Simulink”

Simulation and Model-Based Design

Modeling
Simulation

Implementation

Simulink® Reference -e‘\The MathWorks

Version 6

LN

How to Contact The MathWorks

www . mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports

doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)
508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.
Simulink Reference
© COPYRIGHT 2002-2006 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined

in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of
this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and Documentation
by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government’s
needs or is inconsistent in any respect with federal procurement law, the government agrees to return the
Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB, Simulink, Stateflow, Handle Graphics, Real-Time Workshop, and xPC TargetBox
are registered trademarks, and SimBiology, SimEvents, and SimHydraulics are trademarks of
The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective
holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

Revision History
July 2002

April 2003

April 2004

June 2004
October 2004
March 2005
September 2005
March 2006
September 2006

Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only

Revised for Simulink 5 (Release 13)

Revised for Simulink 5.1 (Release 13SP1)
Revised for Simulink 5.1.1 (Release 13SP1+)
Revised for Simulink 6 (Release 14)

Revised for Simulink 6.1 (Release 14SP1)
Revised for Simulink 6.2 (Release 14SP2)
Revised for Simulink 6.3 (Release 14SP3)
Revised for Simulink 6.4 (Release 2006a)
Revised for Simulink 6.5 (Release 2006b)

Blocks — By Category

Commonly Used

Continuous

Discontinuities

Discrete

Logic and Bit Operations

Lookup Tables

Math Operations

Model Verification

............................ 1-3

............................ 1-3

........................... 1-5

............................ 1-7

............................ 1-8

vi

Contents

Additional Math & Discrete 1-17
Additional Discretec.c i, 1-17
Additional Math: Increment — Decrement 1-18

Blocks — Alphabetical List

2

Linearization and Trimming Commands

3

Linearization and Trimming Commands — Alphabetical
List ... 3-2

Model Construction Commands

4

Task-Oriented Command List 4-2

Model Construction Commands — Alphabetical List .. 4-5

Simulation Commands

5

Task-Oriented Command List 5-2

Simulation Commands — Alphabetical List 5-4

Mask Icon Drawing Commands

6

Command Summaryccciiiiinnnnnn... 6-2

Mask Icon Drawing Commands — Alphabetical List .. 6-3

Simulink Debugger Commands

7

Command Summaryccciiiiiinnnnn... 7-2

Simulink Debugger Commands — Alphabetical List .. 7-5

Data Type Functions

8|

Data Type Functions — Alphabetical List 8-2

Data Object Classes

2

Class Summarycoiiiiiieeinnnnnnnnnn.. 9-2

Classes — Alphabetical List 9-5

vii

viii

Model and Block Parameters

10

Model Parameters, 10-2
Examples of Setting Model Parameters 10-55
Common Block Parameters 10-56
Examples of Setting Block Parameters 10-67
Block-Specific Parameters 10-68
Mask Parameterscciiiiiinnnn.. 10-168
Setting Mask Parameters 10-172
How Masked Parameters are Stored 10-173

Model File Contentscciiininn.. 11-2
Model Section ... e 114
Simulink.ConfigSet Section 11-5
BlockDefaults Sectionccviiiiiiiiiiii.. 11-5
BlockParameterDefaults Section 11-6
AnnotationDefaults Section 11-7
LineDefaults Sectioncccoiiiiiiinnn. 11-7
System Sectionc.0iiiiiitiiiiie... 11-7

Embedded MATLAB Basics

12

Supported Variable Types in Embedded MATLAB
Functions i 12-3

Operators in Embedded MATLAB Functions 12-4

Contents

Control Flow Statements in Embedded MATLAB

Functions, 12-4
Arithmetic Operators in Embedded MATLAB Functions .. 12-5
Relational Operators in Embedded MATLAB Functions .. 12-6
Logical Operators in Embedded MATLAB Functions 12-6

Embedded MATLAB Run-Time Function Library 12-8
Embedded MATLAB Run-Time Function Library —

Alphabetical List 12-8
Embedded MATLAB Run-Time Library — Categorical

LSt oo e e 12-26

Calling Functions in Embedded MATLAB 12-43
How Embedded MATLAB Resolves Function Calls 12-43
Calling Subfunctionscc i, 12-45
Calling Embedded MATLAB Runtime Library

Functions0t 12-45

Calling MATLAB Functions 12-46

Local Variables in Embedded MATLAB Functions 12-55
Creating Local Variables Implicitly 12-55
Creating Local Complex Variables Implicitly 12-56
Declaring Persistent Variables 12-58

Using Structures in Embedded MATLAB 12-59
About Embedded MATLAB Structures 12-59
Creating Structures in Embedded MATLAB 12-63
Defining Structure Inputs and Outputs 12-65
Defining Structure Variables Implicitly in Embedded

MATLAB Functionscc0iiiiiieeennnnn. 12-66
Making Structures Persistent 12-69
Indexing Sub-Structures and Fields 12-69
Assigning Values to Structures and Fields 12-70
Limitations with Structures 12-71

Using M-Lint with Embedded MATLAB 12-75
Unsupported MATLAB Features and Limitations 12-76
List of Unsupported Features 12-76
Limitations on Indexing Operations 12-77

Limitations with Complex Numbers 12-78

Index

X Contents

Blocks — By Category

Commonly Used (p. 1-2)
Continuous (p. 1-3)
Discontinuities (p. 1-3)

Discrete (p. 1-4)

Logic and Bit Operations (p. 1-5)
Lookup Tables (p. 1-7)

Math Operations (p. 1-8)

Model Verification (p. 1-9)
Model-Wide Utilities (p. 1-10)
Ports & Subsystems (p. 1-11)
Signal Attributes (p. 1-12)
Signal Routing (p. 1-13)

Sinks (p. 1-14)

Sources (p. 1-15)

User-Defined Functions (p. 1-16)
Additional Math & Discrete (p. 1-17)

Commonly used blocks

Define continuous states

Define discontinuous states
Define discrete states

Perform logic and bit operations
Support lookup tables

Perform math operations
Perform model verification
Support model-wide operations
Support ports and subsystems
Support signal attributes
Support signal routing

Receive output from other blocks
Input to other blocks

Support custom functions

Provide additional math and discrete
support

1 Blocks — By Category

Commonly Used

Bus Creator
Bus Selector
Constant

Data Type Conversion

Demux

Discrete-Time Integrator

Gain
Ground

Inport

Integrator

Logical Operator

Mux

Outport

Product

Relational Operator

Saturation

Scope, Floating Scope, Signal Viewer
Scope

Subsystem, Atomic Subsystem,
CodeReuse Subsystem

Create signal bus
Select signals from incoming bus
Generate constant value

Convert input signal to specified
data type

Extract and output elements of bus
or vector signal

Perform discrete-time integration or
accumulation of signal

Multiply input by constant
Ground unconnected input port

Create input port for subsystem or
external input

Integrate signal

Perform specified logical operation
on input

Combine several input signals into
vector

Create output port for subsystem or
external output

Multiply or divide inputs

Perform specified relational
operation on inputs

Limit range of signal

Display signals generated during
simulation

Represent system within another
system

Continuous

Sum, Add, Subtract, Sum of
Elements

Switch

Terminator

Unit Delay

Continuous

Derivative
Integrator
State-Space

Transfer Fen

Transport Delay

Variable Time Delay, Variable
Transport Delay

Zero-Pole

Discontinuities

Backlash

Coulomb and Viscous Friction

Dead Zone

Dead Zone Dynamic

Add or subtract inputs

Switch output between first input
and third input based on value of
second input

Terminate unconnected output port

Delay signal one sample period

Output time derivative of input
Integrate signal
Implement linear state-space system

