.

string {''}

Type Simulink object type (read only). 'block_diagram'

UnconnectedInputMsg Unconnected input ports diagnostic.
Set by the Unconnected block
input ports option on the
Connectivity Diagnostics pane
of the Configuration Parameters
dialog box.

'none' | {'warning'} |
'error'

UnconnectedLineMsg Unconnected lines diagnostic. Set by
the Unconnected line option on the
Connectivity Diagnostics pane
of the Configuration Parameters
dialog box.

'none' | {'warning'} |
'error'

10-51

10 Model and Block Parameters

Model Parameters (Continued)

Parameter Description Values

UnconnectedOutputMsg Unconnected block output ports
diagnostic. Set by the Unconnected
block output ports option on the
Connectivity Diagnostics pane
of the Configuration Parameters
dialog box.

'none' | {'warning'} |
'error'

UnderSpecifiedData-
TypeMsg

Detect usage of heuristics to
assign signal data types. Set by
the Underspecified data types
option on the Diagnostics Data
Validity pane of the Configuration
Parameters dialog box.

{'none'} | 'warning' |
'error'

UniqueDataStoreMsg Specifies diagnostic action to
take when the model contains
multiple Data Store Memory blocks
that specify the same data store
name. Set by the Duplicate
data store names control on the
Diagnostics Data Validity pane
of the Configuration Parameters
dialog box.

{'none'} | 'warning' |
'error'

UnknownTsInhSupMsg Detect blocks that have not set
whether they allow the model
containing them to inherit a sample
time. Set by the Unspecified
inheritability of sample time
option on the Diagnostics pane of
the Configuration Parameters
dialog box.

'none' | {'warning'} |
'error'

10-52

Model Parameters

Model Parameters (Continued)

Parameter Description Values

UnnecessaryDatatype-
ConvMsg

Detect unnecessary data type
conversion blocks. Set by the
Unnecessary type conversions
option on the Type Conversion
Diagnostics pane of the
Configuration Parameters
dialog box.

{'none'} | 'warning'

UpdateHistory Specifies when to prompt the user
about updating the model history.
This is set by the Prompt to
update model history parameter
on the History pane of theModel
Properties dialog box. See “Model
History Controls” in the Using
Simulink documentation for further
information.

This is also set by the Prompt to
update model history option on
lower right of the History pane of
the Model Explorer dialog box.

{'UpdateHistoryNever'}
|
'UpdateHistoryWhenSave'

UpdateModelReference-
Targets

Rebuilding options. Set on the
Model Referencing pane of the
Configuration Parameters dialog
box.

'IfOutOfDate' | 'Force'
| 'AssumeUpToDate'
| {'IfOutOfDateOr
Structural Change'}

UseAnalysisPorts For internal use.

VectorMatrix-
ConversionMsg

Detect vector-to-matrix or
matrix-to-vector conversions. Set
by the Vector/matrix block input
conversion option on the Type
Conversion Diagnostics pane of
the Configuration Parameters
dialog box.

{'none'} | 'warning' |
'error'

10-53

10 Model and Block Parameters

Model Parameters (Continued)

Parameter Description Values

Version Simulink version used to modify the
model (read only).

release version number

WideLines Draws lines that carry vector or
matrix signals wider than lines that
carry scalar signals. Set by the Wide
Nonscalar Lines command on the
model editor’s Format->Port/Signal
Displays menu.

'on' | {'off'}

WideVectorLines Deprecated. Use WideLines instead.

WriteAfterReadMsg Specifies diagnostic action to take
when the model attempts to store
data in a data store after previously
reading data from it in the current
time step. Set by the Detect
write after read control on the
Diagnostics Data Validity pane
of the Configuration Parameters
dialog box.

{'UseLocalSettings'}
| 'DisableAll' |
'EnableAllAsWarning'
| 'EnableAllAsError'

WriteAfterWriteMsg Specifies diagnostic action to
take when the model attempts to
store data in a data store twice in
succession in the current time step.
Set by the Detect write after write
control on the Diagnostics Data
Validity pane of the Configuration
Parameters dialog box.

{'UseLocalSettings'}
| 'DisableAll' |
'EnableAllAsWarning'
| 'EnableAllAsError'

ZeroCross For internal use.

10-54

Model Parameters

Model Parameters (Continued)

Parameter Description Values

ZeroCrossControl Enable zero-crossing detection. Set
by the Zero crossing control
control on the Solver pane of the
Configuration Parameters dialog
box.

{'UseLocalSettings'}
| 'EnableAll' |
'DisableAll'

ZoomFactor Zoom factor of the model editor
window expressed as a percentage of
normal (100%) or by the keywords
FitSystem or FitSelection. Set by
the zoom commands on the model
editor’s View menu.

string {'100'}
| 'FitSystem' |
'FitSelection'

Examples of Setting Model Parameters
These examples show how to set model parameters for the mymodel system.

This command sets the simulation start and stop times.

set_param('mymodel','StartTime','5','StopTime','100')

This command sets the solver to ode15s and changes the maximum order.

set_param('mymodel','Solver','ode15s','MaxOrder','3')

This command associates a SaveFcn callback.

set_param('mymodel','SaveFcn','my_save_cb')

10-55

10 Model and Block Parameters

Common Block Parameters
This table lists the parameters common to all Simulink blocks, including
block callback parameters (see “Using Callback Functions”). Examples of
commands that change these parameters follow this table (see “Examples of
Setting Block Parameters” on page 10-67).

Common Block Parameters

Parameter Description Values

AncestorBlock Name of the library block
that the block is linked to (for
blocks with a disabled link).

string

AttributesFormatString String format specified for
block annotations in the
Block Parameters dialog
box.

string

BackgroundColor Block background color. RGB value array string |
[r,g,b,a] where r, g, b,
and a are the red, green, blue,
and alpha values of the color
normalized to the range 0.0
to 1.0. The alpha value is
ignored.

BlockDescription Block description shown in the
Block Properties dialog box.

string

BlockType Block type (read only). string

ClipboardFcn Function called when block
is copied to the clipboard
(Ctrl+C)

string

10-56

Common Block Parameters

Common Block Parameters (Continued)

Parameter Description Values

CloseFcn Function called when
close_system is run on
block.

string

CompiledPort-
ComplexSignals

Complexity of port signals
after updating diagram.

CompiledPortDataTypes Data types of port signals after
updating diagram.

CompiledPortDimensions Dimensions of port signals
after updating diagram.

CompiledPortFrameData Frame mode of port signals
after updating diagram.

CompiledPortWidths Structure of port widths after
updating diagram.

CompiledSampleTime Block sample time after
updating diagram.

CopyFcn Function called when block is
copied.

string

DataTypeOverrideCompiled For internal use.

DeleteFcn Function called when block
is deleted. If a block
is graphically deleted,
you can still undo the
operation and call the block’s
UndoDeleteFcn. In addition,
for graphically deleted blocks,
the block’s DestroyFcn is still
called when the model is closed
or any subsystem containing
the block is destroyed using
delete_block.

MATLAB expression

10-57

10 Model and Block Parameters

Common Block Parameters (Continued)

Parameter Description Values

DestroyFcn Function called when block
is destroyed. If you run the
delete_block command
for a block, it first calls the
block’sDeleteFcn, then calls
the DestroyFcn for that block;
no undo is possible. The
DestroyFcn is also called
when you close the model
or invoke delete_block on
a subsystem containing the
block.

MATLAB expression

Description Description of block. Set by
the Description field in the
General pane of the Block
Properties dialog box.

text and tokens

Diagnostics text and tokens

DialogParameters Names/attributes of
parameters in block’s
parameter dialog box.

structure

DropShadow Display drop shadow. {'off'} | 'on'

ExtModeUploadOption {'none'} | 'log' |
'monitor'

ExtModeLoggingSupported {'off'} | 'on'

ExtModeLoggingTrig {'off'} | 'on'

FontAngle Font angle. 'normal' | 'italic' |
'oblique' | {'auto'}

FontName Font. string

10-58

Common Block Parameters

Common Block Parameters (Continued)

Parameter Description Values

FontSize Font size. A value of -1
specifies that this block
inherits the font size specified
by the DefaultBlockFontSize
model parameter.

real {'-1'}

FontWeight Font weight. 'light' | 'normal'
| 'demi' | 'bold' |
{'auto'}

ForegroundColor Foreground color of block’s
icon.

string {'black'} |
[r,g,b,a] where r, g,
b, and a are the red, green,
blue, and alpha values of the
color normalized to the range
0.0 to 1.0. The alpha value is
ignored.

Handle Block handle. real

InitFcn Initialization function for a
masked block. Created on
the Callbacks pane of the
Model Properties dialog box.
See “Creating Model Callback
Functions” in the Using
Simulink documentation for
further information.

MATLAB expression

InputSignalNames Names of input signals. cell array

IOSignalStrings list

IOType {'none'} | 'viewer' |
'siggen'

LineHandles Handles of lines connected to
block.

struct

10-59

10 Model and Block Parameters

Common Block Parameters (Continued)

Parameter Description Values

LinkStatus Link status of block. {'none'} | 'resolved' |
'unresolved' | 'implicit'
| 'inactive' | 'restore'
| 'propagate'

LoadFcn Function called when block is
loaded.

MATLAB expression

MinMaxOverflow-
Logging_Compiled

For internal use.

ModelCloseFcn Function called when model
is closed. The ModelCloseFcn
is called prior to the block’s
DeleteFcn and DestroyFcn
callbacks, if either are set.

MATLAB expression

ModelParamTableInfo For internal use.

MoveFcn Function called when block is
moved.

MATLAB expression

Name Block name. string

NameChangeFcn Function called when block
name is changed.

MATLAB expression

NamePlacement Position of block name. {'normal'} | 'alternate'

ObjectParameters Names/attributes of block’s
parameters.

structure

OpenFcn Function called when this
block’s Block Parameters
dialog box is opened.

MATLAB expression

Orientation Where block faces. {'right'} | 'left' | 'up'
| 'down'

OutputSignalNames Names of output signals. cell array

Parent Name of the system that owns
the block.

string {'untitled'}

10-60

Common Block Parameters

Common Block Parameters (Continued)

Parameter Description Values

ParentCloseFcn Function called when parent
subsystem is closed. The
ParentCloseFcn of blocks
at the root model level is
not called when the model is
closed.

MATLAB expression

10-61

10 Model and Block Parameters

Common Block Parameters (Continued)

Parameter Description Values

PortConnectivity The value of this parameter
is an array of structures, each
of which describes one of the
block’s input or output ports.
Each port structure has the
following fields:

• Type

Specifies the port’s type
and/or number. The value
of this field can be:

- n, where n is the number
of the port for data ports

- 'enable' if the port is an
enable port

- 'trigger' if the port is a
trigger port

- 'state' for state ports

- 'ifaction' for action
ports

- 'LConn#' for a left
connection port where #
is the port’s number

- 'RConn#' for a right
connection port where #
is the port’s number

• Position

The value of this field is
a two-element vector, [x
y], that specifies the port’s
position.

structure array

10-62

Common Block Parameters

Common Block Parameters (Continued)

Parameter Description Values

• SrcBlock

Handle of the block
connected to this port.
This field is null for output
ports.

• SrcPort

Number of the port
connected to this port.
This field is null for output
ports.

• DstBlock

Handle of the block to which
this port is connected. This
field is null for input ports.

• DstPort

Number of the port to which
this port is connected. This
field is null for input ports.

10-63

10 Model and Block Parameters

Common Block Parameters (Continued)

Parameter Description Values

PortHandles The value of this parameter
is a structure that specifies
the handles of the block’s
ports. The structure has the
following fields:

• Inport

Handles of the block’s input
ports.

• Outport

Handles of the block’s
output ports.

• Enable

Handle of the block’s enable
port.

• Trigger

Handle of the block’s trigger
port.

• State

Handle of the block’s state
port.

• LConn

Handles of the block’s left
connection ports.

• RConn

Handles of the block’s right
connection ports.

• Ifaction

Handle of the block’s action
port.

structure array

10-64

Common Block Parameters

Common Block Parameters (Continued)

Parameter Description Values

Ports The value of this parameter
is a vector that specifies the
numbers of each kind of port.
The order of the vector’s
elements corresponds to the
following port types:

• Inport

• Outport

• Enable

• Trigger

• State

• LConn

• RConn

• Ifaction

vector

Position Position of block in model
window.

vector [left top
right bottom]
not enclosed in quotation
marks. The maximum value
for a coordinate is 32767.

PostSaveFcn Function called after the
block is saved. Created on
the Callbacks pane of the
Model Properties dialog box.
See “Creating Model Callback
Functions” in the Using
Simulink documentation for
further information.

MATLAB expression

PreSaveFcn Function called before the
block is saved.

MATLAB expression

10-65

10 Model and Block Parameters

Common Block Parameters (Continued)

Parameter Description Values

Priority Specifies the block’s order of
execution relative to other
blocks in the same model. Set
by the Priority field on the
General pane of the Block
Properties dialog box.

string {''}

ReferenceBlock Name of the library block that
this block is linked to.

string {''}

RequirementInfo For internal use.

RTWData User specified data, used by
Real-Time Workshop.

SampleTime Value of the sample time
parameter.

Selected Status of whether or not block
is selected.

{'on'} | 'off'

ShowName Display block name. {'on'} | 'off'

StartFcn Function called at the start of
a simulation.

MATLAB expression

StatePerturbation-
ForJacobian

See the “Block Perturbation” in
the Simulink Control Design
documentation for details.

StopFcn Function called at the
termination of a simulation.

MATLAB expression

Tag Text that appears in the block
label that Simulink generates.
Set by the Tag field on the
General pane of the Block
Properties dialog box.

string {''}

10-66

Common Block Parameters

Common Block Parameters (Continued)

Parameter Description Values

Type Simulink object type (read
only).

'block'

UndoDeleteFcn Function called when block
deletion is undone.

MATLAB expression

UserData User-specified data that can
have any MATLAB data type.

{'[]'}

UserDataPersistent Status of whether or not
UserData will be saved in the
model file.

'on' | {'off'}

Examples of Setting Block Parameters
These examples illustrate how to change common block parameters.

This command changes the orientation of the Gain block in the mymodel
system so it faces the opposite direction (right to left).

set_param('mymodel/Gain','Orientation','left')

This command associates an OpenFcn callback with the Gain block in the
mymodel system.

set_param('mymodel/Gain','OpenFcn','my_open_cb')

This command sets the Position parameter of the Gain block in the mymodel
system. The block is 75 pixels wide by 25 pixels high. The position vector
is not enclosed in quotation marks.

set_param('mymodel/Gain','Position',[50 250 125 275])

10-67

10 Model and Block Parameters

Block-Specific Parameters
These tables list block-specific parameters for all Simulink blocks. The type of
the block appears in parentheses after the block name. Some Simulink blocks
are implemented as masked subsystems. The tables indicate masked blocks
by adding the designation "masked" after the block type.

Note The type listed for nonmasked blocks is the value of the block’s
BlockType parameter; the type listed for masked blocks is the value of the
block’s MaskType parameter. For more information, see “Mask Parameters”
on page 10-168.

The Dialog Box Prompt column indicates the text of the prompt for the
parameter on the block’s dialog box. The Values column shows the type of
value required (scalar, vector, variable), the possible values (separated with a
vertical line), and the default value (enclosed in braces).

Continuous Library Block Parameters

Block (Type)/Parameter Dialog Box Prompt Values

Derivative (Derivative)

LinearizePole Linearization Time Constant
s/(Ns+1)

string {'inf'}

Integrator (Integrator)

ExternalReset External reset {'none'} | 'rising' |
'falling' | 'either' |
'level'

InitialConditionSource Initial condition source {'internal'} | 'external'

InitialCondition Initial condition scalar or vector {’0’}

LimitOutput Limit output {'off'} | 'on'

UpperSaturationLimit Upper saturation limit scalar or vector {'inf'}

LowerSaturationLimit Lower saturation limit scalar or vector {'-inf'}

10-68

Block-Specific Parameters

Continuous Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

ShowSaturationPort Show saturation port {'off'} | 'on'

ShowStatePort Show state port {'off'} | 'on'

AbsoluteTolerance Absolute tolerance string {'auto'}

ZeroCross Enable zero–crossing detection 'off' | {'on'}

State-Space (StateSpace)

A A matrix {'1'}

B B matrix {'1'}

C C matrix {'1'}

D D matrix {'1'}

X0 Initial conditions vector {'0'}

AbsoluteTolerance Absolute tolerance string {'auto'}

Transfer Fcn (TransferFcn)

Numerator Numerator vector or matrix {'[1]'}

Denominator Denominator vector {'[1 1]'}

AbsoluteTolerance Absolute tolerance string {'auto'}

Transport Delay (TransportDelay)

DelayTime Time delay scalar or vector {'1'}

InitialOutput Initial output scalar or vector {'0'}

BufferSize Initial buffer size scalar {'1024'}

FixedBuffer Use fixed buffer size {'off'} | 'on'

PadeOrder Pade order (for linearization) string {'0'}

TransDelayFeedthrough Direct feedthrough of input
during linearization

{'off'} | 'on'

Variable Time Delay (VariableTimeDelay)

10-69

10 Model and Block Parameters

Continuous Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

VariableDelayType Select delay type 'Variable transport
delay' | {'Variable time
delay'}

MaximumDelay Maximum delay scalar or vector {'10'}

InitialOutput Initial output scalar or vector {'0'}

MaximumPoints Initial buffer size scalar {'1024'}

FixedBuffer Use fixed buffer size {'off'} | 'on'

ZeroDelay Handle zero delay {'off'} | 'on'

TransDelayFeedthrough Direct feedthrough of input
during linearization

{'off'} | 'on'

PadeOrder Pade order (for linearization) string {'0'}

Variable Transport Delay (VariableTransportDelay)

VariableDelayType Select delay type {'Variable transport
delay'} | 'Variable time
delay'

MaximumDelay Maximum delay scalar or vector {'10'}

InitialOutput Initial output scalar or vector {'0'}

MaximumPoints Initial buffer size scalar {'1024'}

FixedBuffer Use fixed buffer size {'off'} | 'on'

PadeOrder Pade order (for linearization) string {'0'}

TransDelayFeedthrough Direct feedthrough of input
during linearization

{'off'} | 'on'

AbsoluteTolerance Absolute tolerance scalar {'auto'}

Zero-Pole (ZeroPole)

Zeros Zeros vector {'[1]'}

Poles Poles vector {'[0 -1]'}

10-70

Block-Specific Parameters

Continuous Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

Gain Gain vector {'[1]'}

AbsoluteTolerance Absolute tolerance string {'auto'}

Discontinuities Library Block Parameters

Block (Type)/Parameter Dialog Box Prompt Values

Backlash (Backlash)

BacklashWidth Deadband width scalar or vector {1}

InitialOutput Initial output scalar or vector {0}

ZeroCross Enable zero crossing detection 'off' | {'on'}

SampleTime Sample time (-1 for inherited) string {'-1'}

Coulomb & Viscous Friction (Coulombic and Viscous Friction) (masked subsystem)

offset Coulomb friction value (Offset) string {'[1 3 2 0]'}

gain Coefficient of viscous friction
(Gain)

string {'1'}

Dead Zone (DeadZone)

LowerValue Start of dead zone scalar or vector {-0.5}

UpperValue End of dead zone scalar or vector {0.5}

SaturateOnInteger
Overflow

Saturate on integer overflow 'off' | {'on'}

LinearizeAsGain Treat as gain when linearizing 'off' | {'on'}

ZeroCross Enable zero crossing detection 'off' | {'on'}

SampleTime Sample time (-1 for inherited) string {'-1'}

Dead Zone Dynamic (Dead Zone Dynamic) (masked subsystem)

Hit Crossing (HitCross)

HitCrossingOffset Hit crossing offset scalar or vector {'0'}

10-71

10 Model and Block Parameters

Discontinuities Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

HitCrossingDirection Hit crossing direction 'rising' | 'falling' |
{'either'}

ShowOutputPort Show output port {'on'} | 'off'

ZeroCross Enable zero crossing detection 'off' | {'on'}

SampleTime Sample time (-1 for inherited) string {'-1'}

Quantizer (Quantizer)

QuantizationInterval Quantization interval scalar or vector {'0.5'}

LinearizeAsGain Treat as gain when linearizing 'off' | {'on'}

SampleTime Sample time (-1 for inherited) string {'-1'}

Rate Limiter (RateLimiter)

RisingSlewLimit Rising slew rate string {'1'}

FallingSlewLimit Falling slew rate string {'-1'}

SampleTimeMode Sample time mode 'continuous' |
{'inherited'}

InitialCondition Initial condition string {’0’}

LinearizeAsGain Treat as gain when linearizing 'off' | {'on'}

Rate Limiter Dynamic (Rate Limiter Dynamic) (masked subsystem)

Relay (Relay)

OnSwitchValue Switch on point string {'eps'}

OffSwitchValue Switch off point string {'eps'}

OnOutputValue Output when on string {'1'}

OffOutputValue Output when off string {'0'}

OutputDataTypeScaling
Mode

Output data type mode 'Specify via dialog'
| 'Inherit via back
propagation' | {'All
ports same datatype'}

10-72

Block-Specific Parameters

Discontinuities Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

OutDataType Output data type (e.g., sfix(16),
uint(8), float('single'))

string {'sfix(16)'}

OutScaling Output scaling value (Slope,
e.g., 2^-9 or [Slope Bias], e.g.,
[1.25 3])

string {'2^0'}

ConRadixGroup Parameter scaling mode {'Use specified scaling'}
| 'Best Precision:
Vector-wise'

ZeroCross Enable zero crossing detection 'off' | {'on'}

SampleTime Sample time (-1 for inherited) string {'-1'}

Saturation (Saturate)

UpperLimit Upper limit scalar or vector {'0.5'}

LowerLimit Lower limit scalar or vector {'-0.5'}

LinearizeAsGain Treat as gain when linearizing 'off' | {'on'}

ZeroCross Enable zero crossing detection 'off' | {'on'}

SampleTime Sample time (-1 for inherited) string {'-1'}

Saturation Dynamic (Saturation Dynamic) (masked subsystem)

Wrap To Zero (Wrap To Zero) (masked subsystem)

Threshold Threshold string {'255'}

Discrete Library Block Parameters

Block (Type)/Parameter Dialog Box Prompt Values

Difference (Difference) (masked subsystem)

ICPrevInput Initial condition for previous
input

string {'0.0'}

10-73

10 Model and Block Parameters

Discrete Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

OutputDataTypeScaling ModeOutput data type and scaling 'Specify via dialog' |
{'Inherit via internal
rule'} | 'Inherit via
back propagation'

OutDataType Output data type: ex. sfix(16),
uint(8), float('single')

string {'sfix(16)'}

OutScaling Output scaling: Slope or [Slope
Bias] ex. 2^-9

string {'2^-10'}

LockScale Lock output scaling against
changes by the autoscaling
tool

{'off'} | 'on'

RndMeth Round toward 'Zero' | 'Nearest' |
'Ceiling' | {'Floor'}

DoSatur Saturate to max or min when
overflows occur

{'off'} | 'on'

Discrete Derivative (Discrete Derivative) (masked subsystem)

gainval Gain value string {'1.0'}

ICPrevScaledInput Initial condition for previous
weighted input K*u/Ts

string {'0.0'}

OutputDataTypeScaling
Mode

Output data type and scaling 'Specify via dialog' |
{'Inherit via internal
rule'} | 'Inherit via
back propagation'

OutDataType Output data type: ex. sfix(16),
uint(8), float('single')

string {'sfix(16)'}

OutScaling Output scaling: Slope or [Slope
Bias] ex. 2^-9

string {'2^-10'}

LockScale Lock output scaling against
changes by the autoscaling
tool

{'off'} | 'on'

10-74

Block-Specific Parameters

Discrete Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

RndMeth Round toward 'Zero' | 'Nearest' |
'Ceiling' | {'Floor'}

DoSatur Saturate to max or min when
overflows occur

{'off'} | 'on'

Discrete Filter (DiscreteFilter)

Numerator Numerator vector {'[1]'}

Denominator Denominator vector {'[1 0.5]'}

SampleTime Sample time (-1 for inherited) string {'1'}

StateIdentifier State name string {}

StateMustResolveTo
SignalObject

State name must resolve to
Simulink signal object

{'off'} | 'on'

RTWStateStorageClass RTW storage class {'Auto'} |
'ExportedGlobal' |
'ImportedExtern' |
'ImportedExternPointer'

RTWStateStorageType
Qualifier

RTW storage type qualifier string {}

Discrete State-Space (DiscreteStateSpace)

A A string {'1'}

B B string {'1'}

C C string {'1'}

D D string {'1'}

X0 Initial conditions string {'0'}

SampleTime Sample time string {'1'}

StateIdentifier State name string {}

StateMustResolveTo
SignalObject

State name must resolve to
Simulink signal object

{'off'} | 'on'

10-75

10 Model and Block Parameters

Discrete Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

RTWStateStorageClass RTW storage class {'Auto'} |
'ExportedGlobal' |
'ImportedExtern' |
'ImportedExternPointer'

RTWStateStorageType
Qualifier

RTW storage type qualifier string {}

Discrete Transfer Fcn (DiscreteTransferFcn)

Numerator Numerator vector {'[1]'}

Denominator Denominator vector {'[1 0.5]'}

SampleTime Sample time (-1 for inherited) string {'1'}

StateIdentifier State name string {}

StateMustResolveTo
SignalObject

State name must resolve to
Simulink signal object

{'off'} | 'on'

RTWStateStorageClass RTW storage class {'Auto'} |
'ExportedGlobal' |
'ImportedExtern' |
'ImportedExternPointer'

RTWStateStorageType
Qualifier

RTW storage type qualifier string {}

Discrete Zero-Pole (DiscreteZeroPole)

Zeros Zeros vector {'[1]'}

Poles Poles vector {'[0 0.5]'}

Gain Gain string {'1'}

SampleTime Sample time (-1 for inherited) string {'1'}

StateIdentifier State name string {}

StateMustResolveTo
SignalObject

State name must resolve to
Simulink signal object

{'off'} | 'on'

10-76

Block-Specific Parameters

Discrete Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

RTWStateStorageClass RTW storage class {'Auto'} |
'ExportedGlobal' |
'ImportedExtern' |
'ImportedExternPointer'

RTWStateStorageType
Qualifier

RTW storage type qualifier string {}

Discrete-Time Integrator (DiscreteIntegrator)

IntegratorMethod Integrator method {'Integration: Forward
Euler'} | 'Integration:
Backward Euler'
| 'Integration:
Trapezoidal' |
'Accumulation: Forward
Euler' | 'Accumulation:
Backward Euler'
| 'Accumulation:
Trapezoidal'

gainval Gain value string {'1.0'}

ExternalReset External reset {'none'} | 'rising' |
'falling' | 'either' |
'level'

InitialConditionSource Initial condition source {'internal'} | 'external'

InitialCondition Initial condition scalar or vector {'0'}

InitialConditionMode Use initial condition as initial
and reset value for

'State only (most
efficient)' | {'State
and output'}

SampleTime Sample time (-1 for inherited) string {'1'}

10-77

10 Model and Block Parameters

Discrete Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

OutDataTypeMode Output data type mode 'double' | 'single'
| 'int8' | 'uint8' |
'int16' | 'uint16' |
'int32' | 'uint32' |
'Specify via dialog' |
{'Inherit via internal
rule'} | 'Inherit via
back propagation'

OutDataType Output data type (e.g., sfix(16),
uint(8), float('single'))

string {'sfix(16)'}

OutScaling Output scaling value (Slope,
e.g., 2^-9 or [Slope Bias], e.g.,
[1.25 3])

string {'2^0'}

LockScale Lock output scaling against
changes by the autoscaling
tool

{'off'} | 'on'

RndMeth Round integer calculations
toward

'Zero' | 'Nearest' |
'Ceiling' | {'Floor'}

SaturateOnInteger
Overflow

Saturate on integer overflow {'off'} | 'on'

LimitOutput Limit output {'off'} | 'on'

UpperSaturationLimit Upper saturation limit scalar or vector {inf}

LowerSaturationLimit Lower saturation limit scalar or vector {-inf}

ShowSaturationPort Show saturation port {'off'} | 'on'

ShowStatePort Show state port {'off'} | 'on'

StateIdentifier State name string {}

StateMustResolveTo
SignalObject

State name must resolve to
Simulink signal object

{'off'} | 'on'

10-78

Block-Specific Parameters

Discrete Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

RTWStateStorageClass RTW storage class {'Auto'} |
'ExportedGlobal' |
'ImportedExtern' |
'ImportedExternPointer'

RTWStateStorageType
Qualifier

RTW storage type qualifier string {}

First-Order Hold (First-Order Hold) (masked subsystem)

Ts Sample time string {'1'}

Integer Delay (S-Function) (Integer Delay) (masked subsystem)

vinit Initial condition string {'0.0'}

samptime Sample time string {'-1'}

NumDelays Number of delays string {'4'}

Memory (Memory)

X0 Initial condition scalar or vector {'0'}

InheritSampleTime Inherit sample time {'off'} | 'on'

LinearizeMemory Direct feedthrough of input
during linearization

{'off'} | 'on'

StateIdentifier State name string {}

StateMustResolveTo
SignalObject

State name must resolve to
Simulink signal object

{'off'} | 'on'

RTWStateStorageClass RTW storage class {'Auto'} |
'ExportedGlobal' |
'ImportedExtern' |
'ImportedExternPointer'

RTWStateStorageType
Qualifier

RTW storage type qualifier string {}

Tapped Delay (S-Function) (Tapped Delay Line) (masked subsystem)

vinit Initial condition string {'0.0'}

10-79

10 Model and Block Parameters

Discrete Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

samptime Sample time string {'-1'}

NumDelays Number of delays string {'4'}

DelayOrder Order output vector starting
with

{'Oldest'} | 'Newest'

includeCurrent Include current input in
output vector

{'off’} | 'on'

Transfer Fcn (First Order Transfer Fcn) (masked subsystem)

PoleZ Pole (in Z plane) string {'0.95'}

ICPrevOutput Initial condition for previous
output

string {'0.0'}

RndMeth Round toward 'Zero' | 'Nearest' |
'Ceiling' | {'Floor'}

DoSatur Saturate to max or min when
overflows occur

{'off'} | 'on'

Transfer Fcn Lead or Lag (Lead or Lag Compensator) (masked subsystem)

PoleZ Pole of compensator (in Z
plane)

string {'0.95'}

ZeroZ Zero of compensator (in Z
plane)

string {'0.75'}

ICPrevOutput Initial condition for previous
output

string {'0.0'}

ICPrevInput Initial condition for previous
input

string {'0.0'}

RndMeth Round toward 'Zero' | 'Nearest' |
'Ceiling' | {'Floor'}

DoSatur Saturate to max or min when
overflows occur

{'off'} | 'on'

Transfer Fcn Real Zero (Transfer Fcn Real Zero) (masked subsystem)

10-80

Block-Specific Parameters

Discrete Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

ZeroZ Zero (in Z plane) string {'0.75'}

ICPrevInput Initial condition for previous
input

string {'0.0'}

RndMeth Round toward 'Zero' | 'Nearest' |
'Ceiling' | {'Floor'}

DoSatur Saturate to max or min when
overflows occur

{'off'} | 'on'

Unit Delay (UnitDelay)

X0 Initial condition scalar or vector {'0'}

SampleTime Sample time (-1 for inherited) string {'1'}

StateIdentifier State name string {}

StateMustResolveTo
SignalObject

State name must resolve to
Simulink signal object

{'off'} | 'on'

RTWStateStorageClass RTW storage class {'Auto'} |
'ExportedGlobal' |
'ImportedExtern' |
'ImportedExternPointer'

RTWStateStorageType
Qualifier

RTW storage type qualifier string {}

Weighted Moving Average (S-Function) (Weighted Moving Average) (masked subsystem)

mgainval Weights string {'[0.1:0.1:1
0.9:-0.1:0.1]'}

vinit Initial condition string {’0.0’}

samptime Sample time string {'-1'}

GainDataTypeScalingMode Gain data type and scaling 'Specify via dialog' |
{'Inherit via internal
rule'}

GainDataType Parameter data type: ex.
sfix(16), uint(8), float(’single’)

string {'sfix(16)'}

10-81

10 Model and Block Parameters

Discrete Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

MatRadixGroup Parameter scaling mode 'Use Specified Scaling'
| 'Best Precision:
Element-wise' | 'Best
Precision: Row-wise'
| 'Best Precision:
Column-wise' | {'Best
Precision: Matrix-wise'}

GainScaling Parameter scaling: Slope ex.
2^-9

string {'2^-10'}

OutputDataTypeScaling
Mode

Output data type and scaling 'Specify via dialog' |
{'Inherit via internal
rule'} | 'Inherit via
back propagation'

OutDataType Output data type: ex. sfix(16),
uint(8), float ('single')

string {'sfix(16)'}

OutScaling Output scaling: Slope or [Slope
Bias] ex. 2^-9

string {'2^-10'}

LockScale Lock output scaling against
changes by the autoscaling
tool

{'off'} | 'on'

RndMeth Round toward 'Zero' | 'Nearest' |
'Ceiling' | {'Floor'}

DoSatur Saturate to max or min when
overflows occur

{'off'} | 'on'

10-82

Block-Specific Parameters

Discrete Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

Zero-Order Hold (ZeroOrderHold)

SampleTime Sample time (-1 for inherited) string {'1'}

Logic and Bit Operations Library Block Parameters

Block (Type)/Parameter Dialog Box Prompt Values

Bit Clear (Bit Clear) (masked subsystem)

iBit Index of bit (0 is least
significant)

string {'0'}

Bit Set (Bit Set) (masked subsystem)

iBit Index of bit (0 is least
significant)

string {'0'}

Bitwise Operator (S-Function) (Bitwise Operator) (masked subsystem)

logicop Operator {'AND'} | 'OR' | 'NAND' |
'NOR' | 'XOR' | 'NOT'

UseBitMask Use bit mask ... 'off' | {'on'}

NumInputPorts Number of input ports string {'1'}

BitMask Bit mask string
{'bin2dec('11011001')'}

BitMaskRealWorld Treat mask as 'Real World Value' |
{'Stored Integer'}

Combinatorial Logic (CombinatorialLogic)

TruthTable Truth table string {'[0 0;0 1;0 1;1 0;0
1;1 0;1 0;1 1]'}

SampleTime Sample time (-1 for inherited string {'-1'}

Compare To Constant (Compare To Constant) (masked subsystem)

relop Operator '==' | '~=' | '<' |
{'<='} | '>=' | '>'

10-83

10 Model and Block Parameters

Logic and Bit Operations Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

const Constant value string {'3.0'}

LogicOutDataTypeMode Output data type mode {'uint8'} | 'boolean'

ZeroCross Enable zero crossing detection {'off'} | 'on'

Compare To Zero (Compare To Zero) (masked subsystem)

relop Operator ’==’ | ’~=’ | ’<’ | {’<=’} | ’>=’ |
’>’

LogicOutDataTypeMode Output data type mode {'uint8'} | 'boolean'

ZeroCross Enable zero crossing detection {'off'} | 'on'

Detect Change (Detect Change) (masked subsystem)

vinit Initial condition string {'0'}

Detect Decrease (Detect Decrease) (masked subsystem)

vinit Initial condition string {'0.0'}

Detect Fall Negative (Detect Fall Negative) (masked subsystem)

vinit Initial condition string {'0'}

Detect Fall Nonpositive (Detect Fall Nonpositive) (masked subsystem)

vinit Initial condition string {'0'}

Detect Increase (Detect Increase) (masked subsystem)

vinit Initial condition string {'0.0'}

Detect Rise Nonnegative (Detect Rise Nonnegative) (masked subsystem)

vinit Initial condition string {'0'}

Detect Rise Positive (Detect Rise Positive) (masked subsystem)

vinit Initial condition string {'0'}

Extract Bits (Extract Bits) (masked subsystem)

10-84

Block-Specific Parameters

Logic and Bit Operations Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

bitsToExtract Bits to extract {'Upper half'} | 'Lower
half' | 'Range starting
with most | significant
bit' | 'Range ending with
least significant bit' |
'Range of bits'

numBits Number of bits string {'8'}

bitIdxRange Bit indices ([start end], 0-based
relative to LSB)

string {'[0 7]'}

outScalingMode Output scaling mode {'Preserve fixed-point
scaling'} | 'Treat bit
field as an integer'

Interval Test (Interval Test) (masked subsystem)

IntervalClosedRight Interval closed on right 'off' | {'on'}

uplimit Upper limit string {'0.5'}

IntervalClosedLeft Interval closed on left 'off' | {'on'}

lowlimit Lower limit string {'-0.5'}

LogicOutDataTypeMode Output data type mode 'uint8' | {'boolean'}

Interval Test Dynamic (Interval Test Dynamic) (masked subsystem)

IntervalClosedRight Interval closed on right 'off' | {'on'}

IntervalClosedLeft Interval closed on left 'off' | {'on'}

LogicOutDataTypeMode Output data type mode 'uint8' | {'boolean'}

Logical Operator (Logic)

Operator Operator {'AND'} | 'OR' | 'NAND' |
'NOR' | 'XOR' | 'NOT'

IconShape Shape of the block icon {'rectangular'} |
'distinctive'

Inputs Number of input ports string {'2'}

10-85

10 Model and Block Parameters

Logic and Bit Operations Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

AllPortsSameDT Require all inputs and output
to have same data type

{'off'} | 'on'

OutDataTypeMode Output data type mode {'Boolean'} | 'Logical
(see Advanced Sim.
Parameters)' | 'Specify
via dialog'

LogicDataType Output data type (e.g., uint(8),
sint(32))

string {'uint(8)'}

SampleTime Sample time (-1 for inherited) string {'-1'}

Relational Operator (RelationalOperator)

Operator Relational Operator ’==’ | ’~=’ | ’<’ | {’<=’} | ’>=’ |
’>’

InputSameDT Require all inputs to have
same data type

{'off'} | 'on'

LogicOutDataTypeMode Output data type mode 'uint8' | {'boolean'}

LogicDataType Output data type (e.g., uint(8),
sint(32))

string {'uint(8)'}

ZeroCross Enable zero crossing detection 'off' | {'on'}

SampleTime Sample time (-1 for inherited) string {'-1'}

Shift Arithmetic (Shift Arithmetic) (masked subsystem)

nBitShiftRight Number of bits to shift right
(use negative value to shift
left)

string {'0'}

nBinPtShiftRight Number of places by which
binary point shifts right (use
negative value to shift left)

string {'0'}

10-86

Block-Specific Parameters

Lookup Tables Block Parameters

Block (Type)/Parameter Dialog Box Prompt Values

Cosine (Cosine) (masked subsystem)

Formula Output formula 'sin(2*pi*u)' |
{'cos(2*pi*u)'} |
'exp(j*2*pi*u)' |
'sin(2*pi*u) and cos(2*pi*u)'

NumDataPoints Number of data points for
lookup table

string {'(2^5)+1'}

OutputWordLength Output word length string {'16'}

Direct Lookup Table (n-D) (S-Function) (LookupNDDirect) (masked subsystem)

maskTabDims Number of table
dimensions

'1' | {'2'} | '3' | '4' |
'More...'

explicitNumDims Explicit number of table
dimensions

string {'1'}

outDims Inputs select this object
from table

{'Element'} | 'Column' | '2-D
Matrix'

tabIsInput Make table an input {'off'} | 'on'

mxTable Table data string {'[4 5 6;16 19 20;10 18
23]'}

clipFlag Action for out of range
input

'None' | {'Warning'} |
'Error'

Interpolation (n-D) using PreLookup (LookupNDInterpIdx) (masked subsystem)

numDimsPopupSelect Number of table
dimensions

'1' | {'2'} | '3' | '4' |
'More...'

explicitNumDims Explicit number of table
dimensions

string {'2'}

table Table data string
{'sqrt([1:10]'*[1:10])'}

interpMethod Interpolation method ’None - Flat’ | {'Linear'}

extrapMethod Extrapolation method 'None - Flat' | {'Linear'}

10-87

10 Model and Block Parameters

Lookup Tables Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

rangeErrorMode Action for out of range
input

{'None'} | 'Warning' |
'Error' | 'Error - No index
checking in generated code' |
'Warning - No index checking
in generated code' | 'None
- No index checking in
generated code'

NumSelectionDims Number of sub-table
selection dimensions

string {'0'}

Interpolation Using Prelookup (Interpolation_n-D)

NumberOfTableDimensions Number of table
dimensions

string {'2'}

Table Table data string {'sqrt([1:11]' *
[1:11])'}

InterpMethod Interpolation method 'None - Flat' | {'Linear'}

ExtrapMethod Extrapolation method 'None - Clip' | {'Linear'}

RangeErrorMode Action for out of range
input

{'None'} | 'Warning' |
'Error'

CheckIndexInCode Check index in generated
code

{'on'} | 'off'

ValidIndexMayReachLast Valid index input may
reach last index

'on' | {'off'}

NumSelectionDims Number of sub-table
selection dimensions

string {'0'}

OutDataTypeMode Output data type mode 'single' | 'int8' | 'uint8' |
'int16' | 'uint16' | 'int32'
| {'uint32'} | 'Specify via
dialog' | 'Inherit via back
propagation' | {'Inherit from
table data'}

10-88

Block-Specific Parameters

Lookup Tables Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

OutDataType Output data type string {'sfix(16)'}

OutScaling Output scaling value string {'2^0'}

LockScale Lock output scaling
against changes by the
autoscaling tool

'on' | {'off'}

RndMeth Round integer calculations
toward

'Zero' | 'Nearest' |
'Ceiling' | {'Floor'} |
'Simplest'

Lookup Table (Lookup)

InputValues Vector of input values vector {'[-5:5]'}

OutputValues Table data vector {'tanh([-5:5])'}

LookUpMeth Look-up method {'Interpolation-Extrapolation'}
| 'Interpolation-Use End
Values' | 'Use Input Nearest'
| 'Use Input Below' | 'Use
Input Above'

OutDataTypeMode Output data type mode 'double' | 'single' |
'int8' | 'uint8' | 'int16'
| 'uint16' | 'int32' |
'uint32' | 'Specify via
dialog' | 'Inherit via back
propagation' | {'Same as
input'}

OutDataType Output data type
(e.g., sfix(16), uint(8),
float('single'))

string {'sfix(16)'}

OutScaling Output scaling value
(Slope, e.g., 2^-9 or [Slope
Bias], e.g., [1.25 3])

string {'2^0'}

10-89

10 Model and Block Parameters

Lookup Tables Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

LockScale Lock output scaling
against changes by the
autoscaling tool

{'off'} | 'on'

RndMeth Round integer calculations
toward

'Zero' | 'Nearest' |
'Ceiling' | {'Floor'}

SaturateOnInteger
Overflow

Saturate on integer
overflow

{'off'} | 'on'

SampleTime Sample time (-1 for
inherited)

string {'-1'}

Lookup Table (2-D) (Lookup2D)

RowIndex Row index input values string {'[1:3]'}

ColumnIndex Column index input values string {'[1:3]'}

OutputValues Table data string {'[4 5 6;16 19 20;10 18
23]'}

LookUpMeth Look-up method {'Interpolation-Extrapolation'}
| 'Interpolation-Use End
Values' | 'Use Input Nearest'
| 'Use Input Below' | 'Use
Input Above'

InputSameDT Require all inputs to have
same data type

'on' | {'off'}

OutDataTypeMode Output data type mode 'double' | 'single' |
'int8' | 'uint8' | 'int16'
| 'uint16' | 'int32' |
'uint32' | 'Specify via
dialog' | 'Inherit via back
propagation' | {'Same as
first input'}

OutDataType Output data type (e.g.,
sfix(16), uint(8), float
('single'))

string {'sfix(16)'}

10-90

Block-Specific Parameters

Lookup Tables Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

OutScaling Output scaling value
(Slope, e.g., 2^-9 or [Slope
Bias], e.g., [1.25 3])

string {'2^0'}

LockScale Lock output scaling
against changes by the
autoscaling tool

'on' | {'off'}

RndMeth Round integer calculations
toward

'Zero' | 'Nearest' |
'Ceiling' | {'Floor'}

SaturateOnInteger
Overflow

Saturate on integer
overflow

'on' | {'off'}

SampleTime Sample time (-1 for
inherited)

string {'-1'}

Lookup Table (n-D) (LookupNDInterp) (masked subsystem)

numDimsPopupSelect Number of table
dimensions

' 1 ' | {' 2 '} | ' 3 ' | ' 4
' | 'More...'

bp1 First input (row)
breakpoint set

string {'[10,22,31]'}

bp2 Second (column) input
breakpoint set

string {'[10,22,31]'}

bp3 Third input breakpoint set string {'[1:3]'}

bp4 Fourth input breakpoint
set

string {'[1:3]'}

bpcell Fifth...Nth breakpoint sets
(cell array)

string {'{ [1:3], [1:3] }'}

explicitNumDims Explicit number of
dimensions

string {'2'}

searchMode Index search method 'Evenly Spaced Points' |
'Linear Search' | {'Binary
Search'}

10-91

10 Model and Block Parameters

Lookup Tables Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

cacheBpFlag Begin index searches using
previous index results

'on' | {'off'}

vectorInputFlag Use one (vector) input port
instead of N ports

'on' | {'off'}

tableData Table data string {'[4 5 6;16 19 20;10 18
23]'}

interpMethod Interpolation method 'None - Flat' | {'Linear'} |
'Cubic Spline'

extrapMethod Extrapolation method 'None - Clip' | {'Linear'} |
'Cubic Spline'

rangeErrorMode Action for out of range
input

{'None'} | 'Warning' |
'Error'

Lookup Table Dynamic (Lookup Table Dynamic) (masked subsystem)

LookUpMeth Look-Up Method 'Interpolation-Extrapolation'
| {'Interpolation-Use
End Values'} | 'Use Input
Nearest' | 'Use Input Below'
| 'Use Input Above'

OutputDataTypeScaling
Mode

Output data type and
scaling

{'Specify via dialog'}
| 'Inherit via back
propagation'

OutDataType Output data type: ex.
sfix(16), uint(8), float
('single')

string {'float('double')'}

OutScaling Output scaling: Slope or
[Slope Bias] ex. 2^-9

string {'2^-10'}

LockScale Lock output scaling
against changes by the
autoscaling tool

'on' | {'off'}

10-92

Block-Specific Parameters

Lookup Tables Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

RndMeth Round toward 'Zero' | 'Nearest' |
'Ceiling' | {'Floor'}

DoSatur Saturate to max or min
when overflows occur

'on' | {'off'}

Prelookup (PreLookup)

BreakpointsData Breakpoint data string {'[10:10:110]'}

IndexSearchMethod Index search method 'Evenly spaced points' |
'Linear search' | {'Binary
search'}

BeginIndexSearchUsing
PreviousIndexResult

Begin index search using
previous index result

'on' | {'off'}

OutputOnlyTheIndex Output only the index 'on' | {'off'}

ProcessOutOfRangeInput Process out of range input 'Clip to range' | {'Linear
extrapolation'}

UseLastBreakpoint Use last breakpoint for
input at or above upper
limit

'on' | {'off'}

ActionForOutOfRangeInput Action for out of range
input

{'None'} | 'Warning' |
'Error'

IndexDataTypeMode Index data type mode 'int8' | 'uint8' | 'int16'
| 'uint16' | 'int32' |
{'uint32'} | 'Specify via
dialog'

IndexDataType Index data type string {'sfix(16)'}

FractionDataTypeMode Fraction data type mode 'double' | 'single' |
'Specify via dialog' |
{'Inherit via internal rule'}

FractionDataType Fraction data type string {'sfix(16)'}

FractionScaling Fraction scaling value string {'2^0'}

10-93

10 Model and Block Parameters

Lookup Tables Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

LockScale Lock output scaling
against changes by the
autoscaling tool

'on' | {'off'}

RndMeth Round integer calculations
toward

'Zero' | 'Nearest' |
'Ceiling' | {'Floor'} |
'Simplest'

PreLookup Index Search (LookupIdxSearch) (masked subsystem)

bpData Breakpoint data string {'[10:10:100]'}

searchMode Index search method 'Evenly Spaced Points' |
'Linear Search' | {'Binary
Search'}

cacheBpFlag Begin index search using
previous index result

'on' | {'off'}

outputFlag Output only the index 'on' | {'off'}

IndexDataType Index data type {'uint32'} | 'int32'

extrapMode Process out of range input 'Clip to Range' | {'Linear
Extrapolation'}

rangeErrorMode Action for out of range
input

{'None'} | 'Warning' |
'Error'

Sine (Sine) (masked subsystem)

Formula Output formula {'sin(2*pi*u)'} |
'cos(2*pi*u)' |
'exp(j*2*pi*u)' |
'sin(2*pi*u) and cos(2*pi*u)'

10-94

Block-Specific Parameters

Lookup Tables Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

NumDataPoints Number of data points for
lookup table

string {'(2^5)+1'}

OutputWordLength Output word length string {'16'}

Math Operations Library Block Parameters

Block (Type)/Parameter Dialog Box Prompt Values

Abs (Abs)

SaturateOnInteger
Overflow

Saturate on integer overflow 'on' | {'off'}

ZeroCross Enable zero crossing detection {'on'} | 'off'

SampleTime Sample time (-1 for inherited) string {'-1'}

Add (Sum)

IconShape Icon shape {'rectangular'} | 'round'

Inputs List of signs string {'++'}

InputSameDT Require all inputs to have
same data type

'on' | {'off'}

OutDataTypeMode Output data type mode 'double' | 'single'
| 'int8' | 'uint8' |
'int16' | 'uint16' |
'int32' | 'uint32' |
'Specify via dialog' |
{'Inherit via internal
rule'} | 'Inherit via
back propagation' | 'Same
as first input'

OutDataType Output data type (e.g., sfix(16),
uint(8), float ('single'))

string {'sfix(16)'}

10-95

10 Model and Block Parameters

Math Operations Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

OutScaling Output scaling value (Slope,
e.g., 2^-9 or [Slope Bias], e.g.,
[1.25 3])

string {'2^-10'}

LockScale Lock output scaling against
changes by the autoscaling
tool

'on' | {'off'}

RndMeth Round integer calculations
toward

'Zero' | 'Nearest' |
'Ceiling' | {'Floor'}

SaturateOnInteger
Overflow

Saturate on integer overflow 'on' | {'off'}

SampleTime Sample time (-1 for inherited) string {'-1'}

Algebraic Constraint (Algebraic Constraint) (masked subsystem)

z0 Initial guess string {'0'}

Assignment (Assignment)

InputType Input type {'Vector'} | 'Matrix'

IndexMode Index mode 'Zero-based' |
{'One-based'}

IndexIsStartValue Use index as starting value 'on' | {'off'}

ElementSrc Source of element indices (E) {'Internal'} | 'External'

Elements Elements (-1 for all elements) string {'1'}

RowSrc Source of row indices (R) {'Internal'} | 'External'

Rows Rows (-1 for all rows) string {'1'}

ColumnSrc Source of column indices (C) {'Internal'} | 'External'

Columns Columns (-1 for all columns) string {'1'}

OutputInitialize Output (Y) ’Initialize using input
(U1)' | 'Specify required
dimensions'

OutputDimensions Output dimensions string {'[1 1]'}

10-96

Block-Specific Parameters

Math Operations Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

DiagnosticForDimensions Diagnostic if not all required
dimensions are populated

{'Error'} | 'Warning' |
'None'

SampleTime Sample time (-1 for inherited) string {'-1'}

Bias (Bias)

Bias Bias string {'0.0'}

SaturateOnInteger
Overflow

Saturate on integer overflow 'on' | {'off'}

Complex to Magnitude-Angle (ComplexToMagnitudeAngle)

Output Output 'Magnitude' | 'Angle' |
{'Magnitude and angle'}

SampleTime Sample time (-1 for inherited) string {'-1'}

Complex to Real-Imag (ComplexToRealImag)

Output Output 'Real' | 'Imag' | {'Real
and imag'}

SampleTime Sample time (-1 for inherited) string {'-1'}

Divide (Product)

Inputs Number of inputs string {'*/'}

Multiplication Multiplication {'Element-wise(.*)'} |
'Matrix(*)'

InputSameDT Require all inputs to have
same data type

'on' | {'off'}

10-97

10 Model and Block Parameters

Math Operations Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

OutDataTypeMode Output data type mode 'double' | 'single'
| 'int8' | 'uint8' |
'int16' | 'uint16' |
'int32' | 'uint32' |
'Specify via dialog' |
{'Inherit via internal
rule'} | 'Inherit via
back propagation' | 'Same
as first input'

OutDataType Output data type (e.g., sfix(16),
uint(8), float('single'))

string {'sfix(16)'}

OutScaling Output scaling value (Slope,
e.g., 2^-9 or [Slope Bias], e.g.,
[1.25 3])

string {'2^-10'}

LockScale Lock output scaling against
changes by the autoscaling
tool

'on' | {'off'}

RndMeth Round integer calculations
toward

'Zero' | 'Nearest' |
'Ceiling' | {'Floor'}

SaturateOnInteger
Overflow

Saturate on integer overflow 'on' | {'off'}

SampleTime Sample time (-1 for inherited) string {'-1'}

Dot Product (Dot Product) (masked subsystem)

InputSameDT Require all inputs to have
same data type

'on' | {'off'}

OutputDataTypeScaling
Mode

Output data type mode 'Specify via dialog' |
{'Inherit via internal
rule'} | 'Inherit via
back propagation' | 'Same
as first input'

10-98

Block-Specific Parameters

Math Operations Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

OutDataType Output data type (e.g., sfix(16),
uint(8), float('single'))

string {'sfix(16)'}

OutScaling Output scaling (Slope, e.g.,
2^-9 or [Slope Bias], e.g., [1.25
3])

string {'2^-10'}

LockScale Lock output scaling against
changes by the autoscaling
tool

'on' | {'off'}

RndMeth Round integer calculation
toward

'Zero' | 'Nearest' |
'Ceiling' | {'Floor'}

DoSatur Saturate on integer overflow 'on' | {'off'}

Gain (Gain)

Gain Gain string {'1'}

Multiplication Multiplication {'Element-wise(K.*u)'}
| 'Matrix(K*u)' |
'Matrix(u*K)' |
'Matrix(K*u) (u vector)'

ParameterDataTypeMode Parameter data type mode 'Specify via dialog' |
{'Inherit via internal
rule'} | 'Same as input'

ParameterDataType Parameter data type (e.g.,
sfix(16), uint(8), float
('single'))

string {'sfix(16)'}

ParameterScalingMode Parameter scaling mode 'Use specified scaling'
| 'Best Precision:
Element-wise' | 'Best
Precision: Row-wise'
| 'Best Precision:
Column-wise' | {'Best
Precision: Matrix-wise'}

10-99

10 Model and Block Parameters

Math Operations Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

ParameterScaling Parameter scaling (Slope or
[Slope Bias], e.g., 2^-9)

string {'2^0'}

OutDataTypeMode Output data type mode 'Specify via dialog' |
{'Inherit via internal
rule'} | 'Inherit via
back propagation' | 'Same
as input'

OutDataType Output data type (e.g., sfix(16),
uint(8), float ('single'))

string {'sfix(16)'}

OutScaling Output scaling value (Slope,
e.g., 2^-9 or [Slope Bias], e.g.,
[1.25 3])

string {'2^0'}

LockScale Lock output scaling against
changes by the autoscaling
tool

'on' | {'off'}

RndMeth Round integer calculations
toward

'Zero' | 'Nearest' |
'Ceiling' | {'Floor'}

SaturateOnInteger
Overflow

Saturate on integer overflow 'on' | {'off'}

SampleTime Sample time (-1 for inherited) string {'-1'}

Magnitude-Angle to Complex (MagnitudeAngleToComplex)

Input Input 'Magnitude' | 'Angle' |
{'Magnitude and angle'}

ConstantPart string {'0'}

SampleTime Sample time (-1 for inherited) string {'-1'}

Math Function (Math)

10-100

Block-Specific Parameters

Math Operations Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

Operator Function {'exp'} | 'log' | '10^u'
| 'log10' | 'magnitude^2'
| 'square' | 'sqrt'
| 'pow' | 'conj' |
'reciprocal' | 'hypot'
| 'rem' | 'mod' |
'transpose' | 'hermitian'

OutputSignalType Output signal type {'auto'} | 'real' |
'complex'

SampleTime Sample time (-1 for inherited) string {'-1'}

OutDataTypeMode Output data type mode 'double' | 'single'
| 'int8' | 'uint8' |
'int16' | 'uint16' |
'int32' | 'uint32' |
'Specify via dialog' |
'Inherit via internal
rule' | 'Inherit via back
propagation' | {'Same as
first input'}

OutDataType Output data type (e.g., sfix(16),
uint(8), float ('single'))

string {'sfix(16)'}

OutScaling Output scaling value (Slope,
e.g., 2^-9 or [Slope Bias], e.g.,
[1.25 3])

string {'2^0'}

LockScale Lock output scaling against
changes by the autoscaling
tool

'on' | {'off'}

RndMeth Round integer calculations
toward

'Zero' | 'Nearest' |
'Ceiling' | {'Floor'}

SaturateOnInteger
Overflow

Saturate on integer overflow {'on'} | 'off'

Matrix Concatenate (Concatenate)

10-101

10 Model and Block Parameters

Math Operations Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

NumInputs Number of inputs string {'2'}

Mode Mode 'Vector concatenation'
| {'Horizontal matrix
concatenation'} |
'Vertical matrix
concatenation'

MinMax (MinMax)

Function Function {'min'} | 'max'

Inputs Number of input ports string {'1'}

InputSameDT Require all inputs to have
same data type

'on' | {'off'}

OutDataTypeMode Output data type mode 'double' | 'single'
| 'int8' | 'uint8' |
'int16' | 'uint16' |
'int32' | 'uint32' |
'Specify via dialog' |
{'Inherit via internal
rule'} | 'Inherit via
back propagation'

OutDataType Output data type (e.g., sfix(16),
uint(8), float('single'))

string {'sfix(16)'}

OutScaling Output scaling value (Slope,
e.g., 2^-9 or [Slope Bias], e.g.,
[1.25 3])

string {'2^0'}

LockScale Lock output scaling against
changes by the autoscaling
tool

'on' | {'off'}

RndMeth Round integer calculations
toward

'Zero' | 'Nearest' |
'Ceiling' | {'Floor'}

SaturateOnInteger
Overflow

Saturate on integer overflow 'on' | {'off'}

10-102

Block-Specific Parameters

Math Operations Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

ZeroCross Enable zero crossing detection {'on'} | 'off'

SampleTime Sample time (-1 for inherited) string {'-1'}

MinMax Running Resettable (MinMax Running Resettable) (masked subsystem)

Function Function {'min'} | 'max'

vinit Initial condition string {'0.0'}

Polynomial (Polyval) (masked subsystem)

coefs Polynomial coefficients string {'[
+2.081618890e-019,
-1.441693666e-014,
+4.719686976e-010,
-8.536869453e-006,
+1.621573104e-001,
-8.087801117e+001]'}

Product (Product)

Inputs Number of inputs string {'2'}

Multiplication Multiplication {'Element-wise(.*)'} |
'Matrix(*)'

InputSameDT Require all inputs to have
same data type

'on' | {'off'}

OutDataTypeMode Output data type mode 'double' | 'single'
| 'int8' | 'uint8' |
'int16' | 'uint16' |
'int32' | 'uint32' |
'Specify via dialog' |
{'Inherit via internal
rule'} | 'Inherit via
back propagation' | 'Same
as first input'

OutDataType Output data type (e.g., sfix(16),
uint(8), float('single'))

string {'sfix(16)'}

10-103

10 Model and Block Parameters

Math Operations Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

OutScaling Output scaling value (Slope,
e.g., 2^-9 or [Slope Bias], e.g.,
[1.25 3])

string {'2^0'}

LockScale Lock output scaling against
changes by the autoscaling
tool

'on' | {'off'}

RndMeth Round integer calculations
toward

{'Zero'} | 'Nearest' |
'Ceiling' | 'Floor'

SaturateOnInteger
Overflow

Saturate on integer overflow 'on' | {'off'}

SampleTime Sample time (-1 for inherited) string {'-1'}

Product of Elements (Product)

Inputs Number of inputs string {'*'}

Multiplication Multiplication {'Element-wise(.*)'} |
'Matrix(*)'

InputSameDT Require all inputs to have
same data type

'on' | {'off'}

OutDataTypeMode Output data type mode 'double' | 'single'
| 'int8' | 'uint8' |
'int16' | 'uint16' |
'int32' | 'uint32' |
'Specify via dialog' |
{'Inherit via internal
rule'} | 'Inherit via
back propagation' | 'Same
as first input'

OutDataType Output data type (e.g., sfix(16),
uint(8), float('single'))

string {'sfix(16)'}

OutScaling Output scaling value (Slope,
e.g., 2^-9 or [Slope Bias], e.g.,
[1.25 3])

string {'2^-10'}

10-104

Block-Specific Parameters

Math Operations Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

LockScale Lock output scaling against
changes by the autoscaling
tool

'on' | {'off'}

RndMeth Round integer calculations
toward

'Zero' | 'Nearest' |
'Ceiling' | {'Floor'}

SaturateOnInteger
Overflow

Saturate on integer overflow 'on' | {'off'}

SampleTime Sample time (-1 for inherited) string {'-1'}

Real-Imag to Complex (RealImagToComplex)

Input Input 'Real' | 'Imag' | {'Real
and imag'}

ConstantPart string {'0'}

SampleTime Sample time (-1 for inherited) string {'-1'}

Reshape (Reshape) (masked subsystem)

OutputDimensionality Output dimensionality {'1-D array'} | 'Column
vector' | 'Row vector' |
'Customize'

OutputDimensions Output dimensions string {'[1,1]'}

Rounding Function (Rounding)

Operator Function {'floor'} | 'ceil' |
'round' | 'fix'

SampleTime Sample time (-1 for inherited) string {'-1'}

Sign (Signum)

ZeroCross Enable zero crossing detection {'on'} | 'off'

SampleTime Sample time (-1 for inherited) string {'-1'}

Sine Wave Function (Sin)

SineType Sine type {'Time based'} | 'Sample
based'

10-105

10 Model and Block Parameters

Math Operations Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

TimeSource Time (t) 'Use simulation time' |
{'Use external signal'}

Amplitude Amplitude string {'1'}

Bias Bias string {'0'}

Frequency Frequency (rad/sec) string {'1'}

Phase Phase (rad) string {'0'}

Samples Samples per period string {'10'}

Offset Number of offset samples string {'0'}

SampleTime Sample time string {'0'}

VectorParams1D Interpret vector parameters as
1-D

{'on'} | 'off'

Slider Gain (Slider Gain) (masked subsystem)

low Low string {'0'}

gain Gain string {'1'}

high High string {'2'}

Subtract (Sum)

IconShape Icon shape {'rectangular'} | 'round'

Inputs List of signs string {'+-'}

InputSameDT Require all inputs to have
same data type

'on' | {'off'}

10-106

Block-Specific Parameters

Math Operations Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

OutDataTypeMode Output data type mode ’double' | 'single' |
'int8' | 'uint8' |
'int16' | 'uint16' |
'int32' | 'uint32' |
'Specify via dialog' |
{'Inherit via internal
rule'} | 'Inherit via
back propagation' | 'Same
as first input'

OutDataType Output data type (e.g., sfix(16),
uint(8), float('single'))

string {'sfix(16)'}

OutScaling Output scaling value (Slope,
e.g., 2^-9 or [Slope Bias], e.g.,
[1.25 3])

string {'2^-10'}

LockScale Lock output scaling against
changes by the autoscaling
tool

'on' | {'off'}

RndMeth Round integer calculations
toward

'Zero' | 'Nearest' |
'Ceiling' | {'Floor'}

SaturateOnInteger
Overflow

Saturate on integer overflow 'on' | {'off'}

SampleTime Sample time (-1 for inherited) string {'-1'}

Sum (Sum)

IconShape Icon shape 'rectangular' | {'round'}

Inputs List of signs string {'|++'}

InputSameDT Require all inputs to have
same data type

'on' | {'off'}

10-107

10 Model and Block Parameters

Math Operations Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

OutDataTypeMode Output data type mode 'double' | 'single'
| 'int8' | 'uint8' |
'int16' | 'uint16' |
'int32' | 'uint32' |
'Specify via dialog' |
{'Inherit via internal
rule'} | 'Inherit via
back propagation' | 'Same
as first input'

OutDataType Output data type (e.g., sfix(16),
uint(8), float('single'))

string {'sfix(16)'}

OutScaling Output scaling value (Slope,
e.g., 2^-9 or [Slope Bias], e.g.,
[1.25 3])

string {'2^0'}

LockScale Lock output scaling against
changes by the autoscaling
tool

'on' | {'off'}

RndMeth Round integer calculations
toward

'Zero' | 'Nearest' |
'Ceiling' | {'Floor'}

SaturateOnInteger
Overflow

Saturate on integer overflow 'on' | {'off'}

SampleTime Sample time (-1 for inherited) string {'-1'}

Sum of Elements (Sum)