Model linear system by transfer
function

Delay input by given amount of time

Delay input by variable amount of
time

Model system by zero-pole-gain
transfer function

Model behavior of system with play

Model discontinuity at zero, with
linear gain elsewhere

Provide region of zero output

Set inputs within bounds to zero

1 Blocks — By Category

Discrete

Hit Crossing
Quantizer
Rate Limiter

Rate Limiter Dynamic

Relay
Saturation
Saturation Dynamic

Wrap To Zero

Difference

Discrete Derivative
Discrete Filter

Discrete State-Space

Discrete Transfer Fen

Discrete Zero-Pole

Discrete-Time Integrator

First-Order Hold

Integer Delay

Memory

Detect crossing point

Discretize input at specified interval
Limit rate of change of signal

Limit rising and falling rates of
signal

Switch output between two constants
Limit range of signal

Bound range of input

Set output to zero if input is above
threshold

Calculate change in signal over one
time step

Compute discrete time derivative
Model IIR and FIR filters

Implement discrete state-space
system

Implement discrete transfer function

Model system defined by zeros and
poles of discrete transfer function

Perform discrete-time integration or
accumulation of signal

Implement first-order
sample-and-hold

Delay signal N sample periods

Output input from previous time
step

Logic and Bit Operations

Tapped Delay

Transfer Fen First Order
Transfer Fcn Lead or Lag
Transfer Fen Real Zero
Unit Delay

Weighted Moving Average
Zero-Order Hold

Logic and Bit Operations

Bit Clear
Bit Set
Bitwise Operator

Combinatorial Logic

Compare To Constant
Compare To Zero

Detect Change

Detect Decrease

Delay scalar signal multiple sample
periods and output all delayed
versions

Implement discrete-time first order
transfer function

Implement discrete-time lead or lag
compensator

Implement discrete-time transfer
function that has real zero and no
pole

Delay signal one sample period
Implement weighted moving average

Implement zero-order hold of one
sample period

Set specified bit of stored integer to
Zero

Set specified bit of stored integer to
one

Perform specified bitwise operation
on inputs

Implement truth table

Determine how signal compares to
specified constant

Determine how signal compares to
Zero

Detect change in signal’s value

Detect decrease in signal’s value

1 Blocks — By Category

Detect Fall Negative Detect falling edge when signal’s
value decreases to strictly negative
value, and its previous value was
nonnegative

Detect Fall Nonpositive Detect falling edge when signal’s
value decreases to nonpositive value,
and its previous value was strictly

positive
Detect Increase Detect increase in signal’s value
Detect Rise Nonnegative Detect rising edge when signal’s

value increases to nonnegative
value, and its previous value was
strictly negative

Detect Rise Positive Detect rising edge when signal’s
value increases to strictly positive
value, and its previous value was

nonpositive

Extract Bits Output selection of contiguous bits
from input signal

Interval Test Determine if signal is in specified
interval

Interval Test Dynamic Determine if signal is in specified
interval

Logical Operator Perform specified logical operation
on input

Relational Operator Perform specified relational
operation on inputs

Shift Arithmetic Shift bits and/or binary point of
signal

Lookup Tables

Lookup Tables

Cosine

Direct Lookup Table (n-D)

Interpolation (n-D) Using PreLookup
(Obsolete)

Interpolation Using Prelookup

Lookup Table
Lookup Table (2-D)
Lookup Table (n-D)

Lookup Table Dynamic

Prelookup

Implement cosine function in
fixed-point using lookup table
approach that exploits quarter wave
symmetry

Index into N-dimensional table to
retrieve element, column, or 2-D
matrix

Perform high-performance constant
or linear interpolation, mapping

N input values to sampled
representation of function in N
variables via output from PreLookup
Index Search block

Use output of Prelookup block
to accelerate approximation of
N-dimensional function

Approximate one-dimensional
function

Approximate two-dimensional
function

Approximate N-dimensional function

Approximate one-dimensional
function using dynamically specified
table

Compute index and fraction for
Interpolation Using Prelookup block

1 Blocks — By Category

PreLookup Index Search (Obsolete)

Sine

Math Operations

Abs
Algebraic Constraint

Assignment

Bias

Complex to Magnitude-Angle
Complex to Real-Imag
Concatenate

Divide

Dot Product

Gain

Magnitude-Angle to Complex

Math Function
MinMax

First stage of high-performance
constant or linear interpolation that
performs index search and interval
fraction calculation for input on
breakpoint set

Implement sine wave in fixed-point
using lookup table approach that
exploits quarter wave symmetry

Output absolute value of input
Constrain input signal to zero

Assign values to specified elements
of signal

Add bias to input

Compute magnitude and/or phase
angle of complex signal

Output real and imaginary parts of
complex input signal

Concatenate input signals of same
data type to create contiguous output
signal

Multiply or divide inputs
Generate dot product of two vectors
Multiply input by constant

Convert magnitude and/or a phase
angle signal to complex signal

Perform mathematical function

Output minimum or maximum input
value

Model Verification

MinMax Running Resettable

Polynomial

Product
Product of Elements

Real-Imag to Complex

Reshape
Rounding Function
Sign

Sine Wave Function

Slider Gain

Sum, Add, Subtract, Sum of
Elements

Trigonometric Function
Unary Minus

Weighted Sample Time Math

Model Verification

Assertion
Check Discrete Gradient

Determine minimum or maximum of
signal over time

Perform evaluation of polynomial
coefficients on input values

Multiply or divide inputs
Multiply or divide inputs

Convert real and/or imaginary
inputs to complex signal

Change dimensionality of signal
Apply rounding function to signal
Indicate sign of input

Generate sine wave, using external
signal as time source

Vary scalar gain using slider

Add or subtract inputs

Perform trigonometric function
Negate input

Support calculations involving
sample time

Check whether signal is nonzero

Check that absolute value of
difference between successive
samples of discrete signal is less
than upper bound

1 Blocks — By Category

1-10

Model-Wide

Check Dynamic Gap

Check Dynamic Lower Bound

Check Dynamic Range

Check Dynamic Upper Bound
Check Input Resolution
Check Static Gap

Check Static Lower Bound

Check Static Range

Check Static Upper Bound

Utilities
DocBlock

Model Info

Check that gap of possibly varying
width occurs in range of signal’s
amplitudes

Check that one signal is always less
than another signal

Check that signal falls inside range
of amplitudes that varies from time
step to time step