IconShape Icon shape {'rectangular'} | 'round'

Inputs List of signs string {'+'}

InputSameDT Require all inputs to have
same data type

'on' | {'off'}

10-108

Block-Specific Parameters

Math Operations Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

OutDataTypeMode Output data type mode 'double' | 'single'
| 'int8' | 'uint8' |
'int16' | 'uint16' |
'int32' | 'uint32' |
'Specify via dialog' |
{'Inherit via internal
rule'} | 'Inherit via
back propagation' | 'Same
as first input'

OutDataType Output data type (e.g., sfix(16),
uint(8), float('single'))

string {'sfix(16)'}

OutScaling Output scaling value (Slope,
e.g., 2^-9 or [Slope Bias], e.g.,
[1.25 3])

string {'2^-10'}

LockScale Lock output scaling against
changes by the autoscaling
tool

'on' | {'off'}

RndMeth Round integer calculations
toward

'Zero' | 'Nearest' |
'Ceiling' | {'Floor'}

SaturateOnInteger
Overflow

Saturate on integer overflow 'on' | {'off'}

SampleTime Sample time (-1 for inherited) string {'-1'}

Trigonometric Function (Trigonometry)

Operator Function {'sin'} | 'cos' | 'tan' |
'asin' | 'acos' | 'atan'
| 'atan2' | 'sinh' |
'cosh' | 'tanh' | 'asinh'
| 'acosh' | 'atanh'

OutputSignalType Output signal type {'auto'} | 'real' |
'complex'

SampleTime Sample time (-1 for inherited) string {'-1'}

10-109

10 Model and Block Parameters

Math Operations Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

Unary Minus (Unary Minus) (masked subsystem)

DoSatur Saturate to max or min when
overflows occur

'on' | {'off'}

Vector Concatenate (Concatenate)

NumInputs Number of inputs string {'2'}

Mode Mode {'Vector concatenation'}
| 'Horizontal matrix
concatenation' |
'Vertical matrix
concatenation'

Weighted Sample Time Math (Sample Time Math) (masked subsystem)

TsampMathOp Operation {'+'} | '-' | '*' | '/' |
'Ts Only' | '1/Ts Only'

weightValue Weight value string {'1.0'}

TsampMathImp Implement using {'Online Calculations'}
| 'Offline Scaling
Adjustment'

OutputDataTypeScaling
Mode

Output data type and scaling {'Inherit via internal
rule'} | 'Inherit via
back propagation'

10-110

Block-Specific Parameters

Math Operations Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

RndMeth Round toward 'Zero' | 'Nearest' |
'Ceiling' | {'Floor'}

DoSatur Saturate to max or min when
overflows occur

'on' | {'off'}

Model Verification Library Block Parameters

Block (Type)/Parameter Dialog Box Prompt Values

Assertion (Assertion)

Enabled Enable assertion {'on'} | 'off'

AssertionFailFcn Simulation callback when
assertion fails

string {''}

StopWhenAssertionFail Stop simulation when
assertion fails

{'on'} | 'off'

SampleTime Sample time (-1 for inherited) string {'-1'}

Check Discrete Gradient (Checks_Gradient) (masked subsystem)

gradient Maximum gradient string {'1'}

enabled Enable assertion {'on'} | 'off'

callback Simulation callback when
assertion fails (optional)

string {''}

stopWhenAssertionFail Stop simulation when
assertion fails

{'on'} | 'off'

export Output assertion signal 'on' | {'off'}

icon Select icon type {'graphic'} | 'text'

Check Dynamic Gap (Checks_DGap) (masked subsystem)

enabled Enable assertion {'on'} | 'off'

callback Simulation callback when
assertion fails (optional)

string {''}

10-111

10 Model and Block Parameters

Model Verification Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

stopWhenAssertionFail Stop simulation when
assertion fails

{'on'} | 'off'

export Output assertion signal 'on' | {'off'}

icon Select icon type {'graphic'} | 'text'

Check Dynamic Lower Bound (Checks_DMin) (masked subsystem)

Enabled Enable assertion {'on'} | 'off'

callback Simulation callback when
assertion fails (optional)

string {''}

stopWhenAssertionFail Stop simulation when
assertion fails

{'on'} | 'off'

export Output assertion signal 'on' | {'off'}

icon Select icon type {'graphic'} | 'text'

Check Dynamic Range (Checks_DRange) (masked subsystem)

enabled Enable assertion {'on'} | 'off'

callback Simulation callback when
assertion fails (optional)

string {''}

stopWhenAssertionFail Stop simulation when
assertion fails

{'on'} | 'off'

export Output assertion signal 'on' | {'off'}

icon Select icon type {'graphic'} | 'text'

Check Dynamic Upper Bound (Checks_DMax) (masked subsystem)

enabled Enable assertion {'on'} | 'off'

callback Simulation callback when
assertion fails (optional)

string {''}

stopWhenAssertionFail Stop simulation when
assertion fails

{'on'} | 'off'

export Output assertion signal 'on' | {'off'}

10-112

Block-Specific Parameters

Model Verification Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

icon Select icon type {'graphic'} | 'text'

Check Input Resolution (Checks_Resolution) (masked subsystem)

resolution Resolution string {'1'}

enabled Enable assertion {'on'} | 'off'

callback Simulation callback when
assertion fails (optional)

string {''}

stopWhenAssertionFail Stop simulation when
assertion fails

{'on'} | 'off'

export Output assertion signal 'on' | {'off'}

Check Static Gap (Checks_SGap) (masked subsystem)

max Upper bound string {'100'}

max_included Inclusive upper bound {'on'} | 'off'

min Lower bound string {'0'}

min_included Inclusive lower bound {'on'} | 'off'

enabled Enable assertion {'on'} | 'off'

callback Simulation callback when
assertion fails (optional)

string {''}

stopWhenAssertionFail Stop simulation when
assertion fails

{'on'} | 'off'

export Output assertion signal 'on' | {'off'}

icon Select icon type {'graphic'} | 'text'

Check Static Lower Bound (Checks_SMin) (masked subsystem)

min Lower bound string {'0'}

min_included Inclusive boundary {'on'} | 'off'

enabled Enable assertion {'on'} | 'off'

10-113

10 Model and Block Parameters

Model Verification Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

callback Simulation callback when
assertion fails (optional)

string {''}

stopWhenAssertionFail Stop simulation when
assertion fails

{'on'} | 'off'

export Output assertion signal 'on' | {'off'}

icon Select icon type {'graphic'} | 'text'

Check Static Range (Checks_SRange) (masked subsystem)

max Upper bound string {'100'}

max_included Inclusive upper bound {'on'} | 'off'

min Lower bound string {'0'}

min_included Inclusive lower bound {'on'} | 'off'

enabled Enable assertion {'on'} | 'off'

callback Simulation callback when
assertion fails (optional)

string {''}

stopWhenAssertionFail Stop simulation when
assertion fails

{'on'} | 'off'

export Output assertion signal 'on' | {'off'}

icon Select icon type {'graphic'} | 'text'

Check Static Upper Bound (Checks_SMax) (masked subsystem)

max Upper bound string {'0'}

max_included Inclusive boundary {'on'} | 'off'

enabled Enable assertion {'on'} | 'off'

callback Simulation callback when
assertion fails (optional)

string {''}

stopWhenAssertionFail Stop simulation when
assertion fails

{'on'} | 'off'

10-114

Block-Specific Parameters

Model Verification Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

export Output assertion signal 'on' | {'off'}

icon Select icon type {'graphic'} | 'text'

Model-Wide Utilities Library Block Parameters

Block (Type)/Parameter Dialog Box Prompt Values

Block Support Table (Block Support Table) (masked subsystem)

DocBlock (DocBlock) (masked subsystem)

ECoderFlag RTW Embedded Coder Flag string {''}

DocumentType Document Type {'Text'} | 'RTF' | 'HTML'

Model Info (CMBlock) (masked subsystem)

InitialSaveTempField InitialSaveTempField string {''}

InitialBlockCM InitialBlockCM string {'None'}

BlockCM BlockCM string {'None'}

Frame Show block frame string {'on'}

SaveTempField SaveTempField string {''}

DisplayStringWithTags DisplayStringWithTags string {'Model Info'}

MaskDisplayString MaskDisplayString string {'Model Info'}

HorizontalTextAlignment Horizontal text alignment string {'Center'}

LeftAlignmentValue LeftAlignmentValue string {'0.5'}

SourceBlockDiagram SourceBlockDiagram string {'untitled'}

TagMaxNumber TagMaxNumber string {'20'}

CMTag1 CMTag1 string {''}

CMTag2 CMTag2 string {''}

CMTag3 CMTag3 string {''}

CMTag4 CMTag4 string {''}

10-115

10 Model and Block Parameters

Model-Wide Utilities Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

CMTag5 CMTag5 string {''}

CMTag6 CMTag6 string {''}

CMTag7 CMTag7 string {''}

CMTag8 CMTag8 string {''}

CMTag9 CMTag9 string {''}

CMTag10 CMTag10 string {''}

CMTag11 CMTag11 string {''}

CMTag12 CMTag12 string {''}

CMTag13 CMTag13 string {''}

CMTag14 CMTag14 string {''}

CMTag15 CMTag15 string {''}

CMTag16 CMTag16 string {''}

CMTag17 CMTag17 string {''}

CMTag18 CMTag18 string {''}

CMTag19 CMTag19 string {''}

CMTag20 CMTag20 string {''}

Timed-Based Linearization (Timed Linearization) (masked subsystem)

LinearizationTime Linearization time string {'1'}

SampleTime Sample time (of linearized
model)

string {'0'}

Trigger-Based Linearization (Triggered Linearization) (masked subsystem)

10-116

Block-Specific Parameters

Model-Wide Utilities Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

TriggerType Trigger type {'rising'} |
'falling' | 'either' |
'function-call'

SampleTime Sample time (of linearized
model)

string {'0'}

Ports & Subsystems Library Block Parameters

Block (Type)/Parameter Dialog Box Prompt Values

Configurable Subsystem (SubSystem)

ShowPortLabels Show port labels {'on'} | 'off'

BlockChoice Block choice {''}

TemplateBlock Template block string {'self'}

MemberBlocks Member blocks string {''}

Permissions Read/Write permissions {'ReadWrite'}
| 'ReadOnly' |
'NoReadOrWrite'

ErrorFcn Name of error callback
function

string {''}

PermitHierarchical
Resolution

Permit hierarchical resolution {'All'} |
'ParametersOnly' |
'None'

TreatAsAtomicUnit Treat as atomic unit 'on' | {'off'}

MinAlgLoopOccurrences Minimize algebraic loop
occurrences

'on' | {'off'}

PropExecContext
OutsideSubsystem

Propagate execution context
across subsystem boundary

{'on'} | 'off'

CheckFcnCallInp
InsideContextMsg

Warn if function-call inputs
are context-specific

'on' | {'off'}

10-117

10 Model and Block Parameters

Ports & Subsystems Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

SystemSampleTime Sample time (-1 for inherited) string {'-1'}

RTWSystemCode Real-Time Workshop system
code

{'Auto'} | 'Inline' |
'Function' | 'Reusable
function'

RTWFcnNameOpts Real-Time Workshop function
name options

{'Auto'} | 'Use subsystem
name' | 'User specified'

RTWFcnName Real-Time Workshop function
name

string {''}

RTWFileNameOpts Real-Time Workshop filename
options

{'Auto'} | 'Use subsystem
name' | 'Use function
name' | 'User specified'

RTWFileName Real-Time Workshop filename
(no extension)

string {''}

DataTypeOverride {'UseLocalSettings'}
| 'ScaledDoubles'
| 'TrueDoubles' |
'TrueSingles' |
'ForceOff'

MinMaxOverflowLogging {'UseLocalSettings'}
| 'MinMaxAndOverflow'
| 'OverflowOnly' |
'ForceOff'

Atomic Subsystem (SubSystem)

ShowPortLabels Show port labels {'on'} | 'off'

BlockChoice Block choice {''}

TemplateBlock Template block string {''}

MemberBlocks Member blocks string {''}

Permissions Read/Write permissions {'ReadWrite'}
| 'ReadOnly' |
'NoReadOrWrite'

10-118

Block-Specific Parameters

Ports & Subsystems Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

ErrorFcn Name of error callback
function

string {''}

PermitHierarchical
Resolution

Permit hierarchical resolution {'All'} |
'ParametersOnly' |
'None'

TreatAsAtomicUnit Treat as atomic unit {'on'} | 'off'

MinAlgLoopOccurrences Minimize algebraic loop
occurrences

'on' | {'off'}

PropExecContext
OutsideSubsystem

Propagate execution context
across subsystem boundary

{'on'} | 'off'

CheckFcnCallInp
InsideContextMsg

Warn if function-call inputs
are context-specific

'on' | {'off'}

SystemSampleTime Sample time (-1 for inherited) string {'-1'}

RTWSystemCode Real-Time Workshop system
code

{'Auto'} | 'Inline' |
'Function' | 'Reusable
function'

RTWFcnNameOpts Real-Time Workshop function
name options

{'Auto'} | 'Use subsystem
name' | 'User specified'

RTWFcnName Real-Time Workshop function
name

string {''}

RTWFileNameOpts Real-Time Workshop filename
options

{'Auto'} | 'Use subsystem
name' | 'Use function
name' | 'User specified'

RTWFileName Real-Time Workshop filename
(no extension)

string {''}

DataTypeOverride {'UseLocalSettings'}
| 'ScaledDoubles'
| 'TrueDoubles' |
'TrueSingles' |
'ForceOff'

10-119

10 Model and Block Parameters

Ports & Subsystems Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

MinMaxOverflowLogging {'UseLocalSettings'}
| 'MinMaxAndOverflow'
| 'OverflowOnly' |
'ForceOff'

Code Reuse Subsystem (SubSystem)

ShowPortLabels Show port labels {'on'} | 'off'

BlockChoice Block choice {''}

TemplateBlock Template block string {''}

MemberBlocks Member blocks string {''}

Permissions Read/Write permissions {'ReadWrite'}
| 'ReadOnly' |
'NoReadOrWrite'

ErrorFcn Name of error callback
function

string {''}

PermitHierarchical
Resolution

Permit hierarchical resolution {'All'} |
'ParametersOnly' |
'None'

TreatAsAtomicUnit Treat as atomic unit {'on'} | 'off'

MinAlgLoopOccurrences Minimize algebraic loop
occurrences

'on' | {'off'}

PropExecContext
OutsideSubsystem

Propagate execution context
across subsystem boundary

{'on'} | 'off'

CheckFcnCallInp
InsideContextMsg

Warn if function-call inputs
are context-specific

'on' | {'off'}

SystemSampleTime Sample time (-1 for inherited) string {'-1'}

RTWSystemCode Real-Time Workshop system
code

'Auto' | 'Inline' |
'Function' | {'Reusable
function'}

10-120

Block-Specific Parameters

Ports & Subsystems Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

RTWFcnNameOpts Real-Time Workshop function
name options

'Auto' | {'Use subsystem
name'} | 'User specified'

RTWFcnName Real-Time Workshop function
name

string {''}

RTWFileNameOpts Real-Time Workshop filename
options

'Auto' | 'Use subsystem
name' | {'Use function
name'} | 'User specified'

RTWFileName Real-Time Workshop filename
(no extension)

string {''}

DataTypeOverride {'UseLocalSettings'}
| 'ScaledDoubles'
| 'TrueDoubles' |
'TrueSingles' |
'ForceOff'

MinMaxOverflowLogging {'UseLocalSettings'}
| 'MinMaxAndOverflow'
| 'OverflowOnly' |
'ForceOff'

Enable (EnablePort)

StatesWhenEnabling States when enabling {'held'} | 'reset'

ShowOutputPort Show output port 'on' | {'off'}

ZeroCross Enable zero crossing detection {'on'} | 'off'

Enabled and Triggered Subsystem (SubSystem)

ShowPortLabels Show port labels {'on'} | 'off'

BlockChoice Block choice {''}

TemplateBlock Template block string {''}

MemberBlocks Member blocks string {''}

10-121

10 Model and Block Parameters

Ports & Subsystems Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

Permissions Read/Write permissions {'ReadWrite'}
| 'ReadOnly' |
'NoReadOrWrite'

ErrorFcn Name of error callback
function

string {''}

PermitHierarchical
Resolution

Permit hierarchical resolution {'All'} |
'ParametersOnly' |
'None'

TreatAsAtomicUnit Treat as atomic unit {'on'} | 'off'

MinAlgLoopOccurrences Minimize algebraic loop
occurrences

'on' | {'off'}

PropExecContext
OutsideSubsystem

Propagate execution context
across subsystem boundary

{'on'} | 'off'

CheckFcnCallInp
InsideContextMsg

Warn if function-call inputs
are context-specific

'on' | {'off'}

SystemSampleTime Sample time (-1 for inherited) string {'-1'}

RTWSystemCode Real-Time Workshop system
code

{'Auto'} | 'Inline' |
'Function' | 'Reusable
function'

RTWFcnNameOpts Real-Time Workshop function
name options

{'Auto'} | 'Use subsystem
name' | 'User specified'

RTWFcnName Real-Time Workshop function
name

string {''}

RTWFileNameOpts Real-Time Workshop filename
options

{'Auto'} | 'Use subsystem
name' | 'Use function
name' | 'User specified'

RTWFileName Real-Time Workshop filename
(no extension)

string {''}

10-122

Block-Specific Parameters

Ports & Subsystems Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

DataTypeOverride {'UseLocalSettings'}
| 'ScaledDoubles'
| 'TrueDoubles' |
'TrueSingles' |
'ForceOff'

MinMaxOverflowLogging {'UseLocalSettings'}
| 'MinMaxAndOverflow'
| 'OverflowOnly' |
'ForceOff'

EnabledSubsystem (SubSystem)

ShowPortLabels Show port labels {'on'} | 'off'

BlockChoice Block choice {''}

TemplateBlock Template block string {''}

MemberBlocks Member blocks string {''}

Permissions Read/Write permissions {'ReadWrite'}
| 'ReadOnly' |
'NoReadOrWrite'

ErrorFcn Name of error callback
function

string {''}

PermitHierarchical
Resolution

Permit hierarchical resolution {'All'} |
'ParametersOnly' |
'None'

TreatAsAtomicUnit Treat as atomic unit {'on'} | 'off'

MinAlgLoopOccurrences Minimize algebraic loop
occurrences

'on' | {'off'}

PropExecContext
OutsideSubsystem

Propagate execution context
across subsystem boundary

{'on'} | 'off'

CheckFcnCallInp
InsideContextMsg

Warn if function-call inputs
are context-specific

'on' | {'off'}

SystemSampleTime Sample time (-1 for inherited) string {'-1'}

10-123

10 Model and Block Parameters

Ports & Subsystems Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

RTWSystemCode Real-Time Workshop system
code

{'Auto'} | 'Inline' |
'Function' | 'Reusable
function'

RTWFcnNameOpts Real-Time Workshop function
name options

{'Auto'} | 'Use subsystem
name' | 'User specified'

RTWFcnName Real-Time Workshop function
name

string {''}

RTWFileNameOpts Real-Time Workshop filename
options

{'Auto'} | 'Use subsystem
name' | 'Use function
name' | 'User specified'

RTWFileName Real-Time Workshop filename
(no extension)

string {''}

DataTypeOverride {'UseLocalSettings'}
| 'ScaledDoubles'
| 'TrueDoubles' |
'TrueSingles' |
'ForceOff'

MinMaxOverflowLogging {'UseLocalSettings'}
| 'MinMaxAndOverflow'
| 'OverflowOnly' |
'ForceOff'

For Iterator (ForIterator)

ResetStates States when starting {'held'} | 'reset'

IterationSource Iteration limit source {'internal'} | 'external'

IterationLimit Iteration limit string {'5'}

ExternalIncrement Set next i (iteration variable)
externally

'on' | {'off'}

ShowIterationPort Show iteration variable {'on'} | 'off'

IndexMode Index mode 'Zero-based' |
{'One-based'}

10-124

Block-Specific Parameters

Ports & Subsystems Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

IterationVariable
DataType

Iteration variable data type {'int32'} | 'int16' |
'int8' | 'double'

For Iterator Subsystem (SubSystem)

ShowPortLabels Show port labels {'on'} | 'off'

BlockChoice Block choice {''}

TemplateBlock Template block string {''}

MemberBlocks Member blocks string {''}

Permissions Read/Write permissions {'ReadWrite'}
| 'ReadOnly' |
'NoReadOrWrite'

ErrorFcn Name of error callback
function

string {''}

PermitHierarchical
Resolution

Permit hierarchical resolution {'All'} |
'ParametersOnly' |
'None'

TreatAsAtomicUnit Treat as atomic unit {'on'} | 'off'

MinAlgLoopOccurrences Minimize algebraic loop
occurrences

'on' | {'off'}

PropExecContext
OutsideSubsystem

Propagate execution context
across subsystem boundary

{'on'} | 'off'

CheckFcnCallInp
InsideContextMsg

Warn if function-call inputs
are context-specific

'on' | {'off'}

SystemSampleTime Sample time (-1 for inherited) string{'-1'}

RTWSystemCode Real-Time Workshop system
code

{'Auto'} | 'Inline' |
'Function' | 'Reusable
function'

RTWFcnNameOpts Real-Time Workshop function
name options

{'Auto'} | 'Use subsystem
name' | 'User specified'

10-125

10 Model and Block Parameters

Ports & Subsystems Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

RTWFcnName Real-Time Workshop function
name

string {''}

RTWFileNameOpts Real-Time Workshop filename
options

{'Auto'} | 'Use subsystem
name' | 'Use function
name' | 'User specified'

RTWFileName Real-Time Workshop filename
(no extension)

string {''}

DataTypeOverride {'UseLocalSettings'}
| 'ScaledDoubles'
| 'TrueDoubles' |
'TrueSingles' |
'ForceOff'

MinMaxOverflowLogging {'UseLocalSettings'}
| 'MinMaxAndOverflow'
| 'OverflowOnly' |
'ForceOff'

Function-Call Generator (Function-Call Generator) (masked subsystem)

sample_time Sample time string {'1'}

numberOfIterations Number of iterations string {'1'}

Function-Call Subsystem (SubSystem)

ShowPortLabels Show port labels {'on'} | 'off'

BlockChoice Block choice {''}

TemplateBlock Template block string {''}

MemberBlocks Member blocks string {''}

Permissions Read/Write permissions {'ReadWrite'}
| 'ReadOnly' |
'NoReadOrWrite'

ErrorFcn Name of error callback
function

string {''}

10-126

Block-Specific Parameters

Ports & Subsystems Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

PermitHierarchical
Resolution

Permit hierarchical resolution {'All'} |
'ParametersOnly' |
'None'

TreatAsAtomicUnit Treat as atomic unit {'on'} | 'off'

MinAlgLoopOccurrences Minimize algebraic loop
occurrences

'on' | {'off'}

PropExecContext
OutsideSubsystem

Propagate execution context
across subsystem boundary

{'on'} | 'off'

CheckFcnCallInp
InsideContextMsg

Warn if function-call inputs
are context-specific

'on' | {'off'}

SystemSampleTime Sample time (-1 for inherited) string {'-1'}

RTWSystemCode Real-Time Workshop system
code

{'Auto'} | 'Inline' |
'Function' | 'Reusable
function'

RTWFcnNameOpts Real-Time Workshop function
name options

{'Auto'} | 'Use subsystem
name' | 'User specified'

RTWFcnName Real-Time Workshop function
name

string {''}

RTWFileNameOpts Real-Time Workshop filename
options

{'Auto'} | 'Use subsystem
name' | 'Use function
name' | 'User specified'

RTWFileName Real-Time Workshop filename
(no extension)

string {''}

DataTypeOverride {'UseLocalSettings'}
| 'ScaledDoubles'
| 'TrueDoubles' |
'TrueSingles' |
'ForceOff'

10-127

10 Model and Block Parameters

Ports & Subsystems Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

MinMaxOverflowLogging {'UseLocalSettings'}
| 'MinMaxAndOverflow'
| 'OverflowOnly' |
'ForceOff'

If (If)

NumInputs Number of inputs string {'1'}

IfExpression If expression (e.g., u1 ~= 0) string {'u1 > 0'}

ElseIfExpressions Elseif expressions
(comma-separated list, e.g., u2
~= 0, u3(2) < u2)

string {''}

ShowElse Show else condition {'on'} | 'off'

ZeroCross Enable zero crossing detection {'on'} | 'off'

SampleTime Sample time (-1 for inherited) string {'-1'}

If Action Subsystem (SubSystem)

ShowPortLabels Show port labels {'on'} | 'off'

BlockChoice Block choice {''}

TemplateBlock Template block string {''}

MemberBlocks Member blocks string {''}

Permissions Read/Write permissions {'ReadWrite'}
| 'ReadOnly' |
'NoReadOrWrite'

ErrorFcn Name of error callback
function

string {''}

PermitHierarchical
Resolution

Permit hierarchical resolution {'All'} |
'ParametersOnly' |
'None'

TreatAsAtomicUnit Treat as atomic unit {'on'} | 'off'

10-128

Block-Specific Parameters

Ports & Subsystems Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

MinAlgLoopOccurrences Minimize algebraic loop
occurrences

'on' | {'off'}

PropExecContext
OutsideSubsystem

Propagate execution context
across subsystem boundary

{'on'} | 'off'

CheckFcnCallInp
InsideContextMsg

Warn if function-call inputs
are context-specific

'on' | {'off'}

SystemSampleTime Sample time (-1 for inherited) string {'-1'}

RTWSystemCode Real-Time Workshop system
code

{'Auto'} | 'Inline' |
'Function' | 'Reusable
function'

RTWFcnNameOpts Real-Time Workshop function
name options

{'Auto'} | 'Use subsystem
name' | 'User specified'

RTWFcnName Real-Time Workshop function
name

string {''}

RTWFileNameOpts Real-Time Workshop filename
options

{'Auto'} | 'Use subsystem
name' | 'Use function
name' | 'User specified'

RTWFileName Real-Time Workshop filename
(no extension)

string {''}

DataTypeOverride {'UseLocalSettings'}
| 'ScaledDoubles'
| 'TrueDoubles' |
'TrueSingles' |
'ForceOff'

MinMaxOverflowLogging {'UseLocalSettings'}
| 'MinMaxAndOverflow'
| 'OverflowOnly' |
'ForceOff'

In1 (Inport)

Port Port number string {'1'}

10-129

10 Model and Block Parameters

Ports & Subsystems Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

IconDisplay Icon display 'Signal name' | {'Port
number'} | 'Port number
and signal name'

UseBusObject Specify properties via bus
object

'on' | {'off'}

BusObject Bus object for validating input
bus

string {'BusObject'}

BusOutputAsStruct Output as nonvirtual bus 'on' | {'off'}

PortDimensions Port dimensions (-1 for
inherited)

string {'-1'}

SampleTime Sample time (-1 for inherited) string {'-1'}

DataType Data type {'auto'} | 'double' |
'single' | 'int8' |
'uint8' | 'int16' |
'uint16' | 'int32' |
'uint32' | 'boolean' |
'Specify via dialog'

OutDataType Output data type (e.g., sfix(16),
uint(8), float('single'))

string {'sfix(16)'}

OutScaling Output scaling value (Slope,
e.g., 2^-9 or [Slope Bias], e.g.,
[1.25 3])

string {'2^0'}

SignalType Signal type {'auto'} | 'real' |
'complex'

SamplingMode Sampling mode {'auto'} | 'Sample based' |
’Frame based'

LatchByDelaying
OutsideSignal

Latch input by delaying
outside signal

'on' | {'off'}

LatchByCopying
InsideSignal

Latch input by copying inside
signal

'on' | {'off'}

10-130

Block-Specific Parameters

Ports & Subsystems Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

Interpolate Interpolate data {'on'} | 'off'

Model (ModelReference)

ModelName Model name (without the .mdl
extension)

string {'<Enter Model
Name>'}

ParameterArgumentNames Model arguments string {''}

ParameterArgumentValues Model argument values (for
this instance)

string {''}

AvailSigsInstanceProps handle vector {''}

AvailSigsDefaultProps handle vector {''}

UpdateSigLoggingInfo For internal use

DefaultDataLogging 'on' | {'off'}

Out1 (Outport)

Port Port number string {'1'}

IconDisplay Icon display 'Signal name' | {'Port
number'} | 'Port number
and signal name'

UseBusObject Specify properties via bus
object

'on' | {'off'}

BusObject Bus object for validating input
bus

BusOutputAsStruct Output as nonvirtual bus in
parent model

'on' | {'off'}

PortDimensions Port dimensions (-1 for
inherited)

string {'-1'}

SampleTime Sample time (-1 for inherited) string {'-1'}

10-131

10 Model and Block Parameters

Ports & Subsystems Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

DataType Data type {'auto'} | 'double' |
'single' | 'int8' |
'uint8' | 'int16' |
'uint16' | 'int32' |
'uint32' | 'boolean' |
'Specify via dialog'

OutDataType Output data type (e.g., sfix(16),
uint(8), float('single'))

string {'sfix(16)'}

OutScaling Output scaling value (Slope,
e.g., 2^-9 or [Slope Bias], e.g.,
[1.25 3])

string {'2^0'}

SignalType Signal type {'auto'} | 'real' |
'complex'

SamplingMode Sampling mode {'auto'} | 'Sample based'
| 'Frame based'

OutputWhenDisabled Output when disabled {'held'} | 'reset'

InitialOutput Initial output string {'[]'}

Subsystem (SubSystem)

ShowPortLabels Show port labels {'on'} | 'off'

BlockChoice Block choice {''}

TemplateBlock Template block string {''}

MemberBlocks Member blocks string {''}

Permissions Read/Write permissions {'ReadWrite'}
| 'ReadOnly' |
'NoReadOrWrite'

ErrorFcn Name of error callback
function

string {''}

PermitHierarchical
Resolution

Permit hierarchical resolution {'All'} |
'ParametersOnly' |
'None'

10-132

Block-Specific Parameters

Ports & Subsystems Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

TreatAsAtomicUnit Treat as atomic unit 'on' | {'off'}

MinAlgLoopOccurrences Minimize algebraic loop
occurrences

'on' | {'off'}

PropExecContext
OutsideSubsystem

Propagate execution context
across subsystem boundary

{'on'} | 'off'

CheckFcnCallInp
InsideContextMsg

Warn if function-call inputs
are context-specific

'on' | {'off'}

SystemSampleTime Sample time (-1 for inherited) string {'-1'}

RTWSystemCode Real-Time Workshop system
code

{'Auto'} | 'Inline' |
'Function' | 'Reusable
function'

RTWFcnNameOpts Real-Time Workshop function
name options

{'Auto'} | 'Use subsystem
name' | 'User specified'

RTWFcnName Real-Time Workshop function
name

string {''}

RTWFileNameOpts Real-Time Workshop filename
options

{'Auto'} | 'Use subsystem
name' | 'Use function
name' | 'User specified'

RTWFileName Real-Time Workshop filename
(no extension)

string {''}

DataTypeOverride {'UseLocalSettings'}
| 'ScaledDoubles'
| 'TrueDoubles' |
'TrueSingles' |
'ForceOff'

MinMaxOverflowLogging {'UseLocalSettings'}
| 'MinMaxAndOverflow'
| 'OverflowOnly' |
'ForceOff'

Virtual For internal use

10-133

10 Model and Block Parameters

Ports & Subsystems Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

Switch Case (SwitchCase)

CaseConditions Case conditions (e.g., {1,[2,3]}) string {'{1}'}

CaseShowDefault Show default case {'on'} | 'off'

ZeroCross Enable zero-crossing detection {'on'} | 'off'

SampleTime Sample time (-1 for inherited) string {'-1'}

Switch Case Action Subsystem (SubSystem)

ShowPortLabels Show port labels {'on'} | 'off'

BlockChoice Block choice {''}

TemplateBlock Template block string {''}

MemberBlocks Member blocks string {''}

Permissions Read/Write permissions {'ReadWrite'}
| 'ReadOnly' |
'NoReadOrWrite'

ErrorFcn Name of error callback
function

string {''}

PermitHierarchical
Resolution

Permit hierarchical resolution {'All'} |
'ParametersOnly' |
'None'

TreatAsAtomicUnit Treat as atomic unit {'on'} | 'off'

MinAlgLoopOccurrences Minimize algebraic loop
occurrences

'on' | {'off'}

PropExecContext
OutsideSubsystem

Propagate execution context
across subsystem boundary

{'on'} | 'off'