Check that one signal is always
greater than another signal

Check that input signal has specified
resolution

Check that gap exists in signal’s
range of amplitudes

Check that signal is greater than
(or optionally equal to) static lower
bound

Check that signal falls inside fixed
range of amplitudes

Check that signal is less than (or
optionally equal to) static upper
bound

Create text that documents model
and save text with model

Display revision control information
in model

Ports & Subsystems

Time-Based Linearization

Trigger-Based Linearization

Ports & Subsystems

Action Port

Configurable Subsystem

Enable
Enabled and Triggered Subsystem

Enabled Subsystem
For Iterator Subsystem
Function-Call Generator

Function-Call Subsystem

If
If Action Subsystem

Generate linear models in base
workspace at specific times

Generate linear models in base
workspace when triggered

Implement Action subsystems used
by if and switch control flow
statements in Simulink

Represent any block selected from
user-specified library of blocks

Add enabling port to subsystem

Represent subsystem whose
execution is enabled and triggered
by external input

Represent subsystem whose
execution is enabled by external
input

Represent subsystem that executes
repeatedly during simulation time
step

Execute function-call subsystem
specified number of times at specified
rate

Represent subsystem that can be
invoked as function by another block

Model if-else control flow

Represent subsystem whose
execution is triggered by If block

1-11

1 Blocks — By Category

1-12

Inport

Model

Outport

Subsystem, Atomic Subsystem,
CodeReuse Subsystem

Switch Case

Switch Case Action Subsystem

Trigger

Triggered Subsystem

While Iterator Subsystem

Signal Atiributes

Data Type Conversion

Data Type Conversion Inherited

Data Type Duplicate

Create input port for subsystem or
external input

Include model as block in another
model

Create output port for subsystem or
external output

Represent system within another
system

Implement C-like switch control
flow statement

Represent subsystem whose
execution is triggered by Switch
Case block

Add trigger port to subsystem or
function-call model

Represent subsystem whose
execution is triggered by external
input

Represent subsystem that executes
repeatedly while condition is
satisfied during simulation time step

Convert input signal to specified
data type

Convert from one data type to
another using inherited data type
and scaling

Force all inputs to same data type

Signal Routing

Data Type Propagation Set data type and scaling of
propagated signal based on
information from reference signals

Data Type Scaling Strip Remove scaling and map to built in
integer

IC Set initial value of signal

Probe Output signal’s attributes, including

width, dimensionality, sample time,
and/or complex signal flag

Rate Transition Handle transfer of data between
blocks operating at different rates

Signal Conversion Convert signal to new type without
altering signal values

Signal Specification Specify desired dimensions, sample
time, data type, numeric type, and
other attributes of signal

Weighted Sample Time Support calculations involving
sample time
Width Output width of input vector

Signal Routing

Bus Assignment Assign values to specified elements
of bus

Bus Creator Create signal bus

Bus Selector Select signals from incoming bus

Data Store Memory Define data store

Data Store Read Read data from data store

Data Store Write Write data to data store

1-13

1 Blocks — By Category

1-14

Sinks

Demux

Environment Controller
From

Goto

Goto Tag Visibility

Index Vector

Manual Switch
Merge

Multiport Switch

Mux

Selector

Switch

Display
Outport

Scope, Floating Scope, Signal Viewer
Scope

Extract and output elements of bus
or vector signal

Create branches of block diagram
that apply only to simulation or only
to code generation

Accept input from Goto block
Pass block input to From blocks
Define scope of Goto block tag

Switch output between different
inputs based on value of first input

Switch between two inputs

Combine multiple signals into single
signal

Choose between multiple block
inputs

Combine several input signals into
vector

Select input elements from vector or
matrix signal

Switch output between first input
and third input based on value of
second input

Show value of input

Create output port for subsystem or
external output

Display signals generated during
simulation

Sources

Sources

Stop Simulation

Terminator
To File

To Workspace
XY Graph

Band-Limited White Noise

Chirp Signal

Clock

Constant

Counter Free-Running

Counter Limited

Digital Clock

From File
From Workspace
Ground

Inport

Pulse Generator

Stop simulation when input is
nonzero

Terminate unconnected output port
Write data to file
Write data to workspace

Display X-Y plot of signals using
MATLAB figure window

Introduce white noise into
continuous system

Generate sine wave with increasing
frequency

Display and provide simulation time
Generate constant value

Count up and overflow back to zero
after maximum value possible is
reached for specified number of bits

Count up and wrap back to zero after
outputting specified upper limit

Output simulation time at specified
sampling interval

Read data from MAT file
Read data from workspace
Ground unconnected input port

Create input port for subsystem or
external input

Generate square wave pulses at
regular intervals

1-15

1 Blocks — By Category

1-16

Ramp
Random Number
Repeating Sequence

Repeating Sequence Interpolated

Repeating Sequence Stair
Signal Builder

Signal Generator

Sine Wave

Step

Uniform Random Number

User-Defined Functions

Embedded MATLAB Function

Fen

Level-2 M-File S-Function

MATLAB Fen

Generate constantly increasing or
decreasing signal

Generate normally distributed
random numbers

Generate arbitrarily shaped periodic
signal

Output discrete-time sequence and
repeat, interpolating between data
points

Output and repeat discrete time
sequence

Create and generate interchangeable
groups of signals whose waveforms
are piecewise linear

Generate various waveforms
Generate sine wave
Generate step function

Generate uniformly distributed
random numbers

Include MATLAB code in models
that generate embeddable C code

Apply specified expression to input

Use Level-2 M-file S-function in
model

Apply MATLAB function or
expression to input

Additional Math & Discrete

S-Function

S-Function Builder

Additional Math & Discrete

Additional Discrete (p. 1-17)

Additional Math: Increment —
Decrement (p. 1-18)

Additional Discrete

Fixed-Point State-Space

Transfer Fen Direct Form 11
Transfer Fen Direct Form II Time
Varying

Unit Delay Enabled

Unit Delay Enabled External IC

Unit Delay Enabled Resettable

Unit Delay Enabled Resettable
External IC

Include S-function in model

Create S-function from C code that
you provide

Provide additional discrete math
support

Increment or decrement value of
signal by one

Implement discrete-time state space

Implement Direct Form II realization
of transfer function

Implement time varying Direct Form
II realization of transfer function

Delay signal one sample period, if
external enable signal is on

Delay signal one sample period, if
external enable signal is on, with
external initial condition

Delay signal one sample period, if
external enable signal is on, with
external Boolean reset

Delay signal one sample period, if
external enable signal is on, with
external Boolean reset and initial
condition

1-17

1 Blocks — By Category

1-18

Unit Delay External IC

Unit Delay Resettable

Unit Delay Resettable External IC

Unit Delay With Preview Enabled

Unit Delay With Preview Enabled
Resettable

Unit Delay With Preview Enabled
Resettable External RV

Unit Delay With Preview Resettable

Unit Delay With Preview Resettable
External RV

Delay signal one sample period, with
external initial condition

Delay signal one sample period, with
external Boolean reset

Delay signal one sample period, with
external Boolean reset and initial
condition

Output signal and signal delayed by
one sample period, if external enable
signal is on

Output signal and signal delayed by
one sample period, if external enable
signal is on, with external Boolean
reset

Output signal and signal delayed by
one sample period, if external enable
signal is on, with external RV reset

Output signal and signal delayed
by one sample period, with external
Boolean reset

Output signal and signal delayed by
one sample period, with external RV
reset

Additional Math: Increment — Decrement

Decrement Real World

Decrement Stored Integer

Decrement Time To Zero

Decrement To Zero

Decrease real world value of signal
by one

Decrease stored integer value of
signal by one

Decrease real-world value of signal
by sample time, but only to zero

Decrease real-world value of signal
by one, but only to zero

Additional Math & Discrete

Increment Real World

Increment Stored Integer

Increase real world value of signal
by one

Increase stored integer value of
signal by one

1-19

1 Blocks — By Category

1-20

Blocks — Alphabetical List

Abs

2-2

Purpose
Library

Description

A U P

Data Type
Support

Output absolute value of input
Math Operations

The Abs block outputs the absolute value of the input.

For signed data types, the absolute value of the most negative value is
problematic since it is not representable by the data type. In this case,
the behavior of the block is controlled by the Saturate on integer
overflow check box. If checked, the absolute value of the data type
saturates to the most positive representable value. If not checked, the
absolute value of the most negative value represented by the data type
has no effect.

For example, suppose the block input is an 8-bit signed integer. The
range of this data type is from -128 to 127, and the absolute value

of -128 is not representable. If you select the Saturate on integer
overflow check box, then the absolute value of -128 is 127. If it is not
selected, then the absolute value of -128 remains at -128.

The Abs block accepts real signals of any data type supported by
Simulink®, except Boolean. The Abs block supports real fixed-point
data types. The block also accepts complex single and double inputs.
Outputs are a real value of the same data type as the input.

For a discussion on the data types supported by Simulink, see “Data
Types Supported by Simulink” in the “Working with Data” chapter of
the Using Simulink documentation.

Abs

Parameters
and

Dialog

Box

[Z)Block Parameters: Abs
—Abz
w=uf

— Parameters

[i Saturate on integer overflow!

W Enable zero crossing detection

Sample time [-1 for inherited):

B

I ok Cancel Help Apply

Saturate on integer overflow
When selected, the block maps signed integer input elements
corresponding to the most negative value of that data type to the
most positive value of that data type:

¢ For 8-bit integers, -128 maps to to 127.
¢ For 16-bit integers, -32768 maps to 32767.
¢ For 32-bit integers, -2147483648 maps to 2147483647.

When not selected, the block does not act on signed integer
input elements corresponding to the most negative value of
that data type.

¢ For 8-bit integers, -128 remains -128.

¢ For 16-bit integers, -32768 remains -32768.

¢ For 32-bit integers, -2147483648 remains -2147483648.
Enable zero crossing detection

Select to enable zero crossing detection. For more information, see

“Zero-Crossing Detection” in the “How Simulink Works” chapter
of the Using Simulink documentation.

Abs

Sample time (-1 for inherited)
Specify the time interval between samples. To inherit the sample
time, set this parameter to -1. See “Specifying Sample Time”
in the “How Simulink Works” chapter of the Using Simulink

documentation.
Characteristics pjrect Feedthrough Yes
Sample Time Specified in the Sample time parameter
Dimensionalized Yes
Zero Crossing Yes, if enabled

24

Action Port

Purpose

Library

Description

Action

Implement Action subsystems used by if and switch control flow
statements in Simulink

Ports & Subsystems

Action Port blocks implement Action subsystems used in if and switch
control flow statements. The Action Port block is available in the If
Action Subsystem and the Switch Case Action Subsystem. See the
references for the If and Switch Case blocks for examples using Action
Port blocks.

Use Action Port blocks to create Action subsystems as follows:

1 Place a subsystem in the system containing the If or Switch Case
block.

You can use an ordinary subsystem or an atomic subsystem. In either
case, the resulting Action subsystem is atomic.

2 Add an Action Port to the new subsystem.

This adds an input port named Action to the subsystem, which is
now an Action subsystem.

Action subsystems execute their programming in response to the
conditional outputs of an If or Switch Case block. Use Action subsystems
as follows:

1 Create an Action subsystem for each output port configured for an
If or Switch Case block.

2 Connect each output port (if, else, or elseif ports for the If block; case
or default ports for the Switch Case block) to the Action port on an
Action subsystem.

When the connection is made, the icon for the subsystem and the
Action Port block it contains are changed to the name of the output

Action Port

port for the If or Switch Case block (i.e., if{ }, else{ }, elseif{ },
case{ }, or default{ }).

3 Open the new subsystem and add the diagram that you want to
execute in response to the condition this subsystem covers.

The Action Port block has only the States when execution is
resumed parameter in its parameters dialog. If you set this field to
held (the default value) for an Action Port block, the states of its Action
subsystem are retained between calls even if other member Action
subsystems of an if-else or switch control flow statement are called.
If you set the States when execution is resumed field to reset, the
states of a member Action subsystem are reset to initial values when

it is reenabled.

Note All blocks in an Action subsystem driven by an If or Switch Case
block must run at the same rate as the driving block.

Data Type There are no data inputs or outputs for Action Port blocks.
Support
Parameters Block Pararneters: [Baction
Ol.’ld —&ction Port
DICIIOg Place this block in a subsypsten to link to a zignal from an If block or a
Box Switch-Caze block.

— Parameters

States when execution iz resumed: hghj vI
k. I Cancel | Help | Ao |

Action Port

States when execution is resumed

Specifies how to handle internal states when the subsystem of
this Action Port block is reenabled.

Set this field to held (the default value) to make sure that the
Action subsystem states retain their previous values when the
subsystem is reenabled. Otherwise, set this field to reset if you
want the states of the Action subsystem to be reinitialized when
the subsystem is reenabled.

Reenablement of a subsystem occurs when it is called and the
condition of the call is true after having been previously false.
In the following example, the Action Port blocks for both Action
subsystems A and B have the States when execution is
resumed parameter set to reset.

case[1]:
—f Ul i
defaut:
case: §1
SwitchiGass
defadt: {} 4
E

If case[1] is true, Action subsystem A is called. This implies
that the default condition is false. When B is later called for the
default condition, its states are reset. In the same way, Action
subsystem A’s states are reset when it is called right after Action
subsystem B is called.

Repeated calls to a case’s Action subsystem do not reset its states.

If A is called again right after a previous call to A, this does not

Action Port

reset A’s states because its condition, case[l], was not previously
false. The same applies to B.

Characteristics Sample Time Inherited from driving If or Switch Case
block

2-8

Algebraic Constraint

Purpose

Library

Description

f(z)

Salve

fiz}=0

Constrain input signal to zero
Math Operations

The Algebraic Constraint block constrains the input signal f(z) to zero
and outputs an algebraic state z. The block outputs the value necessary
to produce a zero at the input. The output must affect the input through
some direct feedback path, i.e., the feedback path solely contains blocks
with direct feedthrough. This enables you to specify algebraic equations
for index 1 differential/algebraic systems (DAEs).

By default, the Initial guess parameter is zero. You can improve the
efficiency of the algebraic loop solver by providing an Initial guess for
the algebraic state z that is close to the solution value.

For example, the following model solves these equations.

z2 + z1 =1
z2 - z1 =1

The solution is z2 = 1, z1 = 0, as the Display blocks show.