CheckFcnCallInp
InsideContextMsg

Warn if function-call inputs
are context-specific

'on' | {'off'}

SystemSampleTime Sample time (-1 for inherited) string {'-1'}

10-134

Block-Specific Parameters

Ports & Subsystems Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

RTWSystemCode Real-Time Workshop system
code

{'Auto'} | 'Inline' |
'Function' | 'Reusable
function'

RTWFcnNameOpts Real-Time Workshop function
name options

{'Auto'} | 'Use subsystem
name' | ’User specified’

RTWFcnName Real-Time Workshop function
name

string {''}

RTWFileNameOpts Real-Time Workshop filename
options

{'Auto'} | 'Use subsystem
name' | 'Use function
name' | 'User specified'

RTWFileName Real-Time Workshop filename
(no extension)

string {''}

DataTypeOverride {'UseLocalSettings'}
| 'ScaledDoubles'
| 'TrueDoubles' |
'TrueSingles' |
'ForceOff'

MinMaxOverflowLogging {'UseLocalSettings'}
| 'MinMaxAndOverflow'
| 'OverflowOnly' |
'ForceOff'

Trigger (TriggerPort)

TriggerType Trigger type {'rising'} |
'falling' | 'either' |
'function-call'

StatesWhenEnabling States when enabling {'held'} | 'reset' |
'inherit'

ShowOutputPort Show output port 'on' | {'off'}

OutputDataType Output data type {'auto'} | 'double' |
'int8'

10-135

10 Model and Block Parameters

Ports & Subsystems Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

SampleTimeType Sample time type {'triggered'} |
'periodic'

SampleTime Sample time string {'1'}

ZeroCross Enable zero crossing detection {'on'} | 'off'

Triggered Subsystem (SubSystem)

ShowPortLabels Show port labels {'on'} | 'off'

BlockChoice Block choice {''}

TemplateBlock Template block string {''}

MemberBlocks Member blocks string {''}

Permissions Read/Write permissions {'ReadWrite'}
| 'ReadOnly' |
'NoReadOrWrite'

ErrorFcn Name of error callback
function

string {''}

PermitHierarchical
Resolution

Permit hierarchical resolution {'All'} |
'ParametersOnly' |
'None'

TreatAsAtomicUnit Treat as atomic unit {'on'} | 'off'

MinAlgLoopOccurrences Minimize algebraic loop
occurrences

'on' | {'off'}

PropExecContext
OutsideSubsystem

Propagate execution context
across subsystem boundary

{'on'} | 'off'

CheckFcnCallInp
InsideContextMsg

Warn if function-call inputs
are context-specific

'on' | {'off'}

SystemSampleTime Sample time (-1 for inherited) string {'-1'}

RTWSystemCode Real-Time Workshop system
code

{'Auto'} | 'Inline' |
'Function' | 'Reusable
function'

10-136

Block-Specific Parameters

Ports & Subsystems Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

RTWFcnNameOpts Real-Time Workshop function
name options

{'Auto'} | 'Use subsystem
name' | 'User specified'

RTWFcnName Real-Time Workshop function
name

string {''}

RTWFileNameOpts Real-Time Workshop filename
options

{'Auto'} | 'Use subsystem
name' | 'Use function
name' | 'User specified'

RTWFileName Real-Time Workshop filename
(no extension)

string {''}

DataTypeOverride {'UseLocalSettings'}
| 'ScaledDoubles'
| 'TrueDoubles' |
'TrueSingles' |
'ForceOff'

MinMaxOverflowLogging {'UseLocalSettings'}
| 'MinMaxAndOverflow'
| 'OverflowOnly' |
'ForceOff'

While Iterator (WhileIterator)

MaxIters Maximum number of
iterations (-1 for unlimited)

string {'5'}

WhileBlockType While loop type {'while'} | 'do-while'

ResetStates States when starting {'held'} | 'reset'

ShowIterationPort Show iteration number port 'on' | {'off'}

OutputDataType Output data type {'int32'} | 'int16' |
'int8' | 'double'

While Iterator Subsystem (SubSystem)

ShowPortLabels Show port labels {'on'} | 'off'

BlockChoice Block choice {''}

10-137

10 Model and Block Parameters

Ports & Subsystems Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

TemplateBlock Template block string {''}

MemberBlocks Member blocks string {''}

Permissions Read/Write permissions {'ReadWrite'}
| 'ReadOnly' |
'NoReadOrWrite'

ErrorFcn Name of error callback
function

string {''}

PermitHierarchical
Resolution

Permit hierarchical resolution {'All'} |
'ParametersOnly' |
'None'

TreatAsAtomicUnit Treat as atomic unit {'on'} | 'off'

MinAlgLoopOccurrences Minimize algebraic loop
occurrences

'on' | {'off'}

PropExecContext
OutsideSubsystem

Propagate execution context
across subsystem boundary

{'on'} | 'off'

CheckFcnCallInp
InsideContextMsg

Warn if function-call inputs
are context-specific

'on' | {'off'}

SystemSampleTime Sample time (-1 for inherited) string {'-1'}

RTWSystemCode Real-Time Workshop system
code

{'Auto'} | 'Inline' |
'Function' | 'Reusable
function'

RTWFcnNameOpts Real-Time Workshop function
name options

{'Auto'} | 'Use subsystem
name' | 'User specified'

RTWFcnName Real-Time Workshop function
name

string {''}

RTWFileNameOpts Real-Time Workshop filename
options

{'Auto'} | 'Use subsystem
name' | 'Use function
name' | 'User specified'

RTWFileName Real-Time Workshop filename
(no extension)

string {''}

10-138

Block-Specific Parameters

Ports & Subsystems Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

DataTypeOverride {'UseLocalSettings'}
| 'ScaledDoubles'
| 'TrueDoubles' |
'TrueSingles' |
'ForceOff'

MinMaxOverflowLogging {'UseLocalSettings'}
| 'MinMaxAndOverflow'
| 'OverflowOnly' |
'ForceOff'

Signal Attributes Library Block Parameters

Block (Type)/Parameter Dialog Box Prompt Values

Data Type Conversion (DataTypeConversion)

OutDataTypeMode Output data type mode 'double' | 'single'
| 'int8' | 'uint8' |
'int16' | 'uint16' |
'int32' | 'uint32' |
'boolean' | 'Specify via
dialog' | {'Inherit via
back propagation'}

OutDataType Output data type (e.g., sfix(16),
uint(8), float('single'))

string {'sfix(16)'}

OutScaling Output scaling value (Slope,
e.g., 2^-9 or [Slope Bias], e.g.,
[1.25 3])

string {'2^0'}

LockScale Lock output scaling against
changes by the autoscaling
tool

'on' | {'off'}

ConvertRealWorld Input and output to have equal {'Real World Value
(RWV)'} | 'Stored Integer
(SI)'

10-139

10 Model and Block Parameters

Signal Attributes Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

RndMeth Round integer calculations
toward

'Zero' | 'Nearest' |
'Ceiling' | {'Floor'}

SaturateOnInteger
Overflow

Saturate on integer overflow 'on' | {'off'}

SampleTime Sample time (-1 for inherited) string {'-1'}

Data Type Conversion Inherited (Conversion Inherited) (masked subsystem)

ConvertRealWorld Input and Output to have
equal

{'Real World Value'} |
'Stored Integer'

RndMeth Round toward 'Zero' | 'Nearest' |
'Ceiling' | {'Floor'}

DoSatur Saturate to max or min when
overflows occur

'on' | {'off'}

Data Type Duplicate (Data Type Duplicate) (masked subsystem)

NumInputPorts Number of input ports string {'2'}

Data Type Propagation (Data Type Propagation) (masked subsystem)

PropDataTypeMode 1. Propagated data type 'Specify via dialog' |
{'Inherit via propagation
rule'}

PropDataType 1.1. Propagated data
type: ex. sfix(16), uint(8),
float('single')

string {'sfix(16)'}

IfRefDouble 1.1. If any reference input is
double, output is

{'double'} | 'single'

IfRefSingle 1.2. If any reference input is
single, output is

'double' | {'single'}

IsSigned 1.3. Is-Signed 'IsSigned1' | 'IsSigned2'
| {'IsSigned1 or
IsSigned2'} | 'TRUE' |
'FALSE'

10-140

Block-Specific Parameters

Signal Attributes Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

NumBitsBase 1.4.1. Number-of-Bits: Base 'NumBits1' | 'NumBits2'
| {'max([NumBits1
NumBits2])'} |
'min([NumBits1
NumBits2])' |
'NumBits1+NumBits2'

NumBitsMult 1.4.2. Number-of-Bits:
Multiplicative adjustment

string {'1'}

NumBitsAdd 1.4.3. Number-of-Bits:
Additive adjustment

string {'0'}

NumBitsAllowFinal 1.4.4. Number-of-Bits:
Allowable final values

string {'1:128'}

PropScalingMode 2. Propagated scaling 'Specify via dialog' |
{'Inherit via propagation
rule'} | 'Obtain via best
precision'

PropScaling 2.1. Propagated scaling: Slope
or [Slope Bias] ex. 2^-9

string {'2^-10'}

ValuesUsedBestPrec 2.1. Values used to determine
best precision scaling

string {'[5 -7]'}

SlopeBase 2.1.1. Slope: Base 'Slope1' | 'Slope2' |
'max([Slope1 Slope2])' |
{'min([Slope1 Slope2])'}
| 'Slope1*Slope2' |
'Slope1/Slope2' |
'PosRange1' | 'PosRange2'
| 'max([PosRange1
PosRange2])' |
'min([PosRange1
PosRange2])' |
'PosRange1*PosRange2'
| 'PosRange1/PosRange2'

10-141

10 Model and Block Parameters

Signal Attributes Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

SlopeMult 2.1.2. Slope: Multiplicative
adjustment

string {'1'}

SlopeAdd 2.1.3. Slope: Additive
adjustment

string {'0'}

BiasBase 2.2.1. Bias: Base {'Bias1'} | 'Bias2' |
'max([Bias1 Bias2])' |
'min([Bias1 Bias2])'
| 'Bias1*Bias2' |
'Bias1/Bias2' |
'Bias1+Bias2' |
'Bias1-Bias2'

BiasMult 2.2.2. Bias: Multiplicative
adjustment

string {'1'}

BiasAdd 2.2.3. Bias: Additive
adjustment

string {'0'}

Data Type Scaling Strip (Scaling Strip) (masked subsystem)

IC (InitialCondition)

Value Initial value string {'1'}

SampleTime Sample time (-1 for inherited) string {'-1'}

Probe (Probe)

ProbeWidth Probe width {'on'} | 'off'

ProbeSampleTime Probe sample time {'on'} | 'off'

ProbeComplexSignal Detect complex signal {'on'} | 'off'

ProbeSignalDimensions Probe signal dimensions {'on'} | 'off'

ProbeFramedSignal Detect framed signal {'on'} | 'off'

10-142

Block-Specific Parameters

Signal Attributes Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

ProbeWidthDataType Data type for width {'double'} | 'single'
| 'int8' | 'uint8' |
'int16' | 'uint16' |
'int32' | 'uint32' |
'boolean' | 'Same as
input'

ProbeSampleTimeDataType Data type for sample time {'double'} | 'single'
| 'int8' | 'uint8' |
'int16' | 'uint16' |
'int32' | 'uint32' |
'boolean' | 'Same as
input'

ProbeComplexityDataType Data type for signal complexity {'double'} | 'single'
| 'int8' | 'uint8' |
'int16' | 'uint16' |
'int32' | 'uint32' |
'boolean' | 'Same as
input'

ProbeDimensionsDataType Data type for signal
dimensions

{'double'} | 'single'
| 'int8' | 'uint8' |
'int16' | 'uint16' |
'int32' | 'uint32' |
'boolean' | 'Same as
input'

ProbeFrameDataType Data type for signal frames {'double'} | 'single'
| 'int8' | 'uint8' |
'int16' | 'uint16' |
'int32' | 'uint32' |
'boolean' | 'Same as
input'

Rate Transition (RateTransition)

Integrity Ensure data integrity during
data transfer

{'on'} | 'off'

10-143

10 Model and Block Parameters

Signal Attributes Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

Deterministic Ensure deterministic data
transfer (maximum delay)

{'on'} | 'off'

X0 Initial conditions string {'0'}

OutPortSampleTime Output port sample time string {'-1'}

Signal Conversion (SignalConversion)

ConversionOutput Output {'Contiguous copy'} |
'Bus copy' | 'Virtual
bus' | 'Nonvirtual bus'

OverrideOpt Override optimizations and
always copy signal

'on' | {'off'}

Signal Specification (SignalSpecification)

Dimensions Dimensions (-1 for inherited) string {'-1'}

SampleTime Sample time (-1 for inherited) string {'-1'}

DataType Data type {'auto'} | 'double' |
'single' | 'int8' |
'uint8' | 'int16' |
'uint16' | 'int32' |
'uint32' | 'boolean' |
'Specify via dialog'

OutDataType Output data type (e.g., sfix(16),
uint(8), float('single'))

string {'sfix(16)'}

OutScaling Output scaling value (Slope,
e.g., 2^-9 or [Slope Bias], e.g.,
[1.25 3])

string {'2^0'}

SignalType Signal type {'auto'} | 'real' |
'complex'

SamplingMode Sampling mode {'auto'} | 'Sample based'
| 'Frame based'

Weighted Sample Time (Sample Time Math) (masked subsystem)

10-144

Block-Specific Parameters

Signal Attributes Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

TsampMathOp Operation '+' | '-' | '*' | '/' |
{'Ts Only'} | '1/Ts Only'

weightValue Weight value string {'1.0'}

TsampMathImp Implement using {'Online Calculations'}
| 'Offline Scaling
Adjustment'

OutputDataTypeScaling
Mode

Output data type and scaling {'Inherit via internal
rule'} | 'Inherit via
back propagation'

RndMeth Round toward 'Zero' | 'Nearest' |
'Ceiling' | {'Floor'}

DoSatur Saturate to max or min when
overflows occur

'on' | {'off'}

Width (Width)

OutputDataTypeScaling
Mode

Output data type mode {'Choose intrinsic data
type'} | 'Inherit via
back propagation' | 'All
ports same datatype'

DataType Output data type {'double'} | 'single'
| 'int8' | 'uint8' |
'int16' | 'uint16' |
'int32' | 'uint32'

Signal Routing Library Block Parameters

Block (Type)/Parameter Dialog Box Prompt Values

Bus Assignment (BusAssignment)

AssignedSignals Signals that are being
assigned

string {''}

InputSignals Signals in the bus matrix {'{}'}

10-145

10 Model and Block Parameters

Signal Routing Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

Bus Creator (BusCreator)

Inputs Number of inputs. Can
be an integer or a
comma-separated list
of signal names. For
example, set_param(gcb,
'''a'',''b''); sets the
currently selected Bus
Creator block two have two
inputs named a and b.

string {'2'}

DisplayOption 'none' | 'signals' | {'bar'}

UseBusObject Specify properties via bus
object

’on' | {'off'}

BusObject For internal use

NonVirtualBus Output as nonvirtual bus 'on' | {'off'}

Bus Selector (BusSelector)

OutputSignals Specifies the names of the
input bus signals selected for
output. Corresponds to the
Selected signals list on the
block’s parameter dialog box.

string {'signal1,signal2'}

OutputAsBus Output as bus 'on' | {'off'}

InputSignals Specifies the names of
the signal elements of the
bus connected to the Bus
Selector’s input port.

matrix {'{}'}

Data Store Memory (DataStoreMemory)

DataStoreName Data store name string {'A'}

ReadBeforeWriteMsg Detect read before write 'none' | {'warning'} |
'error'

10-146

Block-Specific Parameters

Signal Routing Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

WriteAfterWriteMsg Detect write after write 'none' | {'warning'} |
'error'

WriteAfterReadMsg Detect write after read 'none' | {'warning'} |
'error'

InitialValue Initial value string {'0'}

StateMustResolveTo
SignalObject

Data store name must
resolve to Simulink signal
object

'on' | {'off'}

RTWStateStorageClass RTW storage class {'Auto'} | 'ExportedGlobal'
| 'ImportedExtern' |
'ImportedExternPointer'

RTWStateStorageType
Qualifier

RTW type qualifier string {''}

VectorParams1D Interpret vector parameters
as 1-D

{'on'} | 'off'

ShowAdditionalParam Show additional parameters 'on' | {'off'}

DataType Data type {'auto'} | 'double' |
'single' | 'int8' | 'uint8'
| 'int16' | 'uint16' |
'int32' | 'uint32' |
'boolean' | 'Specify via
dialog'

OutDataType Output data type
(e.g., sfix(16), uint(8),
float('single'))

string {'sfix(16)'}

OutScaling Output scaling value (Slope,
e.g., 2^-9 or [Slope Bias], e.g.,
[1.25 3])

string {'2^0'}

SignalType Signal type {'auto'} | 'real' |
'complex'

Data Store Read (DataStoreRead)

10-147

10 Model and Block Parameters

Signal Routing Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

DataStoreName Data store name string {'A'}

SampleTime Sample time string {'0'}

Data Store Write (DataStoreWrite)

DataStoreName Data store name string {'A'}

SampleTime Sample time (-1 for inherited) string {'-1'}

Demux (Demux)

Outputs Number of outputs string {'2'}

DisplayOption Display option 'none' | {'bar'}

BusSelectionMode Bus selection mode 'on' | {'off'}

Environment Controller (Environment Controller) (masked subsystem)

From (From)

GotoTag Goto tag string {'A'}

IconDisplay Icon display 'Signal name' | {'Tag'} |
'Tag and signal name'

Goto (Goto)

GotoTag Tag string {'A'}

IconDisplay Icon display 'Signal name' | {'Tag'} |
'Tag and signal name'

TagVisibility Tag visibility {'local'} | 'scoped' |
'global'

Goto Tag Visibility (GotoTagVisibility)

GotoTag Goto tag string
{'A'}

Index Vector (MultiPortSwitch)

Inputs Number of inputs string {'1'}

zeroidx Use zero-based indexing {'on'} | 'off'

10-148

Block-Specific Parameters

Signal Routing Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

InputSameDT Require all data port inputs
to have same data type

'on' | {'off'}

OutDataTypeMode Output data type mode {'Inherit via internal
rule'} | 'Inherit via back
propagation'

RndMeth Round integer calculations
toward

'Zero' | 'Nearest' |
'Ceiling' | {'Floor'}

SaturateOnInteger
Overflow

Saturate on integer overflow 'on' | {'off'}

SampleTime Sample time (-1 for inherited) string {'-1'}

Manual Switch (Manual Switch) (masked subsystem)

sw Current setting string {'1'}

action Action string {'0'}

Merge (Merge)

Inputs Number of inputs string {'2'}

InitialOutput Initial output string {'[]'}

AllowUnequalInput
PortWidths

Allow unequal port widths 'on' | {'off'}

InputPortOffsets Input port offsets string {'[]'}

Multiport Switch (MultiPortSwitch)

Inputs Number of inputs string {'3'}

zeroidx Use zero-based indexing 'on' | {'off'}

InputSameDT Require all data port inputs
to have same data type

'on' | {'off'}

OutDataTypeMode Output data type mode {'Inherit via internal
rule'} | 'Inherit via back
propagation'

10-149

10 Model and Block Parameters

Signal Routing Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

RndMeth Round integer calculations
toward

'Zero' | 'Nearest' |
'Ceiling' | {'Floor'}

SaturateOnInteger
Overflow

Saturate on integer overflow 'on' | {'off'}

SampleTime Sample time (-1 for inherited) string {'-1'}

Mux (Mux)

Inputs Number of inputs string {'2'}

DisplayOption Display option 'none' | 'signals' | {'bar'}

UseBusObject For internal use

BusObject For internal use

NonVirtualBus For internal use

Selector (Selector)

InputType Input type {'Vector'} | 'Matrix'

IndexMode Index mode 'Zero-based' | {'One-based'}

ElementSrc Source of element indices (E) {'Internal'} | 'External'

Elements Elements (-1 for all elements) string {'[1 3]'}

RowSrc Source of row indices (R) {'Internal'} | 'External'

Rows Rows (-1 for all rows) string {'1'}

ColumnSrc Source of column indices (C) {'Internal'} | 'External'

Columns Columns (-1 for all columns) string {'1'}

InputPortWidth Input port width string {'3'}

IndexIsStartValue Use index as starting value 'on' | {'off'}

OutputPortSize Output port dimensions string {'1'}

Switch (Switch)

Criteria Criteria for passing first
input

{'u2 >= Threshold'} | 'u2 >
Threshold' | 'u2 ~= 0'

10-150

Block-Specific Parameters

Signal Routing Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

Threshold Threshold string {'0'}

InputSameDT Require all data port inputs
to have same data type

'on' | {'off'}

OutDataTypeMode Output data type mode {'Inherit via internal
rule'} | 'Inherit via back
propagation'

RndMeth Round integer calculations
toward

'Zero' | 'Nearest' |
'Ceiling' | {'Floor'}

SaturateOnInteger
Overflow

Saturate on integer overflow 'on' | {'off'}

ZeroCross Enable zero crossing
detection

{'on'} | 'off'

SampleTime Sample time (-1 for inherited) string {'-1'}

Sinks Library Block Parameters

Block (Type)/Parameter Dialog Box Prompt Values

Display (Display)

Format Format {'short'} | 'long' |
'short_e' | 'long_e' |
'bank' | 'hex (Stored
Integer)' | 'binary
(Stored Integer)'
| 'decimal (Stored
Integer)' | 'octal
(Stored Integer)'

Decimation Decimation string {'1'}

Floating Floating display 'on' | {'off'}

SampleTime Sample time (-1 for inherited) string {'-1'}

Floating Scope (Scope)

10-151

10 Model and Block Parameters

Sinks Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

Floating {'on'} | 'off'

Location rectangle {'[376 294 700
533]'}

Open 'on' | {'off'}

NumInputPorts string {'1'}

TickLabels 'on' | 'off' |
{'OneTimeTick'}

ZoomMode {'on'} | 'xonly' |
'yonly'

AxesTitles list

Grid ’off' | {'on'} | 'xonly' |
'yonly'

TimeRange string {'auto'}

YMin string {'-5'}

YMax string {'5'}

SaveToWorkspace 'on' | {'off'}

SaveName string {'ScopeData'}

DataFormat {'StructureWithTime'} |
'Structure' | 'Array'

LimitDataPoints {'on'} | 'off'

MaxDataPoints string {'5000'}

Decimation string {'1'}

SampleInput 'on' | {'off'}

SampleTime string {'0'}

Out1 (Outport)

Port Port number string {'1'}

10-152

Block-Specific Parameters

Sinks Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

IconDisplay Icon display 'Signal name' | {'Port
number'} | 'Port number
and signal name'

UseBusObject Specify properties via bus
object

'on' | {'off'}

BusObject For internal use

BusOutputAsStruct Output as nonvirtual bus in
parent model

'on' | {'off'}

PortDimensions Port dimensions (-1 for
inherited)

string {'-1'}

SampleTime Sample time (-1 for inherited) string {'-1'}

DataType Data type {'auto'} | 'double' |
'single' | 'int8' |
'uint8' | 'int16' |
'uint16' | 'int32' |
'uint32' | 'boolean' |
'Specify via dialog'

OutDataType Output data type (e.g., sfix(16),
uint(8), float('single'))

string {'sfix(16)'}

OutScaling Output scaling value (Slope,
e.g., 2^-9 or [Slope Bias], e.g.,
[1.25 3])

string {'2^0'}

SignalType Signal type {'auto'} | 'real' |
'complex'

SamplingMode Sampling mode {'auto'} | 'Sample based'
| 'Frame based'

10-153

10 Model and Block Parameters

Sinks Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

OutputWhenDisabled Output when disabled {'held'} | 'reset'

InitialOutput Initial output string {'[]'}

Scope (Scope)

Floating 'on' | {'off'}

Location rectangle {'[188 390 512
629]'}

Open 'on' | {'off'}

NumInputPorts string {'1'}

TickLabels 'on' | 'off' |
{'OneTimeTick'}

ZoomMode {'on'} | 'xonly' |
'yonly'

AxesTitles list

Grid 'off' | {'on'} | 'xonly'
| 'yonly'

TimeRange string {'auto'}

YMin string {'-5'}

YMax string {'5'}

SaveToWorkspace 'on' | {'off'}

SaveName string {'ScopeData1'}

DataFormat {'StructureWithTime'} |
'Structure' | 'Array'

LimitDataPoints {'on'} | 'off'

MaxDataPoints string {'5000'}

Decimation string {'1'}

SampleInput 'on' | {'off'}

SampleTime string {'0'}

10-154

Block-Specific Parameters

Sinks Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

Stop Simulation

Terminator

To File (ToFile)

Filename Filename string {'untitled.mat'}

MatrixName Variable name string {'ans'}

Decimation Decimation string {'1'}

SampleTime Sample time (-1 for inherited) string {'-1'}

To Workspace (ToWorkspace)

VariableName Variable name string {'simout'}

MaxDataPoints Limit data points to last string {'inf'}

Decimation Decimation string {'1'}

SampleTime Sample time (-1 for inherited) string {'-1'}

SaveFormat Save format 'Structure With Time' |
{'Structure'} | 'Array'

FixptAsFi Log fixed-point data as an fi
object

'on' | {'off'}

XY Graph (XY scope) (masked subsystem)

xmin x-min string {'-1'}

xmax x-max string {'1'}

ymin y-min string {'-1'}

10-155

10 Model and Block Parameters

Sinks Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

ymax y-max string {'1'}

st Sample time string {'-1'}

Sources Library Block Parameters

Block (Type)/Parameter Dialog Box Prompt Values

Band-Limited White Noise (Band-Limited White Noise) (masked subsystem)

Cov Noise power string {'[0.1]'}

Ts Sample time string {'0.1'}

seed Seed string {'[23341]'}

VectorParams1D Interpret vector parameters as
1-D

{'on'} | 'off'

Chirp Signal (chirp) (masked subsystem)

f1 Initial frequency (Hz) string {'0.1'}

T Target time (secs) string {'100'}

f2 Frequency at target time (Hz) string {'1'}

VectorParams1D Interpret vectors parameters
as 1-D

{'on'} | 'off'

Clock (Clock)

DisplayTime Display time 'on' | {'off'}

Decimation Decimation string
{'10'}

Constant (Constant)

Value Constant value string {'1'}

VectorParams1D Interpret vector parameters as
1-D

{'on'} | 'off'

10-156

Block-Specific Parameters

Sources Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

OutDataTypeMode Output data type mode ’double' | 'single' |
'int8' | 'uint8' |
'int16' | 'uint16' |
'int32' | 'uint32' |
'boolean' | 'Specify
via dialog' | {'Inherit
from 'Constant value''}
| 'Inherit via back
propagation'

OutDataType Output data type (e.g., sfix(16),
uint(8), float('single'))

string {'sfix(16)'}

ConRadixGroup Output scaling mode {'Use specified scaling'}
| 'Best Precision:
Vector-wise'

OutScaling Output scaling value (Slope,
e.g., 2^-9 or [Slope Bias], e.g.,
[1.25 3])

string {'2^0'}

SampleTime Sample time string {'inf'}

Counter Free-Running (Counter Free-Running) (masked subsystem)

NumBits Number of Bits string {'16'}

tsamp Sample time string {'-1'}

Counter Limited (Counter Limited) (masked subsystem)

uplimit Upper limit string {'7'}

tsamp Sample time string {'-1'}

Digital Clock (DigitalClock)

SampleTime Sample time string {'1'}

From File (FromFile)

FileName Filename string {'untitled.mat'}

SampleTime Sample time string {'0'}

10-157

10 Model and Block Parameters

Sources Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

From Workspace (FromWorkspace)

VariableName Data string {'simin'}

SampleTime Sample time string {'0'}

Interpolate Interpolate data {'on'} | 'off'

ZeroCross Enable zero crossing detection {'on'} | 'off'

OutputAfterFinalValue Form output after final data
value by

{'Extrapolation'} |
'Setting to zero' |
'Holding final value'
| 'Cyclic repetition'

Ground

In1 (Inport)

Port Port number string {'1'}

IconDisplay Icon display 'Signal name' | {'Port
number'} | 'Port number
and signal name'

UseBusObject Specify properties via bus
object

'on' | {'off'}

BusObject For internal use

BusOutputAsStruct Output as nonvirtual bus 'on' | {'off'}

PortDimensions Port dimensions (-1 for
inherited)

string {'-1'}

SampleTime Sample time (-1 for inherited) string {'-1'}

DataType Data type {'auto'} | 'double' |
'single' | 'int8' |
'uint8' | 'int16' |
'uint16' | 'int32' |
'uint32' | 'boolean' |
'Specify via dialog'

10-158

Block-Specific Parameters

Sources Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

OutDataType Output data type (e.g., sfix(16),
uint(8), float('single'))

string {'sfix(16)'}

OutScaling Output scaling value (Slope,
e.g., 2^-9 or [Slope Bias], e.g.,
[1.25 3])

string {'2^0'}

SignalType Signal type {'auto'} | 'real' |
'complex'

SamplingMode Sampling mode {'auto'} | 'Sample based'
| 'Frame based'

LatchInput Latch (buffer) input 'on' | {'off'}

Interpolate Interpolate data {'on'} | 'off'

Pulse Generator (DiscretePulseGenerator)

PulseType Pulse type {'Time based'} | 'Sample
based'

TimeSource Time (t) {'Use simulation time'} |
'Use external signal'

Amplitude Amplitude string {'1'}

Period Period string {'2'}

PulseWidth Pulse width string {'50'}

PhaseDelay Phase delay string {'0'}

SampleTime Sample time string {'1'}

VectorParams1D Interpret vector parameters as
1-D

{'on'} | 'off'

Ramp (Ramp) (masked subsystem)

slope Slope string {'1'}

start Start time string {'0'}

X0 Initial output string {'0'}

10-159

10 Model and Block Parameters

Sources Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

VectorParams1D Interpret vector parameters as
1-D

{'on'} | 'off'

Random Number (RandomNumber)

Mean Mean string {'0'}

Variance Variance string {'1'}

Seed Initial seed string {'0'}

SampleTime Sample time string {'0'}

VectorParams1D Interpret vector parameters as
1-D

{'on'} | 'off'

Repeating Sequence (Repeating table) (masked subsystem)

rep_seq_t Time values string {'[0 2]'}

rep_seq_y Output values string {'[0 2]'}

Repeating Sequence Interpolated (Repeating Sequence Interpolated) (masked subsystem)

OutValues Vector of output values string {'[3 1 4 2 1].''}

TimeValues Vector of time values string {'[0 0.1 0.5 0.6
1].''}

LookUpMeth Lookup method {'Interpolation-Use End
Values'} | 'Use Input
Nearest' | 'Use Input
Below' | 'Use Input
Above'

tsamp Sample time string {'0.01'}

OutputDataTypeScaling
Mode

Output data type and scaling {'Specify via dialog'}
| 'Inherit via back
propagation'

OutDataType Output data type: ex. sfix(16),
uint(8), float('single')

string {'float('double')'}

10-160

Block-Specific Parameters

Sources Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

OutScaling Output scaling: Slope or [Slope
Bias] ex. 2^-9

string {'2^-10'}

LockScale Lock output scaling against
changes by the autoscaling
tool

'on' | {'off'}

Repeating Sequence Stair (Repeating Sequence Stair) (masked subsystem)

OutValues Vector of output values string {'[3 1 4 2 1].''}

tsamp Sample time string {'-1'}

OutputDataTypeScaling
Mode

Output data type and scaling {'Specify via dialog'}
| 'Inherit via back
propagation'

OutDataType Output data type: ex. sfix(16),
uint(8), float('single')

string {'float('double')'}

ConRadixGroup Output scaling mode 'Use Specified Scaling'
| {'Best Precision:
Vector-wise'}

OutScaling Output scaling: Slope or [Slope
Bias] ex. 2^-9

string {'2^-12'}

LockScale Lock output scaling against
changes by the autoscaling
tool

'on' | {'off'}

Signal Builder (Sigbuilder block) (masked subsystem)

Signal Generator (SignalGenerator)

WaveForm Wave form {'sine'} | 'square' |
'sawtooth' | 'random'

TimeSource Time (t) {'Use simulation time'} |
'Use external signal'

Amplitude Amplitude string {'1'}

Frequency Frequency string {'1'}

10-161

10 Model and Block Parameters

Sources Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

Units Units 'rad/sec' | {'Hertz'}

VectorParams1D Interpret vector parameters as
1-D

{'on'} | 'off'

Sine Wave (Sin)

SineType Sine type {'Time based'} | 'Sample
based'