2
—— =+
z1 224211 Salve 21
_a gl |men L —
+ ® fnep C >
- Algebraic Constraint Lisplay =1
Sum
z1
-{—
22 z2-21-1 Salve 22
e ol
>+ ® fnep ? >
—p— Algebraic Constrainti Display =2
Constant Sumi

Algebraic Constraint

2-10

Data Type The Algebraic Constraint block accepts and outputs real values of type
Support double.
Parameters [=]Block Parameters: Algebraic Constraint
and)) ,
N —a&lgebraic Constraint [mazk] [link]
Dialog o . .
B Congtrainz input signal fz] to zem and outputs an algebraic state 2. Thiz block outputs
ox the walue neceszan to produce a zero at the input. The output must affect the input
through some feedback path. Provide an initial guess of the autput to improve
algebraic loop solver efficiency.
—Parameters
[ritial guess:
@
0k Cancel Help Sl
Initial guess
An initial guess for the solution value. The default is 0.
Characteristics pirect Feedthrough Yes
Sample Time Inherited from driving block
Scalar Expansion No
Dimensionalized Yes
Zero-Crossing No

Assertion

Purpose
Library

Description

o

Check whether signal is nonzero
Model Verification

The Assertion block checks whether any of the elements of the signal at
its input is nonzero. If all elements are nonzero, the block does nothing.
If any element is zero, the block halts the simulation, by default, and
displays an error message. The block’s parameter dialog box allows
you to

® Specify that the block should display an error message when the
assertion fails but allow the simulation to continue.

® Specify an M-expression to be evaluated when the assertion fails.

e Enable or disable the assertion.

You can also use the Model Verification block enabling setting on
the Data Validity diagnostics pane of the Configuration Parameters
dialog box to enable or disable all Assertion blocks in a model.

The Assertion block and its companion blocks in the Model Verification
library are intended to facilitate creation of self-validating models. For
example, you can use model verification blocks to test that signals do
not exceed specified limits during simulation. When you are satisfied
that a model is correct, you can turn error checking off by disabling the
verification blocks. You do not have to physically remove them from the
model. If you need to modify a model, you can temporarily turn the
verification blocks back on to ensure that your changes do not break
the model.

Creating Pause Blocks

You can use the Simulation callback when assertion fails field to
create an Assertion block that pauses the simulation when the block’s
input signal is zero. To create a pause block:

1 Connect the Assertion block to a signal whose value becomes zero at
the point in time when the simulation should be paused.

2-11

Assertion

Data Type
Support

2-12

2 Open the Assertion block’s Block Parameters dialog box.

® Enter the following commands into the Simulation callback
when assertion fails field:

set_param(bdroot, 'SimulationCommand’', 'pause'),
disp(sprintf('\nSimulation paused.'))

® Uncheck the Stop simulation when assertion fails option.
3 Click OK to apply the changes and close this dialog box.

The following model shows how to use an Assertion block configured as
described above, in conjunction with the Relational Operator block, to
control when the simulation pauses. This model pauses the simulation
when the simulation time is equal to 5.

L >
5;2 —r"'—*g@

Relational -
Operator FPeserion

& Used ta
Fause Simulation

Constant

When the simulation pauses, the following message displays at the
MATLAB command line.

Simulation paused
Warning: Assertion detected in 'assertion_as_pause/
Assertion Used to Pause Simulation' at time 5.000000.

The Assertion block accepts input signals of any dimensions and any
data type supported by Simulink, including fixed-point data types.

For a discussion on the data types supported by Simulink, see “Data
Types Supported by Simulink” in the “Working with Data” chapter of
the Using Simulink documentation.

Assertion

Parameters
and

Dialog

Box

1 Block Parameters: Assertion [2]

—&zgertion

Agzert that the input signal is non-zera, The default behavior in the abzence of a
callback iz to autput an errar meszage when the azsertion fails.

—Parameters

¥ Stop zimulation when assertion Fail

Sample time [-1 far inherited):

|-

k. Cancel Help Apply

Enable Assertion
Unchecking this option disables the Assertion block, that is,
causes the model to behave as if the Assertion block did not exist.
The Model Verification block enabling setting on the Data
Validity diagnostics pane of the Configuration Parameters
dialog box allows you to enable or disable all Assertion blocks in a
model regardless of the setting of this option.

Simulation callback when assertion fails
An M-expression to be evaluated when the assertion fails.

Stop simulation when assertion fails
If checked, this option causes the Assertion block to halt the
simulation when the block’s input is zero and display an error
message in the Simulation Diagnostics viewer. Otherwise, the
block displays a warning message in the MATLAB® Command
Window and continues the simulation.

2-13

Assertion

2-14

Sample time (-1 for inherited)
Specify the time interval between samples. To inherit the sample
time, set this parameter to -1. See “Specifying Sample Time”
in the “How Simulink Works” chapter of the Using Simulink

documentation.
Characteristics pjrect Feedthrough No
Sample Time Inherited from driving block
Scalar Expansion No
Dimensionalized Yes
Zero Crossing No

Assignment

Purpose
Library

Description

mL - %
Tz - T(E)

&= = ignment

Assign values to specified elements of signal
Math Operations

The Assignment block assigns values to specified elements of the signal.
You can specify the indices of the elements to be assigned values either
by entering the indices in the block’s dialog box or by connecting an
external indices source or sources to the block. The signal at the block’s
data port, labeled U2 in most modes, specifies values to be assigned to
Y. The block replaces the specified elements of Y with elements from the
data signal, leaving unassigned elements unchanged from their initial
values. If the assignment indices source is internal or is external and
the Initialize using input option is selected, the Assignment block
uses the signal at the block’s initialization port, labeled U1, to initialize
the elements of the output signal before assigning them values from U2.

Note The Assignment block’s data port is labeled U2 in all modes except
external mode with no initialization, in which case the port is labeled
U1 as there is no initialization port. The rest of this section refers to
the data port as U2 in order to avoid unnecessarily complicating the
explanation of the block’s usage.

You can use the block to assign values to vector, or matrix signals.
Assigning Values to a Vector Signal

To assign values to a scalar or vector signal, set the block’s Input
Type parameter to Vector. The block’s dialog box displays a Source
of element indices parameter. You can specify the indices source as
Internal or External. If you select Internal, the block dialog box
displays an Elements field. Use this field to enter the element indices.
If you specify External as the source of element indices, the block
displays an input port named E. Connect an external index source to
this port. Use Index mode to specify whether 0 or 1 indicates the first
element of Y.

2-15

Assignment

The index source can specify any of the following values as indices:

¢ -1 (internal source only)
Assigns every element of U2 to the corresponding element of Y.
¢ Index of a single element specified as a nonnegative integer

If Use index as starting value option is not selected, the block
assigns U2, which must be a scalar, to the specified element of Y.

If Use index as starting value is selected, the block assigns U2 to a
range of elements of Y, starting at the specified index. For example,
suppose that Ul is a 5-element vector, U2 is a 3-element vector, the
index mode is one-based, and the starting index is 3. In this case, the
Assignment block assigns U2(1:3) to Y(3:5).

® A set of indices specified as a vector
Assigns U2 to a specified set of elements of Y.

The width of the values signal connected to U2 must be the same as
the width of the indices vector. For example, if the indices vector
contains two indices, U2 must be a two-element vector of values. The
block assigns the first element of U2 to the element of Y specified by
the first index, the second element of U2 to the Y element specified
by the second index, and so on.

If U2 is a scalar, it is assigned to the specified elements of the output
vector.