TimeSource Time (t) {'Use simulation time'} |
'Use external signal'

Amplitude Amplitude string {'1'}

Bias Bias string {'0'}

Frequency Frequency (rad/sec) string {'1'}

Phase Phase (rad) string {'0'}

Samples Samples per period string {'10'}

Offset Number of offset samples string {'0'}

SampleTime Sample time string {'0'}

VectorParams1D Interpret vector parameters as
1-D

{'on'} | 'off'

Step (Step)

Time Step time string {'1'}

Before Initial value string {'0'}

After Final value string {'1'}

SampleTime Sample time string {'0'}

VectorParams1D Interpret vector parameters as
1-D

{'on'} | 'off'

ZeroCross Enable zero crossing detection {'on'} | 'off'

Uniform Random Number (UniformRandomNumber)

10-162

Block-Specific Parameters

Sources Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

Minimum Minimum string {'-1'}

Maximum Maximum string {'1'}

Seed Initial seed string {'0'}

SampleTime Sample time string {'0'}

VectorParams1D Interpret vector parameters as
1-D

{'on'} | 'off'

User-Defined Functions Library Block Parameters

Block (Type)/Parameter Dialog Box Prompt Values

Embedded MATLAB Fcn (Stateflow) (masked subsystem)

Fcn (Fcn)

Expr Expression string
{'sin(u(1)*exp(2.3*(-u(2))))'}

SampleTime Sample time (-1 for
inherited)

string {'-1'}

Level-2 M-file S-Function (M-S-Function)

FunctionName M-file name string {'mlfile'}

Parameters Parameters string {''}

MATLAB Fcn (MATLABFcn)

MATLABFcn MATLAB function string {'sin'}

OutputDimensions Output dimensions string {'-1'}

OutputSignalType Output signal type {'auto'} | 'real' | 'complex'

Output1D Collapse 2-D results to
1-D

{'on'} | 'off'

SampleTime Sample time (-1 for
inherited)

string {'-1'}

10-163

10 Model and Block Parameters

User-Defined Functions Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

S-Function (S-Function)

FunctionName S-function name string {'system'}

Parameters S-function parameters string {''}

SFunctionModules S-function modules string {''}

S-Function Builder (S-Function Builder) (masked subsystem)

FunctionName S-function name string {'system'}

Parameters S-function parameters string {''}

SFunctionModules S-function modules string {''}

Additional Discrete Block Library Parameters

Block (Type)/Parameter Dialog Box Prompt Values

Fixed-Point State-Space (Fixed-Point State-Space) (masked subsystem)

A State Matrix A string {'[2.6020 -2.2793
0.6708; 1 0 0; 0 1 0]'}

B Input Matrix B string {'[1; 0; 0]'}

C Output Matrix C string {'[0.0184 0.0024
0.0055]'}

D Direct Feedthrough Matrix D string {'[0.0033]'}

X0 Initial condition for state string {'0.0'}

InternalDataType Data type for internal
calculations: ex. sfix(16),
uint(8), float('single')

string {'float('double')'}

StateEqScaling Scaling for State Equation
AX+BU: ex. 2^-9

string {'2^0'}

OutputEqScaling Scaling for Output Equation
CX+DU: ex. 2^-9

string {'2^0'}

10-164

Block-Specific Parameters

Additional Discrete Block Library Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

LockScale Lock output scaling against
changes by the autoscaling
tool

'on' | {'off'}

RndMeth Round toward 'Zero' | 'Nearest' |
'Ceiling' | {'Floor'}

DoSatur Saturate to max or min when
overflows occur

'on' | {'off'}

Transfer Fcn Direct Form II (Transfer Fcn Direct Form II) (masked subsystem)

NumCoefVec Numerator coefficients string {'[0.2 0.3 0.2]'}

DenCoefVec Denominator coefficients
excluding lead (which must be
1.0)

string {'[-0.9 0.6]'}

vinit Initial condition string {'0.0'}

RndMeth Round toward 'Zero' | 'Nearest' |
'Ceiling' | {'Floor'}

DoSatur Saturate to max or min when
overflows occur

'on' | {'off'}

Transfer Fcn Direct Form II Time Varying (Transfer Fcn Direct Form II Time Varying)
(masked subsystem)

vinit Initial condition string {'0.0'}

RndMeth Round toward 'Zero' | 'Nearest' |
'Ceiling' | {'Floor'}

DoSatur Saturate to max or min when
overflows occur

'on' | {'off'}

Unit Delay Enabled (Unit Delay Enabled) (masked subsystem)

vinit Initial condition string {'0.0'}

tsamp Sample time string {'-1'}

Unit Delay Enabled External IC (Unit Delay Enabled External Initial Condition)
(masked subsystem)

10-165

10 Model and Block Parameters

Additional Discrete Block Library Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

tsamp Sample time string {'-1'}

Unit Delay Enabled Resettable (Unit Delay Enabled Resettable) (masked subsystem)

vinit Initial condition string
{'0.0'}

tsamp Sample time string
{'-1'}

Unit Delay Enabled Resettable External IC (Unit Delay Enabled Resettable External
Initial Condition) (masked subsystem)

tsamp Sample time string {'-1'}

Unit Delay External IC (Unit Delay External Initial Condition) (masked subsystem)

tsamp Sample time string {'-1'}

Unit Delay Resettable (Unit Delay Resettable) (masked subsystem)

vinit Initial condition string {'0.0'}

tsamp Sample time string {'-1'}

Unit Delay Resettable External IC (Unit Delay Resettable External Initial Condition)
(masked subsystem)

tsamp Sample time string {'-1'}

Unit Delay With Preview Enabled (Unit Delay With Preview Enabled) (masked subsystem)

vinit Initial condition string {'0.0'}

tsamp Sample time string {'-1'}

Unit Delay With Preview Enabled Resettable (Unit Delay With Preview Enabled
Resettable) (masked subsystem)

vinit Initial condition string {'0.0'}

tsamp Sample time string {'-1'}

Unit Delay With Preview Enabled Resettable External RV (Unit Delay With Preview
Enabled Resettable External RV) (masked subsystem)

vinit Initial condition string {'0.0'}

10-166

Block-Specific Parameters

Additional Discrete Block Library Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

tsamp Sample time string {'-1'}

Unit Delay With Preview Resettable (Unit Delay With Preview Resettable) (masked
subsystem)

vinit Initial condition string
{’0.0’}

tsamp Sample time string
{’-1’}

Unit Delay With Preview Resettable External RV (Unit Delay With Preview Resettable
External RV) (masked subsystem)

vinit Initial condition string {'0.0'}

tsamp Sample time string {'-1'}

Additional Math: Increment - Decrement Block Parameters

Block (Type)/Parameter Dialog Box Prompt Values

Decrement Real World (Real World Value Decrement) (masked subsystem)

Decrement Stored Integer (Stored Integer Value Decrement) (masked subsystem)

Decrement Time To Zero (Decrement Time To Zero) (masked subsystem)

Decrement To Zero (Decrement To Zero) (masked subsystem)

Increment Real World (Real World Value Increment) (masked subsystem)

Increment Stored Integer (Stored Integer Value Increment) (masked subsystem)

10-167

10 Model and Block Parameters

Mask Parameters
This section lists parameters that describe masked blocks. This table lists
masking parameters, which correspond to Mask Editor dialog box parameters
(see “Setting Mask Parameters” on page 10-172).

Mask Parameters

Parameter Description/Prompt Values

Mask Turns mask on or off. {'on'} | 'off'

MaskCallbackString Mask parameter callbacks
that are executed when
the respective parameter is
changed on the dialog. Set by
the Dialog callback field on
the Parameters pane of the
Mask Editor dialog box.

pipe-delimited string {''}

MaskCallbacks Cell array version of
MaskCallbackString.

cell array {'[]'}

MaskDescription Block description. Set by the
Mask description field on
the Documentation pane of
the Mask Editor dialog box.

string {''}

MaskDisplay Drawing commands for
the block icon. Set by the
Drawing commands field
on the Icon pane of the Mask
Editor dialog box.

string {''}

MaskEditorHandle For internal use.

MaskEnableString Option that determines
whether a parameter is greyed
out in the dialog. Set by the
Enable parameter check box
on the Parameters pane of
the Mask Editor dialog box.

pipe-delimited string {''}

10-168

Mask Parameters

Mask Parameters (Continued)

Parameter Description/Prompt Values

MaskEnables Cell array version of
MaskEnableString.

cell array of strings, each
either 'on' or ’'off' {'[]'}

MaskHelp Block help. Set by the
Mask help field on the
Documentation pane of the
Mask Editor dialog box.

string {''}

MaskIconFrame Set the visibility of the icon
frame (Visible is on, Invisible
is off). Set by the Frame
option on the Icon pane of the
Mask Editor dialog box.

{'on'} | 'off'

MaskIconOpaque Set the transparency of
the icon (Opaque is on,
Transparent is off). Set by
the Transparency option on
the Icon pane of the Mask
Editor dialog box.

{'on'} | 'off'

MaskIconRotate Set the rotation of the icon
(Rotates is on, Fixed is off).
Set by the Rotation option
on the Icon pane of the Mask
Editor dialog box.

'on' | {'off'}

MaskIconUnits Set the units for the drawing
commands. Set by the Units
option on the Icon pane of the
Mask Editor dialog box.

'pixel' | {'autoscale'} |
'normalized'

MaskInitialization Initialization commands.
Set by the Initialization
commands field on the
Initialization pane of the
Mask Editor dialog box.

MATLAB command {''}

10-169

10 Model and Block Parameters

Mask Parameters (Continued)

Parameter Description/Prompt Values

MaskNames Cell array of mask dialog
parameter names. Set inside
the Variable column in the
Parameters pane of the Mask
Editor dialog box.

matrix {'[]'}

MaskPrompts List of dialog parameter
prompts (see below). Set inside
the Dialog parameters area
on the Parameters pane of
the Mask Editor dialog box.

cell array of strings {'[]'}

MaskPromptString List of dialog parameter
prompts (see below). Set inside
the Dialog parameters area
on the Parameters pane of
the Mask Editor dialog box.

string {''}

MaskPropertyName
String

Pipe-delimited version of
MaskNames.

string {''}

MaskRunInitForIconRedraw For internal use.

MaskSelfModifiable Indicates that the block can
modify itself. Set by the Allow
library block to modify its
contents check box on the
Initialization pane of the
Mask Editor dialog box.

'on' | {'off'}

MaskStyles Determines whether the
dialog parameter is a check
box, edit field, or pop-up list.
Set by the Type column in the
Parameters pane of the Mask
Editor dialog box.

cell array {'[]'}

MaskStyleString Comma-separated version of
MaskStyles.

string {''}

10-170

Mask Parameters

Mask Parameters (Continued)

Parameter Description/Prompt Values

MaskTabNameString For internal use.

MaskTabNames For internal use.

MaskToolTipsDisplay Determines which mask
dialog parameters to display
in the data tip for this
masked block (see "Block Data
Tips" in the Using Simulink
documentation). Specify
as a cell array of 'on' or
'off' values, each of which
indicates whether to display
the parameter named at the
corresponding position in
the cell array returned by
MaskNames.

cell array of 'on' and 'off'
{’’}

MaskToolTipString Comma-delimited version of
MaskToolTipsDisplay.

string {''}

MaskTunableValues Allows the changing of
mask dialog values during
simulation. Set by the
Tunable column in the
Parameters pane of the Mask
Editor dialog box.

cell array of strings {'[]'}

MaskTunableValueString Comma-delimited
string version of
MaskTunableValues.

delimited string {''}

MaskType Mask type. Set by the
Mask type field on the
Documentation pane of the
Mask Editor dialog box.

string {'Stateflow'}

MaskValues Dialog parameter values. cell array {'[]'}

10-171

10 Model and Block Parameters

Mask Parameters (Continued)

Parameter Description/Prompt Values

MaskValueString Delimited string version of
MaskValues.

delimited string {''}

MaskVarAliases Specify aliases for a block’s
mask parameters. The aliases
must appear in the same order
as the parameters appear
in the block’s MaskValues
parameter.

cell array {'[]'}

MaskVarAliasString For internal use.

MaskVariables List of the dialog parameters’
variables (see below). Set
inside the Dialog parameters
area on the Parameters pane
of the Mask Editor dialog box.

string {''}

MaskVisibilities Specifies visibility of
parameters. Set with the
Show parameter check box
in the Options for selected
parameter area on the
Parameters pane of the Mask
Editor dialog box.

matrix {'[]'}

MaskVisibilityString Delimited string version of
MaskVisibilities.

string {''}

MaskWSVariables List of the variables defined
in the mask workspace (read
only).

matrix {'[]'}

Setting Mask Parameters
When you use the Mask Editor to create a dialog box parameter for a masked
block, you provide this information:

• The prompt, which you enter in the Prompt field

10-172

Mask Parameters

• The variable that holds the parameter value, which you enter in the
Variable field

• The type of field created, which you specify by selecting a control Type

• Whether the value entered in the field is to be evaluated or stored as a
literal, which you specify by selecting an Evaluate type

How Masked Parameters are Stored
The mask parameters, listed in the preceding table, store the values specified
for the dialog box parameters in these ways:

• The Prompt field values for all dialog box parameters are stored in the
MaskPromptString parameter as a string, with individual values separated
by a vertical bar (|), as shown in this example:

"Slope:|Intercept:"

• The Variable field values for all dialog box parameters are stored in
the MaskVariables parameter as a string, with individual assignments
separated by a semicolon. A sequence number indicates the prompt that
is associated with a variable. A special character preceding the sequence
number indicates the Evaluate type: @ indicates Evaluate, & indicates
Literal.

For example, “a=@1;b=&2;” indicates that the value entered in the first
parameter field is assigned to variable a and is evaluated in MATLAB
before assignment, and the value entered in the second field is assigned to
variable b and is stored as a literal, which means that its value is the string
entered in the dialog box.

• The control Type field values for all dialog box parameters are stored
in the MaskStyleString parameter as a string, with individual values
separated by a comma. The Popup strings values appear after the popup
type, as shown in this example:

"edit,checkbox,popup(red|blue|green)"

• The parameter values are stored in the MaskValueString mask parameter
as a string, with individual values separated by a vertical bar. The order of
the values is the same as the order in which the parameters appear on the

10-173

10 Model and Block Parameters

dialog box. For example, these statements define values for the parameter
field prompts and the values for those parameters:

MaskPromptString "Slope:|Intercept:"
MaskValueString "2|5"

10-174

11

Model File Format

This section describes the format of a Simulink model file.

11 Model File Format

Model File Contents
A model file is a structured ASCII file that contains keywords and
parameter-value pairs that describe the model. The file describes model
components in hierarchical order.

The structure of the model file is as follows.

Model {
<Model Parameter Name> <Model Parameter Value>
...
Array {

Simulink.ConfigSet {
$ObjectID <Object ID>
<ConfigSet Parameter Name> <ConfigSet Parameter Value>
...

}
}
Simulink.ConfigSet {

$PropName "ActiveConfigurationSet"
$ObjectID <Object ID>

}
BlockDefaults {

<Block Parameter Name> <Block Parameter Value>
...

}
BlockParameterDefaults {

Block {
<Block Parameter Name> <Block Parameter Value>
...

}
}
AnnotationDefaults {

<Annotation Parameter Name> <Annotation Parameter Value>
...

}
LineDefaults {

<Line Parameter Name> <Line Parameter Value>
...

}

11-2

Model File Contents

System {
<System Parameter Name> <System Parameter Value>
...
Block {

<Block Parameter Name> <Block Parameter Value>
...

}
Line {

<Line Parameter Name> <Line Parameter Value>
...
Branch {

<Branch Parameter Name> <Branch Parameter Value>
...

}
}
Annotation {

<Annotation Parameter Name> <Annotation Parameter Value>
...

}
}

}

The model file consists of sections that describe different model components:

• The Model section defines model parameters and configuration sets.

• The Simulink.ConfigSet section identifies the active configuration set.

• The BlockDefaults section contains default settings for parameters
common to all blocks in the model.

• The BlockParameterDefaults section contains default settings for
block-specific parameters.

• The AnnotationDefaults section contains default settings for annotations
in the model.

• The LineDefaults section contains default settings for lines in the model.

• The System section contains parameters that describe each system
(including the top-level system and each subsystem) in the model. Each
System section contains block, line, and annotation descriptions.

11-3

11 Model File Format

See Chapter 10, “Model and Block Parameters” for descriptions of model and
block parameters.

This reference contains examples of each section, extracted from the model
file of the following model:

Model Section
The Model section, located at the top of the model file, contains all other
sections of the model file and defines the values for model-level parameters.
These parameters include the model name, the version of Simulink last used
to modify the model, and configuration set parameters (see “Configuration
Sets” in the online Simulink documentation) among others.

The following example shows parts of the Model section for a model.

Model {
Name "my_model"
Version 6.4
MdlSubVersion 0
GraphicalInterface {

NumRootInports 0
NumRootOutports 0
ParameterArgumentNames ""
ComputedModelVersion "1.10"
NumModelReferences 0
NumTestPointedSignals 0

}
SavedCharacterEncoding "windows-1252"
SaveDefaultBlockParams on

11-4

Model File Contents

...
Array {

Type "Handle"
Dimension 2
Simulink.ConfigSet {

$ObjectID 1
Version "1.2.0"
Array {

Type "Handle"
Dimension 7
Simulink.SolverCC {
...
}

...
}

...
}

...
}
...

}

Simulink.ConfigSet Section
The Simulink.ConfigSet section appears after the configuration set
parameters. This section identifies the active configuration set for the model
(see “The Active Set” in the online Simulink documentation).

The following example shows the Simulink.ConfigSet section for a model.

Simulink.ConfigSet {
$PropName "ActiveConfigurationSet"
$ObjectID 1

}

BlockDefaults Section
The BlockDefaults section appears after the Simulink.ConfigSet section.
This section defines the default values for common block parameters in the
model. These values can be overridden by individual block parameters,
defined in Block subsections of System sections.

11-5

11 Model File Format

The following example shows the BlockDefaults section for a model.

BlockDefaults {
Orientation "right"
ForegroundColor "black"
BackgroundColor "white"
DropShadow off
NamePlacement "normal"
FontName "Arial"
FontSize 10
FontWeight "normal"
FontAngle "normal"
ShowName on

}

BlockParameterDefaults Section
The BlockParameterDefaults section appears after the BlockDefaults
section. This section defines the default values for block-specific parameters
using Block subsections. Each Block subsection defines the default
parameter-value pairs for a particular type of block in the model. These
values can be overridden by individual block parameters, defined in Block
subsections of System sections.

The following example shows part of the BlockParameterDefaults section
for a model.

BlockParameterDefaults {
Block {

BlockType Constant
}
Block {

BlockType Display
Format "short"
Decimation "10"
Floating off
SampleTime "-1"

}
...

}

11-6

Model File Contents

AnnotationDefaults Section
The AnnotationDefaults section appears after the BlockParameterDefaults
section. This section defines the default parameters for all annotations in the
model (see Simulink.Annotation).

The following example shows the AnnotationDefaults section for a model.

AnnotationDefaults {
HorizontalAlignment "center"
VerticalAlignment "middle"
ForegroundColor "black"
BackgroundColor "white"
DropShadow off
FontName "Courier New"
FontSize 10
FontWeight "normal"
FontAngle "normal"

}

LineDefaults Section
The LineDefaults section appears after the AnnotationDefaults section.
This section defines the default parameters for all lines in the model.

The following example shows the LineDefaults section for a model.

LineDefaults {
FontName "Courier New"
FontSize 9
FontWeight "normal"
FontAngle "normal"

}

System Section
The top-level system and each subsystem in the model are described in
a separate System section. Each System section defines system-level
parameters and includes Block, Line, and Annotation sections for each block,
line, and annotation in the system. Each Line that contains a branch point
includes a Branch section that defines the branch line.

11-7

11 Model File Format

The following example shows parts of the System section for a model.

System {
Name "my_model"
Location [480, 85, 1206, 386]
Open on
ModelBrowserVisibility off
ModelBrowserWidth 200
ScreenColor "white"
PaperOrientation "landscape"
...
Block {

BlockType Constant
Name "Constant"
Position [65, 100, 95, 130]
Value "2"
...

}
...
Line {

SrcBlock "Gain"
SrcPort 1
Points [25, 0]

Branch {
Points [0, 70]
DstBlock "Scope"
DstPort 1

}
Branch {

Points [20, 0]
DstBlock "Display"
DstPort 1

}
}
...

11-8

Model File Contents

Annotation {
Name "This model generates..."
Position [149, 234]
UseDisplayTextAsClickCallback off

}
}

11-9

11 Model File Format

11-10

12

Embedded MATLAB Basics

Embedded MATLAB is a subset of the MATLAB language that lets you
generate production quality C code for embedded applications. Embedded
MATLAB restricts MATLAB semantics to meet the memory and data type
requirements of embedded target environments.

The following sections describe the core Embedded MATLAB language and
functions:

Supported Variable Types in
Embedded MATLAB Functions
(p. 12-3)

Data types supported by Embedded
MATLAB functions.

Operators in Embedded MATLAB
Functions (p. 12-4)

Operators supported by Embedded
MATLAB functions.

Embedded MATLAB Run-Time
Function Library (p. 12-8)

Lists of run-time library functions
that you can call in an Embedded
MATLAB function.

Calling Functions in Embedded
MATLAB (p. 12-43)

Presents rules for calling functions
in Embedded MATLAB and using
their return values.

Local Variables in Embedded
MATLAB Functions (p. 12-55)

Reference of variable types
supported by Embedded MATLAB.

Using Structures in Embedded
MATLAB (p. 12-59)

Explains how to define and use
structures in Embedded MATLAB

12 Embedded MATLAB Basics

Using M-Lint with Embedded
MATLAB (p. 12-75)

Explains how Embedded MATLAB
automatically checks code with
M-Lint

Unsupported MATLAB Features
and Limitations (p. 12-76)

Describes MATLAB features that
are not supported by Embedded
MATLAB

12-2

Supported Variable Types in Embedded MATLAB Functions

Supported Variable Types in Embedded MATLAB Functions
Embedded MATLAB functions support a subset of MATLAB data types
represented by the following cast functions:,

Type/Function Description

char Character array (string)

complex Complex data. Cast function takes real and imaginary
components (see “Creating Local Complex Variables
Implicitly” on page 12-56 in the Simulink User’s
Guide).

double Double-precision floating point

int8, int16, int32 Signed integer

logical Boolean true or false

single Single-precision floating point

struct Structure (see “Using Structures in Embedded
MATLAB” on page 12-59)

uint8, uint16,
uint32

Unsigned integer

Note For more information on fixed-point support in Embedded MATLAB,
refer to “Using the Fixed-Point Toolbox with Embedded MATLAB” in the
Fixed-Point Toolbox User’s Guide documentation.

12-3

12 Embedded MATLAB Basics

Operators in Embedded MATLAB Functions
Embedded MATLAB functions support a large subset of MATLAB operators,
as described in the following topics:

• “Control Flow Statements in Embedded MATLAB Functions” on page 12-4

• “Arithmetic Operators in Embedded MATLAB Functions” on page 12-5

• “Relational Operators in Embedded MATLAB Functions” on page 12-6

• “Logical Operators in Embedded MATLAB Functions” on page 12-6

Each listing includes a link to the MATLAB Function Reference
documentation (help) for the equivalent MATLAB function along with a
one-line description and any limitations that apply.

Control Flow Statements in Embedded MATLAB
Functions
Embedded MATLAB functions support the following MATLAB program
statements:

Statement Description

break break statement

continue continue statement

for for statement

if if statement

The conditions of an if statement cannot use & and |
operators. In their place, use the && and || operators,
respectively. To logically collapse vectors into scalars, use
the function all.

return return statement

12-4

Operators in Embedded MATLAB Functions

Statement Description

switch switch statement

The behavior matches the MATLAB switch statement,
which executes only the first matching case.

while while statement

The conditions of while statements cannot use & and |
operators. In their place, use the && and || operators,
respectively. To logically collapse vectors into scalars, use
the function all.

Arithmetic Operators in Embedded MATLAB Functions
Embedded MATLAB functions support the following MATLAB arithmetic
operations:

Operator Description

+ Addition

- Subtraction

* Multiplication

.* Array multiplication

/ Slash or matrix right division

./ Array right division

\ Backslash or matrix left division

.\ Array left division

^ Matrix power

.^ Array power

[] Concatenation of matrices

' Complex conjugate transpose

.' Transpose

(r, c) Matrix indexing, where r and c are vectors of row and
column indices, respectively

12-5

12 Embedded MATLAB Basics

See Arithmetic Operators + - * / \ ^ ’ in the MATLAB Function Reference
documentation for detailed descriptions of each operator.

Relational Operators in Embedded MATLAB Functions
Embedded MATLAB functions support the following element-wise relational
operators:

Operation Description

< Less than

<= Less than or equal to

>= Greater than or equal to

> Greater than

== Equal

~= Not equal

See Relational Operators < > <= >= == ~= in the MATLAB Function Reference
documentation for detailed descriptions of each operator.

Logical Operators in Embedded MATLAB Functions
Embedded MATLAB functions support the following element-wise logical
operators:

Operation Description

& Logical AND

This & operator is limited to use outside if and while
statement conditions. In its place, use the && operator. To
logically collapse vectors into scalars, use the function all.

| Logical OR

This | operator is limited to use outside if and while
statements. In its place, use the || operator. To logically
collapse vectors into scalars, use the function all.

12-6

Operators in Embedded MATLAB Functions

Operation Description

- Element complement

xor Logical XOR

&& Logical AND (short-circuiting)

|| Logical OR (short-circuiting)

See Logical Operators, Element-wise & | ~ and Logical Operators,
Short-circuit && || in the MATLAB Function Reference documentation for
detailed descriptions of each operator.

12-7

12 Embedded MATLAB Basics

Embedded MATLAB Run-Time Function Library
This section lists the MATLAB functions supported by Embedded MATLAB in
its library of run-time functions. Each Embedded MATLAB library function
has the same name, arguments, and functionality as its MATLAB, Fixed-Point
Toolbox, or Signal Processing Toolbox counterpart, but come with limitations
that allow Embedded MATLAB to generate efficient embeddable code. By
using this set of functions when programming in Embedded MATLAB, you
can use the generated code to build a portable standalone executable target.

For more information on fixed-point support in Embedded MATLAB, refer to
“Using the Fixed-Point Toolbox with Embedded MATLAB” in the Fixed-Point
Toolbox documentation.

The following topics list and describe the functions supported by the
Embedded MATLAB run-time library:

• “Embedded MATLAB Run-Time Function Library — Alphabetical List”
on page 12-8

• “Embedded MATLAB Run-Time Library — Categorical List” on page 12-26

Embedded MATLAB Run-Time Function Library —
Alphabetical List
This topic lists the MATLAB functions supported by Embedded MATLAB
in alphabetical order. See also “Embedded MATLAB Run-Time Library —
Categorical List” on page 12-26.

Function Product Remarks/Limitations

abs MATLAB —

abs Fixed-Point
Toolbox

—

acos MATLAB • Returns NaN when the input value x is real,
but the output should be complex. To get the
complex result, make the input value complex
by passing in complex(x).

acosd MATLAB —

12-8

Embedded MATLAB Run-Time Function Library

Function Product Remarks/Limitations

acosh MATLAB • Returns NaN when the input value x is real,
but the output should be complex. To get the
complex result, make the input value complex
by passing in complex(x).

acot MATLAB —

acotd MATLAB —

acoth MATLAB —

acsc MATLAB —

acscd MATLAB —

acsch MATLAB —

all MATLAB —

all Fixed-Point
Toolbox

—

and MATLAB —

angle MATLAB —

any MATLAB —

any Fixed-Point
Toolbox

—

asec MATLAB —

asecd MATLAB —

asech MATLAB —

asin MATLAB • Returns NaN when the input value x is real,
but the output should be complex. To get the
complex result, make the input value complex
by passing in complex(x).

asind MATLAB —

asinh MATLAB —

atan MATLAB —

atan2 MATLAB —

12-9

12 Embedded MATLAB Basics

Function Product Remarks/Limitations

atand MATLAB —

atanh MATLAB • Returns NaN when the input value x is real,
but the output should be complex. To get the
complex result, make the input value complex
by passing in complex(x).

bitand MATLAB • Does not support floating point inputs. The
arguments must belong to an integer class.

bitand Fixed-Point
Toolbox

—

bitcmp MATLAB • Does not support floating point input for the
first argument. The first argument must belong
to an integer class.

bitcmp Fixed-Point
Toolbox

—

bitget MATLAB • Does not support floating point input for the
first argument. The first argument must belong
to an integer class.

bitget Fixed-Point
Toolbox

—

bitor MATLAB • Does not support floating point inputs. The
arguments must belong to an integer class.

bitor Fixed-Point
Toolbox

—

bitrevorder Signal Processing
Toolbox

—

bitset MATLAB • Does not support floating point input for the
first argument. The first argument must belong
to an integer class.

bitset Fixed-Point
Toolbox

—

12-10

Embedded MATLAB Run-Time Function Library

Function Product Remarks/Limitations

bitshift MATLAB • Does not support floating point input for the
first argument. The first argument must belong
to an integer class.

bitshift Fixed-Point
Toolbox

—

bitxor MATLAB • Does not support floating point inputs. The
arguments must belong to an integer class.

bitxor Fixed-Point
Toolbox

—

cart2pol MATLAB —

cart2sph MATLAB —

cast MATLAB —

ceil MATLAB —

char MATLAB —

chol MATLAB • Does not allow two output arguments

class MATLAB —

compan MATLAB —

complex MATLAB —

complex Fixed-Point
Toolbox

—

cond MATLAB —

conj MATLAB —

conj Fixed-Point
Toolbox

—

conv MATLAB —

cos MATLAB —

cosd MATLAB —

cosh MATLAB —

12-11

12 Embedded MATLAB Basics

Function Product Remarks/Limitations

cot MATLAB —

cotd MATLAB —

coth MATLAB —

cov MATLAB —

cross MATLAB • If supplied, dim must be a constant

csc MATLAB —

cscd MATLAB —

csch MATLAB —

ctranspose MATLAB —

ctranspose Fixed-Point
Toolbox

—

cumprod MATLAB —

cumsum MATLAB —

det MATLAB —

diag MATLAB • If supplied, the argument representing the
order of the diagonal matrix must be a real and
scalar integer value

diff MATLAB • If supplied, the arguments representing
the number of times to apply diff and
the dimension along which to calculate the
difference must be constants

disp Fixed-Point
Toolbox

—

divide Fixed-Point
Toolbox

• Any non-fi input must be constant; that is, its
value must be known at compile time so that it
can be cast to a fi

• Complex and imaginary divisors are not
supported

dot MATLAB —

12-12

Embedded MATLAB Run-Time Function Library

Function Product Remarks/Limitations

double MATLAB —

double Fixed-Point
Toolbox

—

eig MATLAB • QZ algorithm used in all cases. Consequently, for
the standard eigenvalue problem (B identity),
results will be similar to those obtained using
the following in MATLAB:

[V,D] = eig(A,eye(size(A)),'qz')

However, V may represent a different basis of
eigenvectors, and the eigenvalues in D may not
be in the same order.

• Options 'balance', 'nobalance', and 'chol'
are not yet supported.

• Outputs are always of complex type.

end Fixed-Point
Toolbox

—

eps MATLAB

eps Fixed-Point
Toolbox

—

eq MATLAB —

eq Fixed-Point
Toolbox

• Not supported for fixed-point signals with
different biases

exp MATLAB —

expm1 MATLAB —

eye MATLAB • Dimensions must be real, non-negative, integer
constants

factorial MATLAB —

false MATLAB • Dimensions must be real, non-negative, integer
constants

12-13

12 Embedded MATLAB Basics

Function Product Remarks/Limitations

fft MATLAB • Length of input vector must be a power of 2

• Requires Signal Processing Blockset license

fftshift MATLAB —

fi Fixed-Point
Toolbox

• Use to create a fixed-point constant or variable
in Embedded MATLAB

• The default constructor syntax without any
input arguments is not supported

• The syntax
fi('PropertyName',PropertyValue...)
is not supported. To use property
name/property value pairs, you must first
specify the value v of the fi object as in
fi(v,'PropertyName',PropertyValue...)

• Works for constant input values only; that is,
the value of the input must be known at compile
time

• Numerictype information must be available for
non-fixed-point Simulink inputs

filter MATLAB • Results might differ from MATLAB if the input
contains NaNs

• Requires Signal Processing Blockset license

fimath Fixed-Point
Toolbox

• Fixed-point signals coming in to an Embedded
MATLAB Function block from Simulink are
assigned the fimath object defined in the
Embedded MATLAB Function dialog in the
Model Explorer

• Used to create fimath objects in Embedded
MATLAB code

fix MATLAB —

fliplr MATLAB —

flipud MATLAB —

12-14

Embedded MATLAB Run-Time Function Library

Function Product Remarks/Limitations

floor MATLAB —

freqspace MATLAB —

gcd MATLAB —

ge MATLAB —

ge Fixed-Point
Toolbox

• Not supported for fixed-point signals with
different biases

get Fixed-Point
Toolbox

• Only supported for use with numerictype
objects

• The syntax structure = get(o) is not
supported

gt MATLAB —

gt Fixed-Point
Toolbox

• Not supported for fixed-point signals with
different biases

hilb MATLAB —

histc MATLAB —

horzcat Fixed-Point
Toolbox

—

hypot MATLAB —

idivide MATLAB • opt string must be in lower case

• For efficient generated code, MATLAB
divide-by-zero rules are supported only for the
'round' option

ifft MATLAB • Length of input vector must be a power of 2

• Output of ifft block is always complex

• Requires Signal Processing Blockset license

ifftshift MATLAB • First argument must be a vector or
2-dimensional matrix

imag MATLAB —

12-15

12 Embedded MATLAB Basics

Function Product Remarks/Limitations

imag Fixed-Point
Toolbox

—

ind2sub MATLAB • No support for N-dimensional matrices. Size
vector must have exactly two elements.

inf MATLAB • Dimensions must be real, non-negative, integer
constants.

int8, int16, int32 MATLAB —

int8, int16, int32 Fixed-Point
Toolbox

—

interp1 MATLAB • Supports only linear and nearest interpolation
methods

• Does not handle evenly spaced X indices
separately

• X must be strictly monotonically increasing
or strictly monotonically decreasing; does not
reorder indices

interp1q, see
interp1

MATLAB • X must be strictly monotonically increasing
or strictly monotonically decreasing; does not
reorder indices

intmax MATLAB

intmin MATLAB

inv MATLAB —

invhilb MATLAB —

ipermute MATLAB —

isa MATLAB —

ischar MATLAB —

iscolumn Fixed-Point
Toolbox

—

isempty MATLAB —

12-16

Embedded MATLAB Run-Time Function Library

Function Product Remarks/Limitations

isempty Fixed-Point
Toolbox

—

isequal MATLAB • Supports only two arguments.

• Does not support structure inputs

isfi Fixed-Point
Toolbox

—

isfimath Fixed-Point
Toolbox

—

isfinite MATLAB —

isfinite Fixed-Point
Toolbox

—

isfloat MATLAB —

isinf MATLAB —

isinf Fixed-Point
Toolbox

—

isinteger MATLAB —

islogical MATLAB —

isnan MATLAB —

isnan Fixed-Point
Toolbox

—

isnumeric MATLAB —

isnumeric Fixed-Point
Toolbox

—

isnumerictype Fixed-Point
Toolbox

—

isreal MATLAB —

isreal Fixed-Point
Toolbox

—

12-17

12 Embedded MATLAB Basics

Function Product Remarks/Limitations

isrow Fixed-Point
Toolbox

—

isscalar MATLAB —

isscalar Fixed-Point
Toolbox

—

issigned Fixed-Point
Toolbox

—

isstruct MATLAB —

isvector MATLAB —

isvector Fixed-Point
Toolbox

—

kron MATLAB

lcm MATLAB —

ldivide MATLAB —

le MATLAB —

le Fixed-Point
Toolbox

• Not supported for fixed-point signals with
different biases

length MATLAB —

length Fixed-Point
Toolbox

—

linspace MATLAB • Number of points N must be a constant that is
positive, real, and integer valued

log MATLAB • Returns NaN when the input value x is real,
but the output should be complex. To get the
complex result, make the input value complex
by passing in complex(x).

log2 MATLAB —

log10 MATLAB —

log1p MATLAB —

12-18

Embedded MATLAB Run-Time Function Library

Function Product Remarks/Limitations

logical MATLAB —

logical Fixed-Point
Toolbox

—

logspace MATLAB —

lowerbound Fixed-Point
Toolbox

—

lsb Fixed-Point
Toolbox

—

lt MATLAB —

lt Fixed-Point
Toolbox

• Not supported for fixed-point signals with
different biases

lu MATLAB —

magic MATLAB —

max MATLAB —

max Fixed-Point
Toolbox

—

mean MATLAB —

median MATLAB —

meshgrid MATLAB • Does not support character arrays

min MATLAB —

min Fixed-Point
Toolbox

—

minus MATLAB —

minus Fixed-Point
Toolbox

• Any non-fi input must be constant; that is, its
value must be known at compile time so that it
can be cast to a fi

mldivide MATLAB —

mod MATLAB —

mpower MATLAB —

12-19

12 Embedded MATLAB Basics

Function Product Remarks/Limitations

mrdivide MATLAB —

mtimes MATLAB —

mtimes Fixed-Point
Toolbox

• Any non-fi input must be constant; that is, its
value must be known at compile time so that it
can be cast to a fi

NaN or nan MATLAB • Dimensions must be real, non-negative, integer
constants

• Supports only one or two dimension arguments

nargin MATLAB —

nargout MATLAB —

ndims MATLAB —

ndims Fixed-Point
Toolbox

—

ne MATLAB —

ne Fixed-Point
Toolbox

• Not supported for fixed-point signals with
different biases

nextpow2 MATLAB —

norm MATLAB —

not MATLAB —

nthroot MATLAB —

numberofelements Fixed-Point
Toolbox

• numberofelements and numel both work the
same as MATLAB numel for fi objects in
Embedded MATLAB

12-20

Embedded MATLAB Run-Time Function Library

Function Product Remarks/Limitations

numerictype Fixed-Point
Toolbox

• Fixed-point signals coming in to an Embedded
MATLAB Function block from Simulink
are assigned a numerictype object that is
populated with the signal’s data type and
scaling information

• Returns the data type when the input is a
non-fixed-point signal

ones MATLAB • Dimensions must be real, non-negative, integer
constants

or MATLAB —

pascal MATLAB —

permute MATLAB —

pi MATLAB —

pinv MATLAB —

planerot MATLAB —

plus MATLAB —

plus Fixed-Point
Toolbox

• Any non-fi input must be constant; that is, its
value must be known at compile time so that it
can be cast to a fi

pol2cart MATLAB —

polyfit MATLAB • Supports only one output.

polyval MATLAB • Supports only two input arguments and one
output argument.

pow2 Fixed-Point
Toolbox

—

12-21

12 Embedded MATLAB Basics

Function Product Remarks/Limitations

power MATLAB • Returns NaN when both X and Y are real, but
power(X,Y) is complex. To get the complex
result, make the input value X complex
by passing in complex(X). For example,
power(complex(X),Y).

• Returns NaN when both X and Y are real, but
X .^ Y is complex. To get the complex result,
make the input value X complex by using
complex(X). For example, complex(X).^Y.

prod MATLAB —

qr MATLAB —

rand MATLAB • Does not support the V5 generator. Default
generator is Mersenne Twister.

• Generates a warning if called without explicitly
selecting and seeding the generator first.

• May not match MATLAB if seeded with
negative values.

randn MATLAB • May not match MATLAB if seeded with
negative values

range Fixed-Point
Toolbox

—

rank MATLAB —

rdivide MATLAB —

real MATLAB —

real Fixed-Point
Toolbox

—

reallog MATLAB —

realmax MATLAB —

realmax Fixed-Point
Toolbox

—

12-22

Embedded MATLAB Run-Time Function Library

Function Product Remarks/Limitations

realmin MATLAB —

realmin Fixed-Point
Toolbox

—

realpow MATLAB —

realsqrt MATLAB —

rem MATLAB —

repmat MATLAB —

repmat Fixed-Point
Toolbox

—

rescale Fixed-Point
Toolbox

—

reshape MATLAB • Accepts a maximum of three arguments

reshape Fixed-Point
Toolbox

• Supported for 1-D and 2-D arrays only

rot90 MATLAB —

round MATLAB —

sec MATLAB —

secd MATLAB —

sech MATLAB —

shiftdim MATLAB • Second argument must be a constant

sign MATLAB —

sign Fixed-Point
Toolbox

—

sin MATLAB —

sind MATLAB —

single MATLAB —

single Fixed-Point
Toolbox

—

12-23

12 Embedded MATLAB Basics

Function Product Remarks/Limitations

sinh MATLAB —

size MATLAB —

size Fixed-Point
Toolbox

—

sort MATLAB —

sosfilt Signal Processing
Toolbox • Requires Signal Processing Blockset license

sph2cart MATLAB —

squeeze MATLAB —

sqrt MATLAB • Returns NaN when the input value x is real,
but the output should be complex. To get the
complex result, make the input value complex
by passing in complex(x).

sqrt Fixed-Point
Toolbox

• Complex and [Slope bias] inputs error out

• Negative inputs yield a 0 result

std MATLAB —

strcmp MATLAB —

struct MATLAB —

sub2ind MATLAB • Does not support N-dimensional matrices. Size
vector must have exactly two elements.

• Maximum number of input arguments is three.

subsasgn Fixed-Point
Toolbox

—

subspace MATLAB —

subsref Fixed-Point
Toolbox

—

sum MATLAB —

sum Fixed-Point
Toolbox

—

12-24

Embedded MATLAB Run-Time Function Library

Function Product Remarks/Limitations

svd MATLAB —

tan MATLAB —

tand MATLAB —

tanh MATLAB —

times MATLAB —

times Fixed-Point
Toolbox

• Any non-fi input must be constant; that is, its
value must be known at compile time so that it
can be cast to a fi

toeplitz MATLAB —

trace MATLAB —

tril MATLAB —

triu MATLAB —

transpose MATLAB —

transpose Fixed-Point
Toolbox

—

true MATLAB • Dimensions must be real, non-negative, integer
constants

uint8, uint16, uint32 MATLAB —

uint8, uint16,
uint32

Fixed-Point
Toolbox

—

uminus MATLAB —

uminus Fixed-Point
Toolbox

—

uplus MATLAB —

uplus Fixed-Point
Toolbox

—

upperbound Fixed-Point
Toolbox

—

vander MATLAB —

12-25

12 Embedded MATLAB Basics

Function Product Remarks/Limitations

var MATLAB —

vertcat Fixed-Point
Toolbox

—

wilkinson MATLAB —

xcorr Signal Processing
Toolbox

• Does not support the case where A is a matrix

• Does not support partial (abbreviated) strings
of biased, unbiased, coeff, or none

• Requires Signal Processing Blockset license

zeros MATLAB • Dimensions must be real, non-negative, integer
constants

Embedded MATLAB Run-Time Library — Categorical
List
The following topics list functions in the Embedded MATLAB run-time library
by different function types. Each entry includes a function name link to
online help for the equivalent MATLAB or Fixed-Point Toolbox function along
with a one-line description.

• “Arithmetic Operator Functions” on page 12-27

• “Casting Functions” on page 12-28

• “Complex Number Functions” on page 12-28

• “Discrete Math Functions” on page 12-29

• “Exponential Functions” on page 12-29

• “Fixed-Point Toolbox Functions” on page 12-30

• “Input and Output Functions” on page 12-33

• “Interpolation and Computational Geometry” on page 12-33

• “Logical Operator Functions” on page 12-34

• “Matrix/Array Functions” on page 12-34

• “Polynomial Functions” on page 12-37

12-26

Embedded MATLAB Run-Time Function Library

• “Relational Operator Functions” on page 12-38

• “Rounding and Remainder Functions” on page 12-38

• “Signal Processing Functions” on page 12-38

• “Special Values” on page 12-39

• “Statistical Functions” on page 12-40

• “String Functions” on page 12-40

• “Structure Functions” on page 12-41

• “Trigonometric Functions” on page 12-41

For an alphabetical list of these functions, and remarks and limitations for
them, see “Embedded MATLAB Run-Time Function Library — Alphabetical
List” on page 12-8.

Arithmetic Operator Functions
See Arithmetic Operators + - * / \ ^ ’ in the MATLAB Function Reference
documentation for detailed descriptions of the following operator equivalent
functions.

Function Description

ctranspose Complex conjugate transpose (')

idivide Integer division with rounding option

isa Determine if input is object of given class

ldivide Left array divide

minus Minus (-)

mldivide Left matrix divide (\)

mpower Equivalent of array power operator (.^)

mrdivide Right matrix divide

mtimes Matrix multiply (*)

plus Plus (+)

power Array power

12-27

12 Embedded MATLAB Basics

Function Description

rdivide Right array divide

times Array multiply

transpose Matrix transpose (')

uminus Unary minus (-)

uplus Unary plus (+)

Casting Functions
Embedded MATLAB functions support the following functions for converting
one type of data to another:

Data Type Description

cast Cast variable to different data type

char Create character array (string)

class Query class of object argument

double Convert to double-precision floating point

int8, int16, int32 Convert to signed integer data type

logical Convert to Boolean true or false data type

single Convert to single-precision floating point

uint8, uint16,
uint32

Convert to unsigned integer data type

Complex Number Functions
Embedded MATLAB functions support the following functions for complex
numbers:

12-28

Embedded MATLAB Run-Time Function Library

Function Description

complex Construct complex data from real and imaginary components; see
“Creating Local Complex Variables Implicitly” on page 12-56 in Using
Simulink

conj Return the conjugate of a complex number

imag Return the imaginary part of a complex number

isnumeric True for numeric arrays

isreal Return false (0) for a complex number

isscalar True if array is a scalar

real Return the real part of a complex number

Discrete Math Functions
Embedded MATLAB functions support the following discrete math functions:

Function Description

lcm Calculate the least common multiple of corresponding elements in arrays

gcd Return an array containing the greatest common divisors of the
corresponding elements of integer arrays

Exponential Functions
Embedded MATLAB functions support the following exponential functions:

Function Description

exp Exponential

expm1 Compute exp(x)-1 accurately for small values of x

factorial Factorial function

log Natural logarithm

log2 Base 2 logarithm and dissect floating-point numbers into exponent and
mantissa

log10 Common (base 10) logarithm

12-29

12 Embedded MATLAB Basics

Function Description

log1p Compute log(1+x) accurately for small values of x

nextpow2 Next higher power of 2

nthroot Real nth root of real numbers

reallog Natural logarithm for nonnegative real arrays

realpow Array power for real-only output

realsqrt Square root for nonnegative real arrays

sqrt Square root

Fixed-Point Toolbox Functions
For more information on fixed-point support in Embedded MATLAB, see
“Using the Fixed-Point Toolbox with Embedded MATLAB” in the Fixed-Point
Toolbox documentation. Embedded MATLAB supports the following functions
from the Fixed-Point Toolbox:

Function Description

abs Absolute value of fi object

all Determine whether all array elements are nonzero

any Determine whether any array elements are nonzero

bitand Bit-wise AND of two fi objects

bitcmp Bit-wise complement of fi object

bitget Bit at certain position

bitor Bit-wise OR of two fi objects

bitset Set bit at certain position

bitshift Shift bits specified number of places

bitxor Bit-wise exclusive OR of two fi objects

complex Construct complex fi object from real and imaginary parts

conj Complex conjugate of fi object

ctranspose Complex conjugate transpose of fi object

12-30

Embedded MATLAB Run-Time Function Library

Function Description

disp Display object

divide Divide two objects

double Double-precision floating-point real-world value of fi object

end Last index of array

eps Quantized relative accuracy for fi or quantizer objects

eq Determine whether real-world values of two fi objects are equal

fi Construct fi object

fimath Construct fimath object

ge Determine whether real-world value of one fi object is greater than or
equal to another

gt Determine whether real-world value of one fi object is greater than
another

horzcat Horizontally concatenate multiple fi objects

imag Imaginary part of complex number

int8, int16, or
int32

Stored integer value of fi object as built-in int8, int16, or int32

iscolumn Determine whether fi object is column vector

isempty Determine whether array is empty

isfi Determine whether variable is fi object

isfimath Determine whether variable is fimath object

isfinite Determine whether array elements are finite

isinf Determine whether array elements are infinite

isnan Determine whether array elements are NaN

isnumeric Determine whether input is numeric array

isnumerictype Determine whether variable is numerictype object

isreal Determine whether array elements are real

isrow Determine whether fi object is row vector

12-31

12 Embedded MATLAB Basics

Function Description

isscalar Determine whether input is scalar

issigned Determine whether fi object is signed

isvector Determine whether input is vector

le Determine whether real-world value of fi object is less than or equal to
another

length Vector length

logical Convert numeric values to logical

lowerbound Lower bound of range of fi object

lsb Scaling of least significant bit of fi object

lt Determine whether real-world value of one fi object is less than another

max Largest element in array of fi objects

min Smallest element in array of fi objects

minus Matrix difference between fi objects

mtimes Matrix product of fi objects

ndims Number of array dimensions

ne Determine whether real-world values of two fi objects are not equal

numberofelements Number of data elements in fi array

numerictype Construct numerictype object

plus Matrix sum of fi objects

pow2 Multiply by a power of 2

range Numerical range of fi or quantizer object

real Real part of complex number

realmax Largest positive fixed-point value or quantized number

realmin Smallest positive normalized fixed-point value or quantized number

repmat Replicate and tile array

rescale Change scaling of fi object

12-32

Embedded MATLAB Run-Time Function Library

Function Description

reshape Reshape array

sign Perform signum function on array

single Single-precision floating-point real-world value of fi object

size Return array dimensions

subsasgn Subscripted assignment

subsref Subscripted reference

sum Sum of array elements

times Element-by-element multiplication of fi objects

transpose Transpose

uint8, uint16, or
uint32

Stored integer value of fi object as built-in uint8, uint16, or uint32

uminus Negate elements of fi object array

uplus Unary plus

upperbound Upper bound of range of fi object

vertcat Vertically concatenate multiplefi objects

Input and Output Functions
Embedded MATLAB functions support the following functions for accessing
argument and return values:

Function Description

nargin Return the number of input arguments a user has supplied

nargout Return the number of output return values a user has requested

Interpolation and Computational Geometry
Embedded MATLAB functions support the following functions for
interpolation and computational geometry:

12-33

12 Embedded MATLAB Basics

Function Description

cart2pol Transform Cartesian coordinates to polar or cylindrical

cart2sph Transform Cartesian coordinates to spherical

interp1 One-dimensional interpolation (table lookup)

interp1q Quick one-dimensional linear interpolation (table lookup)

meshgrid Generate X and Y arrays for 3-dimensional plots

pol2cart Transform polar or cylindrical coordinates to Cartesian

sph2cart Transform spherical coordinates to Cartesian

Logical Operator Functions
Embedded MATLAB functions support the following functions for performing
logical operations:

Function Description

and Logical AND (&)

bitand Bitwise AND

bitcmp Bitwise complement

bitget Bit at specified position

bitor Bitwise OR

bitset Set bit at specified position

bitshift Shift bits specified number of places

bitxor Bitwise XOR

not Logical NOT (~)

or Logical OR (|)

Matrix/Array Functions
Embedded MATLAB functions support the following functions for matrices
and arrays:

12-34

Embedded MATLAB Run-Time Function Library

Function Description

abs Return absolute value and complex magnitude of an array

all Test if all elements are nonzero

angle Phase angle

any Test for any nonzero elements

compan Companion matrix

cond Condition number of a matrix with respect to inversion

cov Covariance matrix

cross Vector cross product

cumprod Cumulative product of array elements

cumsum Cumulative sum of array elements

det Matrix determinant

diag Return a matrix formed around the specified diagonal vector and the
specified diagonal (0, 1, 2,...) it occupies

diff Differences and approximate derivatives

dot Vector dot product

eig Eigenvalues and eigenvectors

eye Identity matrix

false Return an array of 0’s for the specified dimensions

fliplr Flip matrix left to right

flipud Flip matrix up to down

hilb Hilbert matrix

ind2sub Subscripts from linear index

isequal Test arrays for equality

isvector Determine whether input is vector

inv Inverse of a square matrix

invhilb Inverse of Hilbert matrix

12-35

12 Embedded MATLAB Basics

Function Description

ipermute Inverse permute dimensions of array

isempty Determine whether array is empty

isfinite Detect finite elements of an array

isfloat Determine if input is floating-point array

isinf Detect infinite elements of an array (simulation only)

isinteger Determine if input is integer array

islogical Determine if input is logical array

isnan Detect NaN elements of an array (simulation only)

kron Kronecker tensor product

length Return the length of a matrix

linspace Generate linearly spaced vectors

logspace Generate logarithmically spaced vectors

lu Matrix factorization

magic Magic square

max Maximum elements of a matrix

min Minimum elements of a matrix

ndims Number of dimensions

ones Create a matrix of all 1s

pascal Pascal matrix

permute Rearrange dimensions of array

pinv Pseudoinverse of a matrix

planerot Givens plane rotation

prod Product of array element

qr Orthogonal-triangular decomposition

rank Rank of matrix

repmat Replicate and tile an array

12-36

Embedded MATLAB Run-Time Function Library

Function Description

reshape Reshape one array into the dimensions of another

rot90 Rotate matrix 90 degrees

shiftdim Shift dimensions

sign Signum function

size Return the size of a matrix

sort Sort elements in ascending or descending order

squeeze Remove singleton dimensions

sub2ind Single index from subscripts

subspace Angle between two subspaces

sum Sum of matrix elements

toeplitz Toeplitz matrix

trace Sum of diagonal elements

tril Extract lower triangular part

triu Extract upper triangular part

true Return an array of logical (Boolean) 1s for the specified dimensions

vander Vandermonde matrix

wilkinson Wilkinson’s eigenvalue test matrix

zeros Create a matrix of all zeros

Polynomial Functions
Embedded MATLAB functions support the following functions for
polynomials:

12-37

12 Embedded MATLAB Basics

Function Description

polyfit Polynomial curve fitting

polyval Polynomial evaluation

Relational Operator Functions
Embedded MATLAB functions support the following functions for performing
relational operations:

Function Description

eq Equal (==)

ge Greater than or equal to (>=)

gt Greater than (>)

le Less than or equal to (<=)

lt Less than (<)

ne Not equal (~=)

Rounding and Remainder Functions
Embedded MATLAB functions support the following rounding and remainder
functions:

Function Description

ceil Round toward plus infinity

fix Round toward zero

floor Round toward minus infinity

mod Modulus (signed remainder after division)

rem Remainder after division

round Round toward nearest integer

Signal Processing Functions
Embedded MATLAB supports the following signal processing functions:

12-38

Embedded MATLAB Run-Time Function Library

Function Description

bitrevorder Permute data into bit-reversed order

chol Cholesky factorization

conv Convolution and polynomial multiplication (requires Signal Processing
Blockset license)

freqspace Frequency spacing for frequency response (requires Signal Processing
Blockset license)

ifft Inverse discrete Fourier transform (requires Signal Processing Blockset
license)

ifftshift Inverse discrete Fourier transform shift (requires Signal Processing
Blockset license)

fft Discrete Fourier transform (requires Signal Processing Blockset license)

fftshift Shift zero-frequency component to center of spectrum (requires Signal
Processing Blockset license)

filter Filter a data sequence using a digital filter that works for both real and
complex inputs (requires Signal Processing Blockset license)

sosfilt Second order (biquadratic) IIR filtering (requires Signal Processing
Blockset license)

svd Singular value decomposition

xcorr Cross-correlation function estimates (requires Signal Processing Blockset
license)

Special Values
Embedded MATLAB functions support the following special data values:

Symbol Description

eps Return floating-point relative accuracy

inf Return IEEE arithmetic representation for positive infinity

intmax Largest possible value of specified integer type

intmin Smallest possible value of specified integer type

12-39

12 Embedded MATLAB Basics

Symbol Description

NaN or nan Return not a number

pi Return the ratio of the circumference to the diameter for a circle

rand Uniformly distributed pseudorandom numbers

randn Normally distributed random numbers

realmax Return the largest positive floating-point number

realmin Return the smallest positive floating-point number

Statistical Functions
Embedded MATLAB functions support the following statistical functions:

Function Description

histc Histogram count

mean Average or mean value of array

median Median value of array

std Standard deviation

var Variance

String Functions
Embedded MATLAB functions support the following functions for handling
strings:

Function Description

char Create character array (string)

ischar True for character array (string)

strcmp Return a logical result for the comparison of two strings; limited to
strings known at compile time

12-40

Embedded MATLAB Run-Time Function Library

Structure Functions
Embedded MATLAB functions support the following functions for handling
structures:

Function Description

struct Create structure

isstruct Determine whether input is a structure

Trigonometric Functions
Embedded MATLAB functions support the following trigonometric functions:

Function Description

acos Inverse cosine

acosd Inverse cosine; result in degrees

acosh Inverse hyperbolic cosine

acot Inverse cotangent; result in radians

acotd Inverse cotangent; result in degrees

acoth Inverse hyperbolic cotangent

acsc Inverse cosecant; result in radians

acscd Inverse cosecant; result in degrees

acsch Inverse cosecant and inverse hyperbolic cosecant

asec Inverse secant; result in radians

asecd Inverse secant; result in degrees

asech Inverse hyperbolic secant

asin Inverse sine

asinh Inverse hyperbolic sine

atan Inverse tangent

atan2 Four quadrant inverse tangent

atand Inverse tangent; result in degrees

12-41

12 Embedded MATLAB Basics

Function Description

atanh Inverse hyperbolic tangent

cos Cosine

cosd Cosine; result in degrees

cosh Hyperbolic cosine

cot Cotangent; result in radians

cotd Cotangent; result in degrees

coth Hyperbolic cotangent

csc Cosecant; result in radians

cscd Cosecant; result in degrees

csch Hyperbolic cosecant

hypot Square root of sum of squares

sec Secant; result in radians

secd Secant; result in degrees

sech Hyperbolic secant

sin Sine

sind Sine; result in degrees

sinh Hyperbolic sine

tan Tangent

tand Tangent; result in degrees

tanh Hyperbolic tangent

12-42

Calling Functions in Embedded MATLAB

Calling Functions in Embedded MATLAB
This section describes how to call subfunctions, Embedded MATLAB runtime
library functions, and MATLAB functions in Embedded MATLAB.

• “How Embedded MATLAB Resolves Function Calls” on page 12-43

• “Calling Subfunctions” on page 12-45

• “Calling Embedded MATLAB Runtime Library Functions” on page 12-45

• “Calling MATLAB Functions” on page 12-46

How Embedded MATLAB Resolves Function Calls
During code generation for simulation targets, Embedded MATLAB attempts
to resolve function calls as follows:

12-43

12 Embedded MATLAB Basics

Embedded MATLAB functions attempt to resolve function calls first as
subfunctions, then as extrinsic functions on the MATLAB path, and finally
as Embedded MATLAB runtime library functions. Each type of function has
its own requirements and behavior in Embedded MATLAB. For example,
you must declare MATLAB functions to be extrinsic before calling them
from an Embedded MATLAB function (see“Calling MATLAB Functions” on
page 12-46).

12-44

Calling Functions in Embedded MATLAB

Calling Subfunctions
Subfunctions are functions defined in the body of an Embedded MATLAB
function. They work the same way in Embedded MATLAB functions as they
do in MATLAB.

The following example illustrates how to define and call a subfunction in an
Embedded MATLAB function:

You can include subfunctions for Embedded MATLAB functions just as
you would in MATLAB M-file functions. Subfunctions can have multiple
arguments and return values, using any types and sizes supported by
Embedded MATLAB. See "Subfunctions" in the MATLAB Programming
documentation for a full description of subfunctions in MATLAB.

Calling Embedded MATLAB Runtime Library Functions
The Embedded MATLAB runtime library is a subset of MATLAB, Fixed-Point
Toolbox, and Signal Processing Toolbox functions that can be used to generate
code.

12-45

12 Embedded MATLAB Basics

Supported Embedded MATLAB runtime library functions appear in
“Embedded MATLAB Run-Time Function Library” on page 12-8.

For more information about fixed-point support in Embedded MATLAB,
refer to “Using the Fixed-Point Toolbox with Embedded MATLAB” in the
Fixed-Point Toolbox documentation.

Calling MATLAB Functions
To call MATLAB functions on the path, you must first declare them as
extrinsic functions in Embedded MATLAB. An extrinsic function is a function
that is executed by MATLAB during simulation. Embedded MATLAB does
not compile or generate code for extrinsic functions (see “Code Generation for
MATLAB Function Calls” on page 12-50).

There are two methods for declaring a function extrinsic in Embedded
MATLAB:

• Declare the function extrinsic in Embedded MATLAB main functions or
subfunctions (see “Declaring MATLAB Functions as Extrinsic Functions”
on page 12-47)

• Call the MATLAB function indirectly using feval (see “Calling MATLAB
Functions Using feval” on page 12-49)

This section describes how to call MATLAB functions from Embedded
MATLAB:

• “Declaring MATLAB Functions as Extrinsic Functions” on page 12-47

• “Calling MATLAB Functions Using feval” on page 12-49

• “Code Generation for MATLAB Function Calls” on page 12-50

• “Working with Opaque Values” on page 12-51

• “Restrictions on Extrinsic Functions in Embedded MATLAB” on page 12-54

12-46

Calling Functions in Embedded MATLAB

Declaring MATLAB Functions as Extrinsic Functions
To declare a MATLAB function extrinsic, add a declaration at the top of the
main Embedded MATLAB function or a subfunction using this syntax:

eml.extrinsic('function_name_1', ... , 'function_name_n');

For example, the following code declares the MATLAB find function extrinsic
in the main Embedded MATLAB function foo:

function y = foo

eml.extrinsic('find');

x = ones(4);
y = x;
y = find(x);

When to Use the eml.extrinsic Declaration. Use the eml.extrinsic
declaration to

• Call MATLAB functions that produce no output — such as plot — for
visualizing results during simulation, without generating unnecessary code
(see “Code Generation for MATLAB Function Calls” on page 12-50).

• Make your code self-documenting and easier to debug. You can scan the
source code for eml.extrinsic declarations to isolate calls to MATLAB
functions which can potentially create and propagate opaque values (see
“Working with Opaque Values” on page 12-51).

• Save typing. With one declaration, you ensure that each subsequent
function call is extrinsic, as long as the call and the declaration are in the
same scope (see “Scope of Extrinsic Function Declarations” on page 12-48).

• Declare the MATLAB function(s) extrinsic throughout the calling function
scope (see “Scope of Extrinsic Function Declarations” on page 12-48). To
narrow the scope, use feval (see “Calling MATLAB Functions Using feval”
on page 12-49).

12-47

12 Embedded MATLAB Basics

Rules for Extrinsic Function Declarations. Observe the following rules
when declaring functions extrinsic in Embedded MATLAB:

• You must declare the function extrinsic before you call it.

• You cannot use the extrinsic declaration in conditional statements.

Scope of Extrinsic Function Declarations. The eml.extrinsic declaration
has function scope. For example, consider the following code:

function y = foo
eml.extrinsic('rat','min');
[N D] = rat(pi);
y = 0;
y = min(N, D);

In this example, Embedded MATLAB interprets the functions rat and min as
extrinsic every time they are called in the main function foo.

There are two ways to narrow the scope of an extrinsic declaration inside
the main function:

• Declare the MATLAB function extrinsic in a subfunction, as in this
example:

function y = foo
eml.extrinsic('rat');
[N D] = rat(pi);
y = 0;
y = mymin(N, D);

function y = mymin(a,b)
eml.extrinsic('min');
y = min(a,b);

Here, the function rat is extrinsic every time it is called inside the main
function foo, but the function min is extrinsic only when called inside the
subfunction mymin.

• Call the MATLAB function using feval, as described in “Calling MATLAB
Functions Using feval” on page 12-49.

12-48

Calling Functions in Embedded MATLAB

Calling MATLAB Functions Using feval
Embedded MATLAB automatically interprets the function feval as an
extrinsic function. Therefore, you can use feval to conveniently call MATLAB
functions from Embedded MATLAB.

Consider the following example:

function y = foo
eml.extrinsic('rat');
[N D] = rat(pi);
y = 0;
y = feval('min',N, D);

Because feval is extrinsic, the statement feval('min', N, D) is evaluated
by MATLAB — not Embedded MATLAB — which has the same effect as
declaring the function min extrinsic for just this one call. By contrast, the
function rat is extrinsic throughout the function foo.

12-49

12 Embedded MATLAB Basics

Code Generation for MATLAB Function Calls
Embedded MATLAB interprets extrinsic calls to MATLAB functions for code
generation, as follows:

For simulation targets, Embedded MATLAB generates code for the call to
a MATLAB function, but does not generate the function’s internal code.
Embedded MATLAB sends the extrinsic function to MATLAB for execution.
Therefore, you can run the simulation only on platforms where MATLAB
is installed.