Assigning Values to a Matrix Signal

To assign values to a matrix signal, set the Input Type parameter

to Matrix. If you specify the Input Type of the Assignment block

as Matrix, the block’s dialog box displays a Source of row indices
parameter and a Source of column indices parameter. You can
specify either or both of these parameters as Internal or External. If
you specify the row and/or column index source as internal, the block
displays a Rows and/or Columns field. Enter the row or column
indices of the elements of Y to be assigned values into the corresponding

2-16

Assignment

field. If you specify the row and/or column index source as External, the
block displays an input port labeled R and/or an input port labeled C.
Connect an external source of indices to each indices port.

A row or column indices source can have any of the following values:

¢ -1 (internal source only)
Specifies all rows or columns of Y.
¢ Single row or column index value

If Use index as starting value option is not selected, the block
assigns values to the specified row or column. If Use index as
starting value is selected, the block assigns values from U2 to a
range of rows or columns of Y, starting at the specified row or column
index. For example, suppose that Ul is a 5 x 5 matrix, U2 is a 3 x

3 matrix, the indexing mode is one-based, and the starting row and
column indices are both 3. In this case, the Assignment block assigns
U2(1:3, 1:3) to Y(3:5,3:5).

® Vector of row or column indices
Specifies a set of rows or columns of Y.

The block assigns values from U2 to the specified elements of Y in
column-major order. In particular, the block assigns the first element
of the first row of U2 to the first specified element in the first specified
row in Y. It assigns the second element of the first row of U2 to the
second specified element of the first specified row of Y, and so on.

To enable all specified elements to be assigned values, U2 must be an
N-by-M matrix where N is the width of the row indices vector and M

is the width of the column indices vector. For example, suppose that
you specify a vector of row indices of size 2 and a vector of column
indices of size 4. Then U2 must be a 2-by-4 matrix signal.

When determining the dimensions of U2, count a scalar index as a
vector of size 1 and -1 as equivalent to a vector of indices of the same
width as the row or dimension size of Y. For example, suppose your

Assignment

2-18

row and column index sources are a scalar and a two-element vector,
respectively. Then U2 must by a 1-by-2 matrix.

If U2 is a scalar, the Assignment block assigns the scalar to the
specified elements of the output signal.

Note An Assignment block whose Input type is Matrix accepts
only matrix signals at its U1 port and only a matrix signal or a
one-element vector signal at its U2 port. Simulink displays an
error dialog box if you update or simulate a model that violates this
constraint.

Iterated Assignment

You can use the Assignment block to assign values computed in a For or
While Iterator loop to successive elements of a vector or matrix signal in
a single time step. For example, the following model uses a For Iterator
block to create a vector signal each of whose elements equals 3*i where i
is the index of the element.

(o 0 o) P Ll 11 -
Consztant
double L2 = WE} y | double > |—5|
- -1
’_’ E Dizplay
Assignrnent
Far doubl {
[teratar
Fior

Iterated assignment uses an iterator (For or While) block to generate
the indices required by the Assignment block. On the first iteration of
an iterated assignment, the Assignment block copies the first input
(U1) to the output (Y) and assigns the second input (U2) to the output

Assignment

Y(E,). On successive iterations, the Assignment block simply assigns
the current value of U2 to Y(E,), i.e., without first copying U1 to Y. All of
this occurs in a single time step.

Data Type The data and initialization ports of the Assignment block accept signals

Suppori‘ of any data type supported by Simulink, including fixed-point data
types. The external indices port accepts any data type, except boolean
and fixed-point data types.

For a discussion on the data types supported by Simulink, see “Data
Types Supported by Simulink” in the “Working with Data” chapter of
the Using Simulink documentation.

2-19

Assignment

2-20

Parameters
and

Dialog

Box

=1 Block Parameters: Assignment [2]

—&zgignment

Faor wector input ippe:
IF initializing output [using input (U7]:
T =11
TE]=L2
If zpecitying required dimenzions for output(’):
T[E]=U1
Far matriz input tepe;
IF initializing output [using input (U7]:

r=l1
YIR.Cl= Uz

If zpecitying required dimensionz for output [7]:
TIR.Cl=U1

where

111 = first input port, U2 = second input port, E = elementz, B = rows, and C = columnz
and E. B. and C may be specified either in the block's dialog or through an external
input port |FE ar B and C are specified in the block's dialog bos, the dimenzsions of
output [] are determined by input [L1]

—Parameterz
Input type: [N
Index mode | One-bazed LI

[T Use index az starting walue

Source of row indices [R]: I |nkernal LI
Rz [-1 for all rows]:
1

Source of column indices [C): I Internal ;I

Colurmnz [-1 for all columnz]:
1
Sample tirme [-1 far inkerited]:

B

ok Cancel Help Apply

Assignment

Input Type
You can select either Vector or Matrix input. If you select Vector,
the Source of element indices field appears. If you select
Matrix, the Source of row indices and Source of column
indices fields appear.

Index mode
Specifies whether the index corresponding to the first element of
a vector or the first row or column of a matrix is 0 or 1.

Use index as starting value
Specifies that the value in the Elements (or Row or Column) field
is the starting index of a range of elements (or rows or columns).

Source of element indices
You can specify either Internal (the default) or External as the
source for the indices of the elements to be assigned values. If
you select Internal, the block dialog box displays an Elements
field (see following). Use this field to enter the element indices. If
you select External, the block displays an input port labeled E.
Connect the external index source to this port.

Elements
This field appears only if you selected Internal for the Source
of element indices field. It specifies the indices of elements in
Y to be assigned values from elements in U2. The value of this
parameter can be -1, a nonnegative integer specifying a single
index, or a vector of nonnegative integers specifying a set of
indices (e.g., [1,3,5,6]).

Source of row indices
Either Internal (the default) or External. If you select Internal,
the Rows field appears. Enter the indices of the rows to be
assigned values in this field. If you select External, the block
displays an input port labeled R. Connect an external source of
row indices to this port.

2-21

Assignment

Rows
This field appears only if you select Internal for the Source of
row indices field. Valid values are -1 (all rows), a single row
index, or a vector of row indices (e.g., [1,3,5,6]).

Source of column indices
Either Internal (the default) or External. If you select Internal,
the Columns field appears. Enter the indices of the columns to
be assigned values in this field. If you select External, the block
displays an input port labeled C. Connect an external source of
column indices to this port.

Columns
This field appears only if you selected internal for the Source of
column indices field. Valid values are -1 (all columns), a single
column index, or a vector of column indices (e.g., [1,3,5,6]).

Output (Y)
This control appears only if the source of assignment indices
is external or, in the case of matrix assignment, the source of
either the row or column indices, or both, is external. The options
are Initialize using input (U1) (the default) or Specify
required dimensions. The first option causes the Assignment
block to display an initialization port labeled Ul and to use
the signal at this port to initialize the output signal (Y) before
assigning it values from the data port (U2) as specified by the
external indices signal (E). The second option does not initialize Y
before assigning values from the block’s data input port (labeled
U1 in this case) to it. This option requires that the block’s U1 and
E inputs assign values to every element of Y. Further, it requires
that you specify the dimensions of the output signal (see next
control).