For Real-Time Workshop and custom targets, Embedded MATLAB attempts
to determine whether the extrinsic function affects the output of the
Embedded MATLAB function in which it is called — for example by returning
opaque values to an output variable (see “Working with Opaque Values” on
page 12-51). If Embedded MATLAB can determine that there is no effect on
output, Embedded MATLAB proceeds with code generation, but excludes the
extrinsic function from the generated code. Otherwise, Embedded MATLAB
issues a compiler error.

12-50

Calling Functions in Embedded MATLAB

Working with Opaque Values
The output of an extrinsic function is an opaque value. Opaque values are
values of type mxArray — also called MATLAB type. The only valid operations
for opaque values are:

• Storing opaque values in variables

• Passing opaque values to functions and returning them from functions

• Converting opaque values to non-opaque values at runtime

To use values returned by extrinsic functions in other operations, you must
first convert them to non-opaque values, as described in “Converting Opaque
Values to Non-Opaque Values” on page 12-51.

Converting Opaque Values to Non-Opaque Values. To convert opaque
values to non-opaque values, assign the opaque value to a variable whose
type is known. At runtime, Embedded MATLAB converts the opaque value
to the type of the variable assigned to it. However, if the data in the opaque
value is not consistent with the type of the variable, Embedded MATLAB
generates an error.

For example, consider this code:

function y = foo
eml.extrinsic('rat','min');
[N D] = rat(pi);
y = min(N, D);

Here, the top-level Embedded MATLAB function foo calls the extrinsic
MATLAB function rat, which returns two opaque values which represent the
numerator N and denominator D of the rational fraction approximation of pi.
Although you can pass these opaque values to another extrinsic MATLAB
function — in this case, min — you cannot assign the opaque value returned
by min to the output y. The code generates the following error:

12-51

12 Embedded MATLAB Basics

To correct this problem, declarey to be the type and size of the value that you
expect min to return — in this case, a scalar double — as follows:

function y = foo
eml.extrinsic('rat','min');
[N D] = rat(pi);
y = 0; % y is a scalar of type double
y = min(N,D);

In the next example, Embedded MATLAB attempts to use an opaque value
in an arithmetic expression:

function z = foo
eml.extrinsic('find');
x = ones(1); % x is a 1-by-1 array of type double
y = find(x); % y is a 1-by-1 array of type mxArray
z = x + y;

12-52

Calling Functions in Embedded MATLAB

This code generates a compiler error because it attempts to add the opaque
value y to a double array x:

The value y is opaque because the code assigns it the mxArray value returned
by the extrinsic MATLAB function find. To prevent this error, you must
declare y to be the same type and size as x — a 1-by-1 matrix of type double
— before assigning y to the return value of find(x), as in this example:

function z = foo
eml.extrinsic('find');
x = ones(1); % x is a 1-by-1 array of type double
y = ones(1); % y is a 1-by-1 array of type double
y = find(x); % y returned from find converted to

% 1-by-1 array of type double
z = x + y;

Here, the Embedded MATLAB function ones(1) returns a 1-by-1 matrix of
type double, thereby converting y to the same type and size as x at runtime.
Now that y is defined, Embedded MATLAB can convert the opaque value
returned by find(x) to a non-opaque value — an array of type double — at
runtime for assignment to y. As a result, the expression z = x + y adds
variables of the same type and does not generate an error.

12-53

12 Embedded MATLAB Basics

Restrictions on Extrinsic Functions in Embedded MATLAB
As a subset of MATLAB, Embedded MATLAB does not support the full
MATLAB runtime environment. Therefore, Embedded MATLAB imposes the
following restrictions when calling MATLAB functions extrinsically:

• MATLAB functions that inspect the caller or write to the caller’s workspace
do not work when the caller is an Embedded MATLAB function, including:

- dbstack

- evalin

- assignin

• The MATLAB debugger cannot inspect variables in Embedded MATLAB
functions

• Embedded MATLAB may produce unpredictable results if your extrinsic
function performs any of the following actions at runtime:

- Change directories

- Change the MATLAB path

- Delete or add M-files

- Change warning states, MATLAB preferences, or Simulink parameters

12-54

Local Variables in Embedded MATLAB Functions

Local Variables in Embedded MATLAB Functions
Embedded MATLAB functions support a subset of MATLAB data types for
local variables. Normally, you declare function arguments in the Model
Explorer and define local variables implicitly in the function code. This
section lists and describes the data types supported in Embedded MATLAB
functions for local variables along with any exceptions or deviations from
MATLAB behavior:

• “Creating Local Variables Implicitly” on page 12-55

• “Creating Local Complex Variables Implicitly” on page 12-56

• “Declaring Persistent Variables” on page 12-58

Creating Local Variables Implicitly
As in MATLAB, you create variables in Embedded MATLAB by assignment.
Unlike MATLAB, you cannot change the size, type, or complexity of the
variable after the initial assignment. Therefore, you must set the these
properties as part of the assignment.

For example, the following initial assignments create variables in an
Embedded MATLAB function:

a = 14.7; % a is a scalar of type double
b = a; % b has properties of a, scalar of type double
c = zeros(5,2); % c is a 5-by-2 double array of zeros
d = c; % d has properties of c (5-by-2 double array of zeros)
e = [1 2 3 4 5; 6 7 8 9 0]; % e is 5-by-2 array of type double.

The following rules apply when you create variables implicitly in the body
of an Embedded MATLAB function:

• By default, variables are local; they do not persist between function calls.
To make variables persistent, see “Declaring Persistent Variables” on
page 12-58.

• Unlike in MATLAB, you cannot set the size of a variable with indexing in
an assignment statements.

12-55

12 Embedded MATLAB Basics

For example, the following initial assignment is not allowed in Embedded
MATLAB functions:

g(3,2) = 14.6; % Not allowed for creating g.
% OK for assigning value once created

• You can use typecast functions in assignment statements.

In the following example code, you declare y and z to be integers with the
following initial assignments:

x = 15; % Because constants are of type double, so is x.
y = int16(3); % y is a constant of type int16.
z = uint8(x); % z has the value of x, but cast to uint8.

• Unlike in MATLAB, you cannot change the size, type, or complexity of
variables after the initial assignment.

In the following example, the last two statements each flag an error:

x = 2.75 %OK
y = [1 2; 3 4] %OK
x = int16(x); %ERROR: cannot recast x
y = [1 2 3; 4 5 6] %ERROR: cannot resize y

Creating Local Complex Variables Implicitly
As in MATLAB, you create complex variables in Embedded MATLAB by
assignment. Unlike MATLAB, you must set complexity at the time of
assignment, either by assigning the variable to a complex constant or using
the complex function, as in these examples:

x = 5 + 6i; % x is a complex number by assignment.
y = 7 + 8j; % y is a complex number by assignment.
x = complex(5,6); % x is the complex number 5 + 6i.

Use the following rules to specify and use complex variables in Embedded
MATLAB functions:

• Complex numbers obey the Embedded MATLAB rule that once a variable
is typed and sized, it cannot be cast to another type or size.

12-56

Local Variables in Embedded MATLAB Functions

In the following example, the variable x is declared complex and stays
complex:

x = 1 + 2i; % x is declared a complex variable
y = int16(x); % real and imaginary parts of y are int16
x = 3; % x now has the value 3 + 0i

Conflicts can occur from operations with real operands that can have
complex results. For example, the following code generates an error:

z = 3; % sets type of z to double (real)
z = 3 + 2i; % ERROR - cannot recast z to complex.

The following is a possible workaround that you can use if you know that a
variable can be assigned a complex number:

m = complex(3); % sets m to complex variable of value 3 + 0i
m = 5 + 6.7i; % assigns a complex result to a complex number

• Cases in which a function can return a complex number for a real argument
are handled individually for each function.

Generally, this can result in a complex result or a warning that the function
takes only arguments producing real results. For example, for negative
arguments, the function sqrt warns that only real positive or complex
arguments are allowed.

• In general, if an expression has a complex number or variable in it, its
result is a complex number, even if the result is 0.

For example, the following code produces the complex result z:

x = 2 + 3i;
y = 2 - 3i;
z = x + y; % z is 4 + 0i

In MATLAB, this code generates the real result z = 0. However, in
Embedded MATLAB, when code for z = x + y is generated, the types for x
and y are known, but their values are not. Because either or both operands
in this expression are complex, z is declared a complex variable requiring
storage for both a real and an imaginary part. This means that z has the
complex result 4 + 0i in Embedded MATLAB, not 4 as in MATLAB.

12-57

12 Embedded MATLAB Basics

An exception to the preceding rule is a function call that takes complex
arguments but produces real results, as shown in the following examples:

y = real(x); % y is the real part of the complex number x.
y = imag(x); % y is the real-valued imaginary part of x.
y = isreal(x); % y is false (0) for a complex number x.

Another exception is a function call that takes real arguments but produces
complex results, as shown in the following example:

z = complex(x,y); % z is a complex number for a real x and y.

Declaring Persistent Variables
Persistent variables are local to the function in which they are declared,
but their values are retained in memory between calls to the function. To
declare persistent variables in your Embedded MATLAB function, use the
persistent statement, as in this example:

persistent PROD_X;

The declaration should appear at the top of the function body, after the header
and comments, but before the first use of the variable.

Initializing Persistent Variables
You initialize persistent variables in Embedded MATLAB functions the same
way as in MATLAB (see Persistent Variables). When you declare a persistent
variable, Embedded MATLAB initializes its value to an empty matrix. After
the declaration statement, you can assign your own value to it using the
isempty statement, as in this example:

function findProduct(inputvalue)
persistent PROD_X

if isempty(PROD_X)
PROD_X = 1;

end
PROD_X = PROD_X * inputvalue;

12-58

Using Structures in Embedded MATLAB

Using Structures in Embedded MATLAB
This section describes how to use MATLAB structures in Embedded MATLAB.
By imposing some restrictions, Embedded MATLAB compiles MATLAB
structures to generate efficient C code in Real-Time Workshop®.

• “About Embedded MATLAB Structures” on page 12-59

• “Creating Structures in Embedded MATLAB” on page 12-63

• “Defining Structure Inputs and Outputs” on page 12-65

• “Defining Structure Variables Implicitly in Embedded MATLAB Functions”
on page 12-66

• “Making Structures Persistent” on page 12-69

• “Indexing Sub-Structures and Fields” on page 12-69

• “Assigning Values to Structures and Fields” on page 12-70

• “Limitations with Structures” on page 12-71

About Embedded MATLAB Structures
The Embedded MATLAB structure is a data type that is based on the
MATLAB structure (see “Structures” in the MATLAB Programming
documentation). Structures in Embedded MATLAB support a subset of the
operations available for MATLAB structures. In Embedded MATLAB, you can

• Define structure data as inputs and outputs to Embedded MATLAB
functions (see “Defining Structure Inputs and Outputs” on page 12-65)

• Pass structures to functions

• Define structures as local or persistent variables

• Index structure fields using dot notation

This section describes the elements and uses of the Embedded MATLAB
structure.

• “Elements of Embedded MATLAB Structures” on page 12-60

• “Scope of Structures” on page 12-60

12-59

12 Embedded MATLAB Basics

• “Example of Structures in Embedded MATLAB” on page 12-61

Elements of Embedded MATLAB Structures
The elements of Embedded MATLAB structures are called fields. Like
structures in MATLAB, the fields of an Embedded MATLAB structure can
contain data of any type and size, including

• Scalars

• Strings

• Composite data, such as muxed signals, or other structures

• Arrays of structures

Note Unlike structure arrays in MATLAB, each structure in an Embedded
MATLAB array must have the same type, size, and complexity (see
“Limitations with Structures” on page 12-71).

Scope of Structures
You can create Embedded MATLAB structures with the following scopes:

Scope How to Create Details

Input Assign scope of Input to structure
data created in Ports and Data
Manager or Model Explorer

Output Assign scope of Output to structure
data created in Ports and Data
Manager or Model Explorer

You can create structure
data as inputs and
outputs in the top-level
Embedded MATLAB
function. for interfacing
to other environments.
See “Defining Structure
Inputs and Outputs” on
page 12-65.

12-60

Using Structures in Embedded MATLAB

Scope How to Create Details

Local Create local variable implicitly in
Embedded MATLAB function

See “Defining Structure
Variables Implicitly in
Embedded MATLAB
Functions” on page 12-66.

Persistent Declare variable persistent in
Embedded MATLAB function

See “Making Structures
Persistent” on page 12-69.

Example of Structures in Embedded MATLAB
The following example shows how to use structures in an Embedded MATLAB:

12-61

12 Embedded MATLAB Basics

In this model, an Embedded MATLAB Function block receives a bus signal
using the structure inbus at input port 1 and outputs two bus signals from
the structures outbus at output port 1 and outbus1 at output port 2. The
input signal comes from the Simulink Bus Creator block MainBusCreator,
which bundles signals ele1, ele2, and ele3. The signal ele3 is the output
of another Bus Creator block SubBusCreator, which bundles the signals a1
and a2. The structure outbus connects to a Simulink Bus Selector block
BusSelector1; the structure outbus1 connects to another Simulink Bus
Selector block BusSelector2.

Like other outputs in Embedded MATLAB, structure outputs must be
initialized. The Embedded MATLAB function in this example implicitly
defines a local structure variable mystruct using the struct function, and
uses this local structure variable to initialize the value of the first output
outbus. It initializes the second output outbus1 to the value of field ele3 of
structure inbus.

Structure Definitions in Example. Here are the definitions of the
structures in the Embedded MATLAB Function block in the example, as they
appear in the Ports and Data Manager:

Simulink Bus Objects Define Structure Inputs and Outputs. Each
structure input and output must be defined by a Simulink.Bus object in
the base workspace (see “Creating Structures in Embedded MATLAB” on
page 12-63 and “Defining Structure Inputs and Outputs” on page 12-65).
This means that the structure shares the same properties as the bus object,
including number, name, and type of fields. In this example, the following bus
objects define the structure inputs and outputs:

12-62

Using Structures in Embedded MATLAB

The Simulink.Bus object MainBus defines structure input inbus and
structure output outbus. The Simulink.Bus object SubBus defines structure
output outbus1. Based on these definitions, inbus and outbus have the same
properties as MainBus and, therefore, reference their fields by the same names
as the fields in MainBus, using dot notation (see “Indexing Sub-Structures and
Fields” on page 12-69). Similarly, outbus1 references its fields by the same
names as the fields in SubBus. Here are the field references for each structure
in this example:

Structure First Field Second Field Third Field

inbus inbus.ele1 inbus.ele2 inbus.ele3

outbus outbus.ele1 outbus.ele2 outbus.ele3

outbus1 outbus1.a1 outbus1.a2

To learn how to define structures in Embedded MATLAB, see “Creating
Structures in Embedded MATLAB” on page 12-63.

Creating Structures in Embedded MATLAB
Here is the workflow for creating a structure in Embedded MATLAB:

12-63

12 Embedded MATLAB Basics

1 Decide on the scope of the structure (see “Scope of Structures” on page
12-60).

2 Based on the scope, follow these guidelines for creating the structure:

For
Structure
Scope:

Requirements

Input You must:
1 Create a Simulink.Bus object in the base workspace to

define the structure input.
2 Add data to the Embedded MATLAB Function using the

Ports and Data Manager or Model Explorer. The data
should have the following properties

• Scope = Input

• Data type mode = Bus Object

• Data type = name of the Simulink.Bus object that
defines the structure input

See “Defining Structure Inputs and Outputs” on page 12-65.

12-64

Using Structures in Embedded MATLAB

For
Structure
Scope:

Requirements

Output You must:
1 Create a Simulink.Bus object in the base workspace to

define the structure output.
2 Add data of scope Output and data type mode Bus

Object to the Embedded MATLAB Function using the
Ports and Data Manager or Model Explorer. The data
should have the following properties:

• Scope = Output

• Data type mode = Bus Object

• Data type = name of the Simulink.Bus object that
defines the structure input

3 Define and initialize the output structure implicitly
as a variable in the Embedded MATLAB function, as
described in “Defining Structure Variables Implicitly in
Embedded MATLAB Functions” on page 12-66.

4 Make sure the number, type, and size of fields in the
output structure variable definition match the properties
of the Simulink.Bus object.

See “Defining Structure Inputs and Outputs” on page 12-65.

Local You must define the structure implicitly as a local variable
in the Embedded MATLAB function, as described in
“Defining Structure Variables Implicitly in Embedded
MATLAB Functions” on page 12-66. By default, local
variables in Embedded MATLAB are temporary variables.

Persistent You must define the structure implicitly as a persistent
variable in the Embedded MATLAB function, as described
in “Making Structures Persistent” on page 12-69.

Defining Structure Inputs and Outputs
You can create structure inputs and outputs in the top-level Embedded
MATLAB function that interface to Simulink bus signals from Embedded

12-65

12 Embedded MATLAB Basics

MATLAB Function blocks (see “Specifying Structures and Working with Bus
Signals” in the Simulink User’s Guide)or from top-level Embedded MATLAB
functions in Stateflow charts (see “Working with Structures and Bus Signals
in Stateflow Embedded MATLAB Functions” in the Stateflow User’s Guide).

Defining Structure Variables Implicitly in Embedded
MATLAB Functions
To create local structures in an Embedded MATLAB function, you must define
structures implicitly as variables inside the function. Like all local variables
in Embedded MATLAB functions, local structures are temporary by default,
but you can make them persistent (see “Making Structures Persistent” on
page 12-69).

You can define structures implicitly as scalars or arrays, as described in
these topics:

• “Defining Scalar Structures in Embedded MATLAB” on page 12-66

• “Defining Arrays of Structures in Embedded MATLAB” on page 12-67

Defining Scalar Structures in Embedded MATLAB
There are several ways to create scalar structures in Embedded MATLAB:

• “Defining Scalar Structures by Extension” on page 12-66

• “Defining Scalar Structures Using the MATLAB struct Function” on page
12-67

Defining Scalar Structures by Extension. You can create scalar structures
by extension by adding fields to a variable using dot notation. For example,
the following code creates a structure to represent a point p with coordinates
x, y, and z:

...
p.x = 1;
p.y = 3;
p.z = 1;
...

12-66

Using Structures in Embedded MATLAB

You can also nest scalar structures in direct assignment statements by
appending more than one field to a variable using dot notation. For example,
the following code adds a color field to structure p :

...
p.color.red = .2;
p.color.green = .4;
p.color.blue = .7;
...

See “Indexing Sub-Structures and Fields” on page 12-69.

Defining Scalar Structures Using the MATLAB struct Function. You can
create scalar structures in Embedded MATLAB using the MATLAB struct
function (see “Structures” in the MATLAB Programming documentation).
When using struct in Embedded MATLAB functions, the field arguments
must be scalar values. You cannot create structures of cell arrays in Embedded
MATLAB. However, you can define arrays of structures, as described in
“Defining Arrays of Structures in Embedded MATLAB” on page 12-67 .

Defining Arrays of Structures in Embedded MATLAB
When you create an array of structures in Embedded MATLAB, you must be
sure that each structure in the array has the same size, type, and complexity
(see “Limitations with Structures” on page 12-71). There are several ways to
create arrays of structures in Embedded MATLAB:

• “Defining an Array of Structures from a Scalar Structure” on page 12-67

• “Defining an Array of Structures Using Concatenation” on page 12-68

Defining an Array of Structures from a Scalar Structure. You can
create an array of structures from a scalar structure by using the MATLAB
repmat function, which replicates and tiles an existing scalar structure.
Follow these steps:

1 Create a scalar structure, as described in “Defining Scalar Structures in
Embedded MATLAB” on page 12-66.

2 Call repmat, passing the scalar structure and the dimensions of the array.

12-67

12 Embedded MATLAB Basics

3 Assign values to each structure using standard array indexing and
structure dot notation.

For example, the following code from an Embedded MATLAB function creates
X, a 1-by-3 array of scalar structures. Each element of the array is defined
by the structure s, which has two fields, a and b:

...
s.a = 0;
s.b = 0;
X = repmat(s,1,3);
X(1).a = 1;
X(2).a = 2;
X(3).a = 3;
X(1).b = 4;
X(2).b = 5;
X(3).b = 6;
...

Defining an Array of Structures Using Concatenation. To create a small
array of structures, you can use the concatenation operator, square brackets
([]), to join one or more structures into an array (see “Concatenating
Matrices” in the MATLAB Programming documentation). In Embedded
MATLAB, all the structures that you concatenate must have the same size,
class, and complexity.

For example, the following code uses concatenation and a sub-function to
create the elements of a 1–by-3 structure array:

...
W = [sab(1,2) sab(2,3) sab(4,5)];

function s = sab(a,b)
s.a = a;
s.b = b;

...

12-68

Using Structures in Embedded MATLAB

Making Structures Persistent
To make structures persist, you declare them to be persistent variables and
initialize them with the isempty statement, as described in “Declaring
Persistent Variables” on page 12-58.

For example, the following Embedded MATLAB function declares structure X
to be persistent and initializes its fields a and b:

function f(u)
persistent X

if isempty(X)
X.a = 1;
X.b = 2;

end

Indexing Sub-Structures and Fields
As in MATLAB, you index sub-structures and fields of Embedded MATLAB
structures by using dot notation. Unlike MATLAB, you must reference field
values individually (see “Reference Field Values Individually from Structure
Arrays” on page 12-74).

For example, in the model described in “Example of Structures in Embedded
MATLAB” on page 12-61, the Embedded MATLAB function uses dot notation
to index fields and substructures:

function [outbus, outbus1] = fcn(inbus)

substruct.a1 = inbus.ele3.a1;
substruct.a2 = int8([1 2;3 4]);

mystruct = struct('ele1',20.5,'ele2',single(100),
'ele3',substruct);

outbus = mystruct;
outbus.ele3.a2 = 2*(substruct.a2);

outbus1 = inbus.ele3;

12-69

12 Embedded MATLAB Basics

The following table shows how Embedded MATLAB resolves symbols in dot
notation for indexing elements of the structures in this example:

Dot Notation Symbol Resolution

substruct.a1 Field a1 of local structure substruct

inbus.ele3.a1 Value of field a1 of field ele3, a sub-structure of
structure inputinbus

inbus.ele3.a2(1,1) Value in row 1, column 1 of field a2 of field ele3,
a sub-structure of structure input inbus

Assigning Values to Structures and Fields
You can assign values to any Embedded MATLAB structure, sub-structure, or
field. Here are the guidelines:

Operation Conditions

Assign one structure to another
structure

You must define each structure
with the same number, type,
and size of fields, either as
Simulink.Bus objects in the base
workspace or locally as implicit
structure declarations (see “Creating
Structures in Embedded MATLAB”
on page 12-63).

Assign one structure to a
sub-structure of a different structure
and vice versa

You must define the structure with
the same number, type, and size of
fields as the sub-structure, either
as Simulink.Bus objects in the base
workspace or locally as implicit
structure declarations.

Assign an element of one structure
to an element of another structure

The elements must have the same
type and size.

For example, the following table presents valid and invalid structure
assignments based on the specifications for the model described in “Example
of Structures in Embedded MATLAB” on page 12-61:

12-70

Using Structures in Embedded MATLAB

Assignment Valid or
Invalid?

Rationale

outbus = mystruct; Valid Both outbus and mystruct have the same number,
type, and size of fields. The structure outbus
is defined by the Simulink.Bus object MainBus
and mystruct is defined locally to match the field
properties of MainBus.

outbus= inbus; Valid Both outbus and inbus are defined by the
sameSimulink.Bus object, MainBus.

outbus1= inbus.ele3; Valid Both outbus1 and inbus.ele3 have the same type
and size because each is defined by the Simulink.Bus
object SubBus.

outbus1 = inbus; Invalid The structure outbus1 is defined by a different
Simulink.Bus object than the structure inbus.

Limitations with Structures
Embedded MATLAB supports MATLAB structures with the following
limitations to allow efficient code generation in C:

• “Add Fields in Consistent Order” on page 12-71

• “Do Not Assign Empty Matrices” on page 12-72

• “Do Not Assign Opaque Values to Structures” on page 12-72

• “Do Not Add New Fields After First Use of Structures” on page 12-72

• “Make Structures Uniform in Arrays” on page 12-73

• “Do Not Reference Fields Dynamically” on page 12-73

• “Do Not Use Field Values as Constants” on page 12-74

• “Reference Field Values Individually from Structure Arrays” on page 12-74

Add Fields in Consistent Order
When you create a structure, you must add fields in the same order on each
control flow path. For example, the following code generates a compiler

12-71

12 Embedded MATLAB Basics

error because it adds the fields of structure x in a different order in each
if statement clause:

function y = fcn(u)
if u > 0

x.a = 10;
x.b = 20;

else
x.b = 30; % Generates an error (on variable x)
x.a = 40;

end
y = x.a + x.b;

In this example, the assignment to x.a comes before x.b in the first if
statement clause, but the assignments appear in reverse order in the else
clause. Here is the corrected code:

function y = fcn(u)
if u > 0

x.a = 10;
x.b = 20;

else
x.a = 40;
x.b = 30;

end
y = x.a + x.b;

Do Not Assign Empty Matrices
You cannot assign empty matrices to structure fields.

Do Not Assign Opaque Values to Structures
You cannot assign opaque values to structure elements in Embedded
MATLAB; you must first convert them to non-opaque values (see “Working
with Opaque Values” on page 12-51).

Do Not Add New Fields After First Use of Structures
You cannot add fields to a structure after you perform any of the following
operations on the structure:

12-72

Using Structures in Embedded MATLAB

• Reading from the structure

• Indexing into the structure array

• Passing the structure to a function

. For example, consider this code:

...
x.c = 10; % Declares structure and creates field c
y = x; % Reads from structure
x.d = 20; % Generates an error
...

In this example, the attempt to add a new field d after reading from structure
x generates an error.

This restriction extends across the structure hierarchy. For example, you
cannot add a field to a structure after operating on one of its fields or nested
structures, as in this example:

function y = fcn(u)

x.c = 10;
y = x.c;
x.d = 20; % Generates an error

In this example, the attempt to add a new field d to structure x after reading
from the structure’s field c generates an error.

Make Structures Uniform in Arrays
Each structure in an array of structures must have the same size, type,
and complexity.

Do Not Reference Fields Dynamically
You cannot reference fields in a structure by using dynamic names, which
express the field as a variable expression that MATLAB evaluates at
run-time (see “Using Dynamic Field Names” in the MATLAB Programming
documentation).

12-73

12 Embedded MATLAB Basics

Do Not Use Field Values as Constants
Embedded MATLAB never considers the values stored in the fields of a
structure to be constant values. Therefore, you cannot use field values to set
the size or class of other data. For example, the following code generates
an error:

...
Y.a = 3;
X = zeros(Y.a); % Generates an error

In this example, even though you set field a of structure Y to the value 3,
Embedded MATLAB does not consider Y.a to be a constant and, therefore, it
is not a valid argument to pass to the function zeros.

Reference Field Values Individually from Structure Arrays
To reference the value of a field in a structure array, you must index into the
array to the structure of interest and then reference that structure’s field
individually using dot notation, as in this example:

...
y = X(1).a % Extracts the value of field a

% of the first structure in array X
...

To reference all the values of a particular field for each structure in an array,
use this notation in a for loop, as in this example:

...
s.a = 0;
s.b = 0;
X = repmat(s,1,5);
for i = 1:5

X(i).a = i;
X(i).b = i+1;

end

This example uses the repmat function to implicitly define an array of
structures, each with two fields a and b as defined by s. See “Defining
Structure Variables Implicitly in Embedded MATLAB Functions” on page
12-66 for more information on how to define structure arrays.

12-74

Using M-Lint with Embedded MATLAB

Using M-Lint with Embedded MATLAB
The Embedded MATLAB Editor uses the MATLAB M-Lint Code Analyzer
to automatically check your Embedded MATLAB function code for errors
and recommend corrections. The editor displays the same type of M-Lint
bar that appears in the MATLAB editor to highlight offending lines of
code. However, in the Embedded MATLAB Editor, the M-Lint bar displays
Embedded MATLAB diagnostics as well as MATLAB messages, as in the
following example:

For information about how to use M-Lint, see “M-Lint Code Analyzer” in the
MATLAB Desktop Tools and Development Environment documentation.

12-75

12 Embedded MATLAB Basics

Unsupported MATLAB Features and Limitations
Embedded MATLAB provides a subset of the full list of MATLAB features.
Unsupported features and features with limitations are described in the
following topics:

• “List of Unsupported Features” on page 12-76

• “Limitations on Indexing Operations” on page 12-77

• “Limitations with Complex Numbers” on page 12-78

Note For information about fixed-point support in Embedded MATLAB and
its limitations, see “Using the Fixed-Point Toolbox with Embedded MATLAB”
in the Fixed-Point Toolbox documentation.

List of Unsupported Features
The following is a list of MATLAB features that are not supported by
Embedded MATLAB functions.

Feature Not
Supported Remarks

Cell arrays Supported data types are listed in “Supported
Variable Types in Embedded MATLAB Functions”
on page 12-3.

Command/function
duality

Supports function-style syntax, but not
command-style syntax, for function calls. MATLAB
supports both styles (see “MATLAB Calling Syntax”).

Dynamic variables You cannot use variables of dynamic size, or
variables of different sizes.

Function handles —

Global —

Java —

12-76

Unsupported MATLAB Features and Limitations

Feature Not
Supported Remarks

M-files User M-files in the MATLAB path are not supported
for code generation, but they can be called during
simulation.

Matrix deletion

N-dimensional
matrices

Supported sizes are scalar and two-dimensional
matrices. Vectors are two-dimensional matrices with
a row or column dimension of 1.

Nested functions —

Objects —

Sparse matrices —

Try/catch —

Limitations on Indexing Operations
Embedded MATLAB supports matrix indexing operations for a matrix M with
limitations for the following types of expressions:

• M(i:j) where i and j change in a loop

Embedded MATLAB never dynamically allocates memory for the size of
the expressions that change as the program executes. The workaround is to
use for loops as shown in the following example:

for i=1:10
for j = i:10
M(i,j) = 2 * M(i,j);

end
end

• M(i:i+k) where i is unknown but k is known

In this case, since i and therefore i+k are not known, memory cannot be
allocated for the numerical result. However, memory can be allocated for
the following workaround:

M(i + (0:k))

12-77

12 Embedded MATLAB Basics

In this case, an unknown scalar value i is added to each element of the
known index vector 0...k. This means that memory for k+1 elements
of M is allocated.

• Initialization of the following style:

for i = 1:10
M(i) = 5;

end

In this case, the size of M changes as the loop is executed.

Limitations with Complex Numbers
Embedded MATLAB supports complex numbers and operations with the
following exceptions:

• The first use of a variable that is later assigned a complex result must also
be complex. For example,

X = 3;
.
.
.

X = 4 + 5i;

fails because X is not defined as a complex variable by its first assignment.
However,

X = 3 + 0i;
.
.
.

X = 4 + 5i;

succeeds because X is defined as a complex variable in its first assignment.