Output dimensions
This control appears only if you specify the Specify required
dimensions option of the Output (Y) control. It specifies the
dimensions of the Assignment block’s output signal.

2-22

Assignment

Diagnostic if not all required dimensions are populated
This control appears only if you specify the Specify required
dimensions option of the Output (Y) control. It specifies the
diagnostic action that Simulink should take if the block’s data
(U1) and external indices (E) inputs do not assign a value to every
element of the block’s output (Y). The options are to display an
error message and halt the simulation (Error), display a warning
message (Warning) and continue the simulation, or continue the
simulation (None). If you choose Warning or None, the values of
the unassigned elements of the output are undefined.

Sample time (-1 for inherited)
Specify the time interval between samples. To inherit the sample
time, set this parameter to -1. See "Specifying Sample Time"
in the “How Simulink Works” chapter of the Using Simulink

documentation.
Characteristics pjrect Feedthrough Yes
Sample Time Inherited from driving block
Scalar Expansion Yes
Dimensionalized Yes
Zero Crossing No

2-23

Backlash

2-24

Purpose
Library

Description

il

Model behavior of system with play
Discontinuities

The Backlash block implements a system in which a change in input
causes an equal change in output. However, when the input changes
direction, an initial change in input has no effect on the output. The
amount of side-to-side play in the system is referred to as the deadband.
The deadband is centered about the output. This figure shows the
block’s initial state, with the default deadband width of 1 and initial
output of 0.

o0y 9 05 10 oyt

‘¢ deadhand -
A system with play can be in one of three modes:

¢ Disengaged - In this mode, the input does not drive the output and
the output remains constant.

* Engaged in a positive direction - In this mode, the input is increasing
(has a positive slope) and the output is equal to the input minus half
the deadband width.

¢ Engaged in a negative direction - In this mode, the input is decreasing
(has a negative slope) and the output is equal to the input plus half
the deadband width.

If the initial input is outside the deadband, the Initial output
parameter value determines whether the block is engaged in a positive
or negative direction, and the output at the start of the simulation is
the input plus or minus half the deadband width.

For example, the Backlash block can be used to model the meshing of
two gears. The input and output are both shafts with a gear on one
end, and the output shaft is driven by the input shaft. Extra space

Backlash

between the gear teeth introduces play. The width of this spacing is the
Deadband width parameter. If the system is disengaged initially,

the output (the position of the driven gear) is defined by the Initial
output parameter.

The following figures illustrate the block’s operation when the initial
input is within the deadband. The first figure shows the relationship
between the input and the output while the system is in disengaged

mode (and the default parameter values are not changed).

-10 03 0 0.3 1.0

i Input within deadband

The next figure shows the state of the block when the input has reached
the end of the deadband and engaged the output. The output remains
at its previous value.

-10 05 0 0.5 1.0

i Input reaches end of deadband (engaged|

The final figure shows how a change in input affects the output while
they are engaged.

-10 05 0 0.5 1.0

i Input moves in positive direction.

Cutput = Input - (deadband width/2)

If the input reverses its direction, it disengages from the output. The
output remains constant until the input either reaches the opposite end
of the deadband or reverses its direction again and engages at the same
end of the deadband. Now, as before, movement in the input causes
equal movement in the output.

2-25

Backlash

2-26

For example, if the deadband width is 2 and the initial output is 5, the
output, y, at the start of the simulation is as follows:

¢ 5 if the input, u, is between 4 and 6

e y+1ifu<4

e y-1lifu>6

This sample model and the plot that follows it show the effect of a sine
wave passing through a Backlash block.

Badklash
ST

b e To Workspace

Sine Wiave

The Backlash block parameters are unchanged from their default
values (the deadband width is 1 and the initial output is 0). Notice in
the plotted output following that the Backlash block output is zero until
the input reaches the end of the deadband (at 0.5). Now the input and
output are engaged and the output moves as the input does until the
input changes direction (at 1.0). When the input reaches 0, it again
engages the output at the opposite end of the deadband.

Backlash
|

A Input engages in positive
oat Input - direction. Change in input
B causes equal change in
agr 7 output.
04tk 1 A 1 BI .
nput disengages. Change
ozl | in input does not affect
output.
[—
sl Output 1 C Input engages in negative
) direction. Change in input
04l | causes equal change in
output.
_06 L -
D .
sl {1 D Input disengages. Change
in input does not affect
S+ output.
Data Type The Backlash block accepts and outputs real values of single, double,
Support and built-in integer data types.

2-27

Backlash

2-28

Parameters
and

Dialog

Box

[=1Block Parameters: Backlash E
—Backlazh

bodel backlash where the deadband width specifies the amount of play in the
sz,

—Parameters
Deadband width:
1

[nitial output;

[

¥ Enable zer crossing detection

Sample tirme [-1 far inkerited]:

1

I k. Cancel Help Lpply

Deadband width
Specify the width of the deadband. The default is 1.

Initial output
Specify the initial output value. The default value is 0. This
parameter is tunable. Simulink does not allow the initial output
of this block to be inf or NaN.

Enable zero-crossing detection
Select to enable use of zero-crossing detection to detect
engagement with lower and upper thresholds. For more
information, see “Zero-Crossing Detection” in the “How Simulink
Works” chapter of the Using Simulink documentation.

Sample time (-1 for inherited)
Specify the time interval between samples. To inherit the sample
time, set this parameter to -1. See “Specifying Sample Time”

Backlash
|

in the “How Simulink Works” chapter of the Using Simulink

documentation.
Characteristics pirect Feedthrough Yes
Sample Time Specified in the Sample time parameter
Scalar Expansion Yes
Dimensionalized Yes
Zero Crossing Yes, if you select Enable zero crossing
detection

2-29

Bad Link

Purpose

Description

)I Bad Link

Parameters
and

Dialog

Box

2-30

Indicate unresolved reference to library block

This block indicates an unresolved reference to a library block (see
“Creating a Library Link”). You can use this block’s parameter dialog
L box to fix the reference to point to the actual location of the library block.

=1 Function Block Parameters: LineA i x|

—Reference

IInresalved libramy reference.

—Parameterz

Source block:
{mylib/Line

Source type:

k. Cancel Apply

Source block
Path of the library block that this link represents. To fix a bad
link, edit this field to reflect the actual path of the library block.
Then select Apply or OK to apply the fix and close the dialog box.

Source type
Type of library block that this link represents.

Band-Limited White Noise

Purpose
Library

Description

)

Introduce white noise into continuous system
Sources

The Band-Limited White Noise block generates normally distributed
random numbers that are suitable for use in continuous or hybrid
systems.

The primary difference between this block and the Random Number
block is that the Band-Limited White Noise block produces output at a
specific sample rate, which is related to the correlation time of the noise.

Theoretically, continuous white noise has a correlation time of 0, a flat
power spectral density (PSD), and a covariance of infinity. In practice,
physical systems are never disturbed by white noise, although white
noise is a useful theoretical approximation when the noise disturbance
has a correlation time that is very small relative to the natural
bandwidth of the system.

In Simulink, you can simulate the effect of white noise by using a
random sequence with a correlation time much smaller than the
shortest time constant of the system. The Band-Limited White Noise
block produces such a sequence. The correlation time of the noise is the
sample rate of the block. For accurate simulations, use a correlation
time much smaller than the fastest dynamics of the system. You can get
good results by specifying

¢l on
i N lnnf.'?]ﬂ.'l.
where f, _is the bandwidth of the system in rad/sec.