• Even if the imaginary part is zero, if the result might be complex,
Embedded MATLAB will treat it as complex. For example, although

X = ifft(fft(Y));

12-78

Unsupported MATLAB Features and Limitations

yields a real answer, Embedded MATLAB assumes that the function ifft
might return a complex result. The workaround is to use the real function:

X = real(ifft(fft(Y)));

12-79

12 Embedded MATLAB Basics

12-80

Index

IndexA
Abs block 1-8 2-2
absolute tolerance

simset parameter 5-20
specifying for a block state 2-367

absolute value
generating 2-2

Accumulator Resettable block 2-4
Accumulator Resettable Limited block 2-4
Action Port block 1-11 2-5
Action subsystems

creating 2-5
with If block 2-331
with SwitchCase block 2-653

Add block 2-644
add_block command 4-6
add_line command 4-8
add_param command 4-10
Additional Discrete block library

block parameters 10-164
Additional Math: Increment - Decrement block

library
block parameters 10-167

addterms command 4-11
Algebraic Constraint block 1-8 2-9
algebraic equations

modeling 2-9
algebraic loops

integrator block reset or IC port 2-228
analysis functions

perturbing model 2-347
animate 7-6
AnnotationDefaults section of mdl file 11-7
annotations

annotation block, see Model Info block
ashow debug command 7-7
Assert block 1-9 2-11
Assignment block 1-8 2-15
Atomic Subsystem block 2-633
atrace debug command 7-8

attachConfigSet command 4-12
attachConfigSetCopy command 4-14
automatic scaling 8-24

and Look-Up Table (2D) block 2-410
autoscale safety margin 8-28
fixptbestprec 8-7

autoscaling
fixptbestprec 8-7

autoscaling Scope axes 2-564

B
Backlash block 1-3 2-24
Backward Euler method 2-225
Backward Rectangular method 2-225
Band-Limited White Noise block 1-15 2-31
bdclose command 4-16
bdroot command 4-17
bits

clear 2-42
mask 2-42
set 2-42

block dialog boxes
closing 4-18
opening 4-52

block parameters
Additional Discrete library 10-164
Additional Math: Increment - Decrement

library 10-167
changing during simulation 4-63
common 10-56
Continuous library 10-68
Discontinuities library 10-71
Discrete library 10-73
Logic and Bit Operations library 10-83
Lookup Tables library 10-87
Math library 10-95
Model Verification block library 10-111
Model-Wide Utilities library 10-115
Ports & Subsystems library 10-117

Index-1

Index

Signal Attributes library 10-139
Signal Routing library 10-145
Sinks library 10-151
Sources library 10-156
User-defiined functions library 10-163

BlockDefaults section of mdl file 11-5
BlockParameterDefaults section of mdl

file 11-6
blocks 10-68

Accumulator Resettable 2-4
Accumulator Resettable Limited 2-4
adding to model 4-6
Compare To Zero 2-104
Counter Limited 2-130
current 4-35
Data Type Propagation 2-157
Decrement Stored Integer 2-176
Decrement Time To Zero 2-177
Decrement To Zero 2-178
deleting

delete_block command 4-21
Detect Decrease 2-191
Detect Fall Negative 2-193
Detect Fall Nonpositive 2-194
Detect Increase 2-196
Detect Rise Nonnegative 2-198
Detect Rise Positive 2-200
Filter Direct Form II 2-679
Filter Direct Form II Time Varying 2-682
Filter First Order 2-685
Filter Lead or Lag 2-687
Filter Real Zero 2-690
handle of current 4-36
Increment Stored Integer 2-344
Index Vector 2-345
Interval Test Dynamic 2-387
Product of Elements Inverted 2-499
Repeating Sequence Stair 2-547
Sample Time Divide 2-765
Sample Time Multiply 2-766

Sample Time Probe 2-766
Sample Time Subtract 2-766
Unit Delay Enabled External IC 2-720
Unit Delay Enabled Resettable 2-722
Unit Delay Enabled Resettable External

IC 2-725
Unit Delay External IC 2-728
Unit Delay Resettable 2-730
Unit Delay Resettable External IC 2-732
Unit Delay With Preview Enabled 2-735
Unit Delay With Preview Enabled

Resettable 2-738
Unit Delay With Preview Enabled

Resettable External RV 2-741
Unit Delay With Preview Resettable 2-744
Unit Delay With Preview Resettable

External RV 2-747
See also block parameters

bode function 3-7
Boolean expressions

modeling 2-96
break debug command 7-11
bshow debug command 7-13
Bus Creator block 1-2 1-13 2-48
Bus Selector block 1-2 1-13 2-54

C
capping unconnected blocks

using the Terminator block 2-662
character encoding, model 4-74
Check Discrete Gradient block 1-9 2-57
Check Dynamic Gap block 1-10 2-60
Check Dynamic Lower Bound block 1-10 2-63
Check Dynamic Range block 1-10 2-66
Check Dynamic Upper Bound block 1-10 2-69
Check Input Resolution block 1-10 2-72
Check Static Gap block 1-10 2-75
Check Static Lower Bound block 1-10 2-79
Check Static Range block 1-10 2-83

Index-2

Index

Check Static Upper Bound block 1-10 2-87
Chirp Signal block 1-15 2-91
clear debug command 7-14
clearing bits 2-42
Clock block 1-15 2-94
close_system command 4-18
closeDialog command 4-20
clutch demo 2-326
code generation

scaling 2-152
color command 6-4
Combinatorial Logic block 1-5 2-96
combining input lines into vector line 2-466
commands, simulation

Simulink.BlockDiagram.getChecksum 5-25
Simulink.BlockDiagram.getInitialState 5-28
Simulink.SubSystem.getChecksum 5-30

Compare To Zero block 2-104
Complex to Magnitude-Angle block 1-8 2-106
Complex to Real-Imag block 1-8 2-108
complex variables in Embedded MATLAB

functions 12-56
Concatenate 1-8 2-110
Configurable Subsystem block 1-11 2-114
configuration set

attaching 4-12
attaching and copying 4-14
closing dialog 4-20
opening dialog 4-55

Constant block 1-2 1-15 2-120
constant value

generating 2-120
continue debug command 7-15
Continuous block library

block parameters 10-68
control flow diagrams

Action subsystem 2-5
do-while

While Iterator block 2-770

for
For Iterator block 2-284

if-else
If block 2-331

switch
Switch Case block 2-653

while
While Iterator block 2-770

control flow statements in Embedded
MATLAB 12-4

Coulomb and Viscous Friction block 1-3 2-126
Coulomb friction 2-126
Counter Limited block 2-130
Create Subsystem menu item 2-633
current block

getting pathname 4-35
handle 4-36

current system
getting pathname 4-37

D
data object classes

Simulink.AliasType 9-8
Simulink.Bus 9-31
Simulink.BusElement 9-34
Simulink.ModelDataLogs 9-72
Simulink.ModelWorkspace 9-77
Simulink.NumericType 9-97
Simulink.Parameter 9-104
Simulink.ParamRTWInfo 9-109
Simulink.Signal 9-124
Simulink.StructElement 9-131
Simulink.StructType 9-133
Simulink.SubsysDataLogs 9-136
Simulink.TimeInfo 9-138
Simulink.TsArray 9-141

Data Store Memory block 1-13 2-132
Data Store Read block 1-13 2-141
Data Store Write block 1-13 2-144

Index-3

Index

Data Type Conversion block 1-2 1-12 2-146
Data Type Propagation block 2-157
data types

propagation 2-157
Dead Zone block 1-3 2-170
deadband 2-24
debug commands

ashow 7-7
atrace 7-8
break 7-11
bshow 7-13
clear 7-14
continue 7-15
disp 7-16
emode 7-21
etrace 7-22
help 7-23
nanbreak 7-24
next 7-25
probe 7-26
quit 7-27
run 7-29
states 7-32
status 7-33
step 7-34
stop 7-37
strace 7-38
systems 7-40
tbreak 7-41
trace 7-42
undisp 7-43
untrace 7-44
xbreak 7-47
zcbreak 7-48
zclist 7-49

decimation factor 5-20
decision tables

modeling 2-96
Decrement Stored Integer block 2-176
Decrement Time To Zero block 2-177

Decrement To Zero block 2-178
delaying input by variable amount 2-750
delete_block command 4-21
delete_line command 4-22
delete_param command 4-23
demos

hardstop 2-326
lorenz 2-779
sldemo_clutch 2-326

Demux block 1-2 1-14 2-179
Derivative block 1-3 2-186

accuracy of 2-186
derivatives

calculating 2-186
limiting 2-517

Detect Decrease block 2-191
Detect Fall Negative block 2-193
Detect Fall Nonpositive block 2-194
Detect Increase block 2-196
Detect Rise Nonnegative block 2-198
Detect Rise Positive block 2-200
differential/algebraic systems

modeling 2-9
Digital Clock block 1-15 2-205
Discontinuities block library

block parameters 10-71
Discrete block library

block parameters 10-73
Discrete Filter block 1-4 2-218
Discrete State-Space block 1-4 2-221
discrete state-space model 3-7
Discrete Transfer Fcn block 1-4 2-241
Discrete Zero-Pole block 1-4 2-244
Discrete-Time Integrator block 1-2 1-4 2-224
discrete-time systems

linearization 3-6
disp command 6-6
disp debug command 7-16
Display block 1-14 2-247

as floating display 2-249

Index-4

Index

displaying
signals graphically 2-560

dlinmod function 3-3
DocBlock block 1-10 2-252
Dot Product block 1-8 2-255
dpoly command 6-7
droots command 6-7

E
eigenvalues of linearized matrix 3-7
Embedded MATLAB

arithmetic operators 12-5
calling MATLAB functions 12-46 12-50
calling MATLAB functions as extrinsic

functions 12-47
calling MATLAB functions using

feval 12-49
calling other functions 12-43
calling subfunctions 12-45
code generation for MATLAB function

calls 12-50
control flow statements 12-4
converting opaque values to non-opaque

values 12-51
creating local variables 12-55
declaring persistent variables 12-58
description 12-1
Embedded MATLAB run-time library 12-8
how it resolves function calls 12-43
initializing persistent variables 12-58
logical operators 12-6
MATLAB features NOT supported 12-76
operators 12-4
Real-Time Workshop targets,

building 12-50
relational operators 12-6
supported MATLAB functions 12-45
using M-Lint 12-75
variable types 12-3

variables 12-55
variables, complex 12-56
working with opaque values 12-51

Embedded MATLAB Function
signal processing functions 12-38

Embedded MATLAB run-time library 12-8
alphabetical list of functions 12-8
casting functions 12-28
categorized list of functions 12-26
complex number functions 12-28
discrete math functions 12-29
exponential functions 12-29
Fixed-Point Toolbox functions 12-30
input and output functions 12-33 12-40
logical operator functions 12-34
matrix/array functions 12-34
relational operator functions 12-37 to

12-38
rounding and remainder functions 12-38
special value functions 12-39
string functions 12-40 to 12-41
trigonometric functions 12-41

eml.extrinsic 12-47
emode debug command 7-21
Enable block 1-11 2-264
Enabled and Triggered Subsystem block 1-11

2-266
Enabled Subsystem block 1-11 2-267
enabled subsystems

Enable block 2-264
etrace debug command 7-22
expressions

applying to block inputs 2-274
MATLAB Fcn block 2-438

external inputs
flag 5-9
from workspace 2-347
ut 5-13

extrinsic functions 12-47

Index-5

Index

F
Fcn block 1-16 2-274

compared to Math Function block 2-433
compared to Rounding Function

block 2-554
compared to Trigonometric Function

block 2-706
files

reading from 2-295
writing to

To File block 2-666
Filter Direct Form II block 2-679
Filter Direct Form II Time Varying block 2-682
Filter First Order block 2-685
Filter Lead or Lag block 2-687
Filter Real Zero block 2-690
find_system command 4-29
finding objects 4-29
Finite Impulse Response filter 2-218
finite-state machines

implementing 2-96
First-Order Hold block 1-4 2-278
fixdt function 8-3
fixed step size 5-21
Fixed-Point Interface Tool 8-24
fixpt_interp1 function 8-10
fixpt_look1_func_approx function 8-12
fixpt_look1_func_plot function 8-20
fixpt_set_all function 8-22
fixptbestexp function 8-4
fixptbestprec function 8-6

autoscaling 8-7
flip-flops

implementing 2-96
float function 8-23
floating scope

definition 2-575
Floating Scope block 2-560
for control flow diagram

creating 2-284

For Iterator block 2-284
For Iterator Subsystem block 1-11 2-291
For subsystems

creating 2-284
format for exporting model states and outputs

specifying via simset command 5-23
Forward Euler method 2-224
Forward Rectangular method 2-224
fprintf command 6-10
From block 1-14 2-292
From File block 1-15 2-295
From Workspace block 1-15 2-299
Function-Call Generator block 1-11 2-306
Function-Call Subsystem block 1-11 2-309
functions

fixdt 8-3
fixpt_interp1 8-10
fixpt_look1_func_approx 8-12
fixpt_look1_func_plot 8-20
fixpt_set_all 8-22
fixptbestexp 8-4
fixptbestprec 8-6
float 8-23
fxptdlg 8-24
num2fixpt 8-30
sfix 8-33
sfrac 8-34
sint 8-35
ufix 8-36
ufrac 8-37
uint 8-38

fxptdlg function 8-24

G
gain

varying during simulation 2-623
gcb command 4-35
gcbh command 4-36
gcs command 4-37

Index-6

Index

get_param command 4-42
global Goto tag visibility 2-317
Goto block 1-14 2-317
Goto Tag Visibility block 1-14 2-322
graphics

displaying on mask icon 6-14
Greek letters

displaying on mask icons 6-6
using the text function 6-18

Ground block 1-2 1-15 2-324
GUI 8-24

See also Fixed-Point Interface Tool

H
handle of current block 4-36
hardstop demo 2-326
help debug command 7-23
Hide Name menu item

suppressing display of port label 2-469
Hit Crossing block 1-4 2-326
hybrid systems

linearization 3-6

I
IC block 1-13 2-329
If Action Subsystem block 1-11 2-342
If block 1-11 2-331
if-else control flow diagram

creating 2-331
image

displaying on mask icon 6-11
drawing on mask icon using patch 6-13

image command 6-11
Increment Stored Integer block 2-344
Index Vector block 2-345
inf values

in mask plotting commands 6-14
Infinite Impulse Response filter 2-218

inherited
data types

by backpropagation 2-157
scaling

by backpropagation 2-157
initial conditions

setting 2-329
initial states 5-21
initial step size 5-21
initialization

persistent variables 12-58
Inport block 1-2 1-12 1-15 2-346
Inport blocks

in subsystem 2-633
linmod function 3-6

input ports
unconnected 2-324

inputs
applying expressions to 2-274
applying MATLAB function to

Fcn block 2-274
MATLAB Fcn block 2-438

combining into vector line 2-466
delaying by variable amount 2-750
external 5-13
from outside system 2-346
from previous time step 2-441
from workspace 2-347
generating step between two levels 2-628
interpolated mapping 2-417
logical operations on 2-392
multiplying block inputs during

simulation 2-623
outputting minimum or maximum 2-450
passing through stair-step function 2-510
piecewise linear mapping of two 2-408
plotting 2-779
reading from file 2-295
width of 2-776

integration

Index-7

Index

block input 2-358
discrete-time 2-224

Integrator block 1-2 to 1-3 2-358
interpolated mapping 2-417
Interval Test Dynamic block 2-387

J
Jacobians 3-6

L
left-hand approximation 2-224
limiting

signals 2-556
limiting derivative of signal 2-517
limiting integral 2-360
linear models

extracting
linmod function 3-6

linearization
discrete-time systems 3-6
linmod function 3-6

linearized matrix
eigenvalues 3-7

LineDefaults section of mdl file 11-7
lines

adding 4-8
deleting 4-22

linmod function 3-3
Transport Delay block 2-693

linmod2 function 3-3
linmodv5 function 3-3
local Goto tag visibility 2-317
Logic and Bit Operations block library

block parameters 10-83
logic circuits

modeling 2-96
Logical Operator block 2-392
Look-Up Table (2-D) block 1-7 2-408

Look-Up Table (n-D) block 1-7 2-417
Lookup Tables block library

block parameters 10-87
lorenz demo 2-779

M
MACs

propagating data type information
for 2-163

Magnitude-Angle to Complex block 1-8 2-428
Manual Switch block 1-14 2-431
mask icon 6-4

displaying graphics on 6-14
displaying image on 6-11
displaying port label on 6-16
displaying symbols and Greek letters

on 6-18
displaying text on 6-6
displaying text using fprintf 6-10
displaying text using text 6-18
displaying transfer function on 6-7
using the patch function 6-13

mask icons
changing plot colors on 6-4
displaying symbols and Greek letters

on 6-6
question marks in 6-14

mask parameters
undefined 6-8

masked blocks
parameters 10-168

masked subsystems
question marks in icon 6-14

masking bits 2-42
Math block library

block parameters 10-95
Math Function block 1-8 2-432
mathematical functions

Index-8

Index

performing
Math Function block 2-432
Rounding Function block 2-554
Trigonometric Function block 2-706

mathematical symbols
displaying on mask icons 6-6
displaying on mask icons using text 6-18

MATLAB
features NOT supported in Embedded

MATLAB 12-76
MATLAB character encoding, changing 4-74
MATLAB Fcn block 1-16 2-438
MATLAB functions

and opaque values in Embedded
MATLAB 12-51

applying to block input
Fcn block 2-274
MATLAB Fcn block 2-438

MATLAB functions in Embedded
MATLAB 12-46

matrices
writing to 2-670

maximum number of output rows 5-22
maximum order of ode15s solver 5-21
maximum step size

simset command 5-22
mdl file 11-2
Memory block 1-4 2-441
memory region

shared
Data Store Memory block 2-132
Data Store Read block 2-141
Data Store Write block 2-144

Merge block 1-14 2-445
minimum step size

simset command 5-22
MinMax block 1-8 2-450
model files 11-2
Model Info block 1-10 2-459
model parameters

table 10-2
Model Verification block library

block parameters 10-111
Model-Wide Utilities block library

block parameters 10-115
models

closing 4-16
creating

new_system command 4-50
getting name 4-17
parameters 10-2
replacing blocks 4-56
simulating 5-11

multiplying block inputs
during simulation 2-623

multirate systems
linearization 3-6

Mux block 1-2 1-14 2-466

N
Nan values

in mask plotting commands 6-14
nanbreak debug command 7-24
new_system command 4-50
next debug command 7-25
nonlinear systems

spectral analysis of 2-91
normally distributed random numbers 2-514
num2fixpt function 8-30

O
objects

finding 4-29
obsolete blocks, replacing 4-83
ode113 solver

Memory block 2-441
ode14x solver

extrapolation order 5-21

Index-9

Index

number of Newton iterations 5-22
ode15s solver

maximum order property 5-21
Memory block 2-441

opaque values
converting to non-opaque values 12-51
in Embedded MATLAB 12-51

open_system command 4-52
openDialog command 4-55
opening

block dialog boxes 4-52
Simulink Library Browser 4-67
system windows 4-52

operating point 3-3
operators

arithmetic, in Embedded MATLAB 12-5
logical, in Embedded MATLAB 12-6
relational, in Embedded MATLAB 12-6

options structure
getting values 5-17
setting values 5-19

Outport blocks 1-2 1-12 1-14 2-469
in subsystem 2-633
linmod function 3-6

output
maximum rows 5-22
outside system 2-469
refine factor 5-22
selected elements of input vector 2-584
selected information about the signal on

input 2-500
specifying points 5-22
switching between two inputs 2-431
values

displaying 2-247
variables 5-22
writing to file

To File block 2-666
writing to workspace

To Workspace block 2-670

zero within range 2-170
output ports

capping unconnected 2-662

P
parameters

adding 4-10
block

list 10-56
deleting 4-23
getting values of 4-42
masked blocks 10-168
model 10-2
setting values of

set_param command 4-63
patch command 6-13
persistent variables

declaring in Embedded MATLAB
functions 12-58

initializing in Embedded MATLAB
functions 12-58

phase-shifted wave 2-599
piecewise linear mapping

two inputs 2-408
piecewise linear signal

generating
Signal Builder block 2-599

plot command 6-14
Plot systems Interface 8-28
plotting input signals

Scope block 2-560
XY Graph block 2-779

plotting simulation data 5-15
port label

displaying on mask icon 6-16
port labels

suppressing display 2-469
port_label command 6-16
Ports & Subsystems block library

Index-10

Index

block parameters 10-117
precision

best 8-4
maximum 8-6

probe debug command 7-26
Product of Elements Inverted block 2-499
programmable logic arrays

modeling 2-96
propagation of data types 2-157
properties of Scope block 2-570
Pulse Generator block 1-15 2-504

Q
Quantizer block 1-4 2-510
question marks in mask icon 6-14
quit debug command 7-27

R
random noise

generating 2-514
Random Number block 1-16 2-514

and Band-Limited White Noise block 2-31
compared to Band-Limited White Noise

block 2-514
random numbers

generating normally distributed 2-31
normally distributed 2-514
uniformly distributed 2-711

Rate Limiter block 1-4 2-517
Rate Transition block 1-13 2-521
reading data

from data store 2-141
from file 2-295
from workspace 2-299

Real-Imag to Complex block 1-9 2-527
refine factor

simset command 5-22
region of zero output 2-170

regular expressions 4-32
relative tolerance 5-23
Repeating Sequence block 1-16 2-540
Repeating Sequence Stair block 2-547
repeating signals 2-540
replace obsolete blocks 4-83
replace_block command 4-56
replacing blocks in model 4-56
Reshape block 1-9 2-551
right-hand approximation 2-225
Rounding Function block 1-9 2-554
run debug command 7-29

S
S-Function block 2-591
S-Function Builder block 2-594
Sample Time Divide block 2-765
Sample Time Multiply block 2-766
Sample Time Probe block 2-766
Sample Time Subtract block 2-766
sample-and-hold

applying to block input 2-441
sampling interval

generating simulation time 2-205
Saturation block 2-556
save_system command 4-58
sawtooth wave

generating 2-603
Scope axes

autoscaling 2-564
Scope block 2-560

properties 2-570
saving axes settings 2-570

scoped Goto tag visibility 2-317
Selector block 2-584
separating vector signal 2-179
sequence of signals 2-504
sequential circuits

implementing 2-98

Index-11

Index

set_param command 4-63
setting bits 2-42
setting parameter values 4-63
sfix function 8-33
sfrac function 8-34
shared data store

Data Store Memory block 2-132
Data Store Read block 2-141
Data Store Write block 2-144

Sign block 2-597
Signal Attributes block library

block parameters 10-139
Signal Generator block 2-603
Signal Inspection block 1-13 2-500
signal logging

enabling
simset command 5-24

signal logging name
specifying

simset command 5-24
signal processing functions

for Embedded MATLAB Function 12-38
Signal Routing block library

block parameters 10-145
Signal Specification block 2-608
Signal Viewer Scope 2-560
signals

displaying graphically 2-560
displaying vector 2-561
displaying X-Y plot of 2-779
generating pulses 2-504
limiting 2-556
limiting derivative of 2-517
passed from Goto block 2-292
passing to From block 2-317
plotting

Scope block 2-560
XY Graph block 2-779

repeating 2-540
sim command 5-11

simget command 5-17
simplot command

plotting simulation data 5-15
simset command 5-19
simulating models 5-11
simulation

parameters
specifying using simset

command 5-19
stopping

Stop Simulation block 2-631
simulation commands

Simulink.BlockDiagram.getChecksum 5-25
Simulink.BlockDiagram.getInitialState 5-28
Simulink.SubSystem.getChecksum 5-30

simulation time
generating at sampling interval 2-205
outputting 2-94

simulink command 4-67
Simulink Library Browser

opening 4-67
Simulink.AliasType 9-8
Simulink.BlockDiagram.getChecksum

command
description 5-25

Simulink.BlockDiagram.getInitialState
command
description 5-28

Simulink.Bus 9-31
Simulink.BusElement 9-34
Simulink.ConfigSet section of mdl file 11-5
Simulink.ModelDataLogs 9-72
Simulink.ModelWorkspace 9-77
Simulink.NumericType 9-97
Simulink.Parameter 9-104
Simulink.ParamRTWInfo 9-109
Simulink.Signal 9-124
Simulink.StructElement 9-131
Simulink.StructType 9-133
Simulink.SubsysDataLogs 9-136

Index-12

Index

Simulink.SubSystem.getChecksum command
description 5-30

Simulink.TimeInfo 9-138
Simulink.TsArray 9-141
sine wave

generating
Signal Generator block 2-603
Sine Wave block 2-616

generating with increasing frequency
Chirp Signal block 2-91

Sine Wave block 2-616
Sinks block library

block parameters 10-151
sint function 8-35
Slider Gain block 1-9 2-623
slupdate command 4-83
solvers

properties
specifying 5-19

specifying using simset command 5-23
Sources block library

block parameters 10-156
spectral analysis of nonlinear systems 2-91
square wave

generating 2-603
ss2tf function 3-8
ss2zp function 3-8
stair-step function

passing signal through 2-510
state derivatives

setting to zero 3-9
state space in discrete system 2-221
State-Space block 2-625
states

initial 5-21
outputting 5-22
resetting 2-361
saving at end of simulation 5-21
specifying absolute tolerance for 2-367

states debug command 7-32

status debug command 7-33
Step block 2-628
step debug command 7-34
stop debug command 7-37
Stop Simulation block 2-631
stopping simulation 2-631
strace debug command 7-38
subfunctions in Embedded MATLAB 12-45
Subsystem block 2-633
subsystems

and Inport blocks 2-346
enabled 2-264

Subtract block 2-644
Sum block 2-644
Sum of Elements block 2-644
Switch Case Action Subsystem block 2-658
switch control flow diagram

creating 2-653
switching output between inputs

Manual Switch block 2-431
switching output between two inputs 2-431
System section of mdl file 11-7
system windows

closing 4-18
systems

current 4-37
saving 4-58

systems debug command 7-40

T
tbreak debug command 7-41
Terminator block 2-662
terminators

adding 4-11
TeX formatting commands

using in mask icon text 6-18
using with disp 6-6

text command 6-18
tf2ss utility

Index-13

Index

converting Transfer Fcn to state-space
form 2-676

time delay
simulating 2-692

Time-Based Linearization block 2-663
To File block 2-666
To Workspace block 2-670
trace debug command 7-42
tracing facilities 5-23
Transfer Fcn block 2-675
transfer function form

converting to 3-8
transfer functions

discrete 2-241
displaying on mask icon 6-7
linear 2-675
poles and zeros 2-784

discrete 2-244
Transport Delay block 2-692
Trapezoidal method 2-226
Trigger block 2-696
Trigger-Based Linearization block 2-702
Triggered Subsystem block 2-705
triggered subsystems

Trigger block 2-696
Trigonometric Function block 2-706
trim function 3-9
truth tables

implementing 2-96

U
ufix function 8-36
ufrac function 8-37
uint function 8-38
unconnected input ports 2-324
unconnected output ports

using the Terminator block 2-662
undisp debug command 7-43
Uniform Random Number block 2-711

compared to Band-Limited White Noise
block 2-711

uniformly distributed random numbers 2-711
Unit Delay block

compared to Transport Delay block 2-692
Unit Delay Enabled External IC block 2-720
Unit Delay Enabled Resettable block 2-722
Unit Delay Enabled Resettable External IC

block 2-725
Unit Delay External IC block 2-728
Unit Delay Resettable block 2-730
Unit Delay Resettable External IC block 2-732
Unit Delay With Preview Enabled block 2-735
Unit Delay With Preview Enabled Resettable

block 2-738
Unit Delay With Preview Enabled Resettable

External RV block 2-741
Unit Delay With Preview Resettable

block 2-744
Unit Delay With Preview Resettable External

RV block 2-747
untrace debug command 7-44
Update Diagram menu item

changing block parameters during
simulation 4-63

User-defined functions block library
block parameters 10-163

V
variable time delay 2-750
Variable Time Delay block 1-3 2-750
Variable Transport Delay block 2-750
variable types of Embedded MATLAB 12-3
vdp model

Scope block 2-563
vector signals

displaying 2-561
generating from inputs 2-466
separating 2-179

Index-14

Index

viscous friction 2-126
visibility of Goto tag 2-322

W
while control flow diagram

creating 2-770
While Iterator block 2-770
While Iterator Subsystem block 2-775
While subsystems

creating 2-770
white noise

generating 2-31
Width block 2-776
workspace

destination 5-21
reading data from 2-299
source 5-23
writing output to 2-670

writing data to data store 2-144
writing output to file 2-666

writing output to workspace 2-670

X
xbreak debug command 7-47
XY Graph block 2-779

Z
zcbreak debug command 7-48
zclist debug command 7-49
zero crossings

detecting
Hit Crossing block 2-326
simset command 5-24

zero output in region
generating 2-170

Zero-Pole block 2-784
zero-pole form

converting to 3-8
zooming in on displayed data 2-566

Index-15

	toc
	Blocks — By Category
	Commonly Used
	Continuous
	Discontinuities
	Discrete
	Logic and Bit Operations
	Lookup Tables
	Math Operations
	Model Verification
	Model-Wide Utilities
	Ports & Subsystems
	Signal Attributes
	Signal Routing
	Sinks
	Sources
	User-Defined Functions
	Additional Math & Discrete
	Additional Discrete
	Additional Math: Increment — Decrement

	Blocks — Alphabetical List
	Linearization and Trimming Commands
	Linearization and Trimming Commands — Alphabetical List

	Model Construction Commands
	Task-Oriented Command List
	Model Construction Commands — Alphabetical List
	Examples

	Simulation Commands
	Task-Oriented Command List
	Simulation Commands — Alphabetical List

	Mask Icon Drawing Commands
	Command Summary
	Mask Icon Drawing Commands — Alphabetical List

	Simulink Debugger Commands
	Command Summary
	Simulink Debugger Commands — Alphabetical List

	Data Type Functions
	Data Type Functions — Alphabetical List
	Examples

	Data Object Classes
	Class Summary
	Classes — Alphabetical List

	Model and Block Parameters
	Model Parameters
	Examples of Setting Model Parameters

	Common Block Parameters
	Examples of Setting Block Parameters

	Block-Specific Parameters
	Mask Parameters
	Setting Mask Parameters
	How Masked Parameters are Stored

	Model File Format
	Model File Contents
	Model Section
	Simulink.ConfigSet Section
	BlockDefaults Section
	BlockParameterDefaults Section
	AnnotationDefaults Section
	LineDefaults Section
	System Section

	Embedded MATLAB Basics
	Supported Variable Types in Embedded MATLAB Functions
	Operators in Embedded MATLAB Functions
	Control Flow Statements in Embedded MATLAB Functions
	Arithmetic Operators in Embedded MATLAB Functions
	Relational Operators in Embedded MATLAB Functions
	Logical Operators in Embedded MATLAB Functions

	Embedded MATLAB Run-Time Function Library
	Embedded MATLAB Run-Time Function Library — Alphabetical List
	Embedded MATLAB Run-Time Library — Categorical List
	Arithmetic Operator Functions
	Casting Functions
	Complex Number Functions
	Discrete Math Functions
	Exponential Functions
	Fixed-Point Toolbox Functions
	Input and Output Functions
	Interpolation and Computational Geometry
	Logical Operator Functions
	Matrix/Array Functions
	Polynomial Functions
	Relational Operator Functions
	Rounding and Remainder Functions
	Signal Processing Functions
	Special Values
	Statistical Functions
	String Functions
	Structure Functions
	Trigonometric Functions

	Calling Functions in Embedded MATLAB
	How Embedded MATLAB Resolves Function Calls
	Calling Subfunctions
	Calling Embedded MATLAB Runtime Library Functions
	Calling MATLAB Functions
	Declaring MATLAB Functions as Extrinsic Functions
	Calling MATLAB Functions Using feval
	Code Generation for MATLAB Function Calls
	Working with Opaque Values
	Restrictions on Extrinsic Functions in Embedded MATLAB

	Local Variables in Embedded MATLAB Functions
	Creating Local Variables Implicitly
	Creating Local Complex Variables Implicitly
	Declaring Persistent Variables
	Initializing Persistent Variables

	Using Structures in Embedded MATLAB
	About Embedded MATLAB Structures
	Elements of Embedded MATLAB Structures
	Scope of Structures
	Example of Structures in Embedded MATLAB

	Creating Structures in Embedded MATLAB
	Defining Structure Inputs and Outputs
	Defining Structure Variables Implicitly in Embedded MATLAB Funct
	Defining Scalar Structures in Embedded MATLAB
	Defining Arrays of Structures in Embedded MATLAB

	Making Structures Persistent
	Indexing Sub-Structures and Fields
	Assigning Values to Structures and Fields
	Limitations with Structures
	Add Fields in Consistent Order
	Do Not Assign Empty Matrices
	Do Not Assign Opaque Values to Structures
	Do Not Add New Fields After First Use of Structures
	Make Structures Uniform in Arrays
	Do Not Reference Fields Dynamically
	Do Not Use Field Values as Constants
	Reference Field Values Individually from Structure Arrays

	Using M-Lint with Embedded MATLAB
	Unsupported MATLAB Features and Limitations
	List of Unsupported Features
	Limitations on Indexing Operations
	Limitations with Complex Numbers

	Index

	tables
	Model Parameters
	Common Block Parameters
	Continuous Library Block Parameters
	Discontinuities Library Block Parameters
	Discrete Library Block Parameters
	Logic and Bit Operations Library Block Parameters
	Lookup Tables Block Parameters
	Math Operations Library Block Parameters
	Model Verification Library Block Parameters
	Model-Wide Utilities Library Block Parameters
	Ports & Subsystems Library Block Parameters
	Signal Attributes Library Block Parameters
	Signal Routing Library Block Parameters
	Sinks Library Block Parameters
	Sources Library Block Parameters
	User-Defined Functions Library Block Parameters
	Additional Discrete Block Library Parameters
	Additional Math: Increment - Decrement Block Parameters
	Mask Parameters