The Algorithm Used in the Block Implementation

To produce the correct intensity of this noise, the covariance of the noise
is scaled to reflect the implicit conversion from a continuous PSD to a
discrete noise covariance. The appropriate scale factor is 1/¢c, where

tc is the correlation time of the noise. This scaling ensures that the
response of a continuous system to the approximate white noise has the
same covariance as the system would have to true white noise. Because

2-31

Band-Limited White Noise

2-32

Data Type
Support

Parameters
and

Dialog

Box

of this scaling, the covariance of the signal from the Band-Limited
White Noise block is not the same as the Noise power (intensity)
dialog box parameter. This parameter is actually the height of the
PSD of the white noise. While the covariance of true white noise is
infinite, the approximation used in this block has the property that the
covariance of the block output is the Noise Power divided by tc.

The Band-Limited White Noise block outputs real values of type double.

[Z)Block Parameters: Band-Limited White N |
—Band-Limited ‘White Moize. [maszk] [link]

The B and-Limited 'hite Moize block generates normally diztibuted
random numberz that are zuitable for uge in continuows or hebrid
zyztems.

—Parameters
Moize power:
1]
Sample time:

{01

Seed:
|[23341]

¥ |rterpret wector parameters az 1-0

ok Cancel Help

Opening this dialog box causes a running simulation to pause. See
“Changing Source Block Parameters During Simulation” in the
“Working with Blocks” chapter of the Using Simulink documentation.

Band-Limited White Noise

Noise power
The height of the PSD of the white noise. The default valueis 0.1.

Sample time
The correlation time of the noise. The default value is 0.1. See
“Specifying Sample Time” in the “How Simulink Works” chapter
of the Using Simulink documentation.

Seed
The starting seed for the random number generator. The default
value is 23341.

Interpret vector parameters as 1-D
Output a 1-D array if the block’s parameters are vectors.
Otherwise, output a 2-D array one of whose dimensions is 1.
See “Determining the Output Dimensions of Source Blocks”
in the “Working with Signals” chapter of the Using Simulink

documentation.
Characteristics Sample Time Specified in the Sample time parameter
Scalar Expansion Yes, of Noise power and Seed
parameters and output
Dimensionalized Yes
Zero Crossing No

2-33

Bias

2-34

Purpose
Library

Description

oA u+0.0 p

Data Type
Support

Parameters
and

Dialog

Box

Add bias to input

Math Operations

The Bias block adds a bias, or offset, to the input signal according to

Y = U+ Bias
where U is the block input and Y is the output.

The Bias block accepts and outputs real or complex values of any data
type supported by Simulink, except Boolean. The Bias block supports

fixed-point data types.

For a discussion on the data types supported by Simulink, see “Data
Types Supported by Simulink” in the “Working with Data” chapter of

the Using Simulink documentation.

=) Block Parameters: Bias

i E3

—Biaz

Add biaz ta input,
Y =U + Biaz.

—Parameters

Biaz:

[T Saturate on integer overflow

I Ok, Cancel Help

Appl

Bias
Specify the value of the offset to add to the input signal.

Bias

Saturate on integer overflow
If the input (and hence the output) is an integer data type (for
example, int8) and the data type cannot accommodate the
output signal, selecting this option causes the block to output the
maximum value allowed by the data type. Otherwise, in this case,
the block outputs the result of using twos-complement arithmetic
to add the input to the output, i.e., the value is the result of
adding the bias to the input modulo the maximum representable
value of the data type.

Characteristics pjrect Feedthrough Yes
Sample Time Inherited from the driving block
Scalar Expansion Yes
States 0
Dimensionalized Yes
Zero Crossing No

2-35

Bit Clear

Purpose
Library

Description

Clear
bit 0

b
W

Data Type
Support

Parameters
and

Dialog

Box

Examples

2-36

Set specified bit of stored integer to zero
Logic and Bit Operations

The Bit Clear block sets the specified bit, given by its index, of the
stored integer to zero. Scaling is ignored.

You can specify the bit to be set to zero with the Index of bit parameter,
where bit zero is the least significant bit.

The Bit Clear block supports Simulink integer, fixed-point, and Boolean
data types. True floating-point data types are not supported.

=) Block Parameters: Bit Clear E
—Bit Clear [mazk] [link]

Clear ith bit of the stored integer to 0. Scaling iz ignored.

—Parameters

[ndes af bit [0 iz l2azt zignificant]:

I Ok Cancel Help Apply

Index of bit
Index of bit where bit 0 is the least significant bit.

If the Bit Clear block is turned on for bit 2, bit 2 is set to 0. A vector of
constants 2.7[0 1 2 3 4] is represented in binary as [00001 00010
00100 01000 10000]. With bit 2 set to 0, the result is [00001 00010
00000 01000 10000], which is represented in decimal as [1 2 0 8 16].

Bit Clear
|

Characteristics pjrect Feedthrough Yes
Scalar Expansion Yes
See Also Bit Set

2-37

Bit Set

Purpose
Library

Description

Set
1 bito [

Data Type
Support

Parameters
and

Dialog

Box

Examples

2-38

Set specified bit of stored integer to one
Logic and Bit Operations

The Bit Set block sets the specified bit of the stored integer to one.
Scaling is ignored.

You can specify the bit to be set to one with the Index of bit parameter,
where bit zero is the least significant bit.

The Bit Set block supports Simulink integer, fixed-point, and Boolean
data types. True floating-point data types are not supported.

=) Block Parameters: Bit Set
—Bit Set [mazk] [link]
Set ith bit of the ztored integer to 1. Scaling iz ignored.

—Parameters

[ndes af bit [0 is leazt zignificant]:

I Ok Cancel Help Lpply

Index of bit
Index of bit where bit 0 is the least significant bit.

If the Bit Set block is turned on for bit 2, bit 2 is set to 1. A vector of
constants 2.[0 1 2 3 4] is represented in binary as [00001 00010
00100 01000 10000]. With bit 2 set to 1, the result is [00101 00110
00100 01100 10100], which is represented in decimal as [5 6 4 12 20].

Bit Set
|

Characteristics pirect Feedthrough Yes
Scalar Expansion Yes
See Also Bit Clear

2-39

Bitwise Operator

Purpose Perform specified bitwise operation on inputs
Librclry Logic and Bit Operations
Description The Bitwise Operator block performs the specified bitwise operation
on its operands.
Bitwise Unlike the logic operations performed by the Logical Operator block,
¥ AND p bitwise operations treat the operands as a vector of bits rather than
OxD9 a single number. You select the bitwise Boolean operation from

theOperator parameter list. The supported operations are given below.

Operation Description

AND TRUE if the corresponding bits are all TRUE

OR TRUE if at least one of the corresponding bits is
TRUE

NAND TRUE if at least one of the corresponding bits is
FALSE

NOR TRUE if no corresponding bits are TRUE

XOR TRUE if an odd number of corresponding bits are
TRUE

NOT TRUE if the input is FALSE (available only for
single input)

The Bitwise Operator block does not support shift operations. For shift
operations, see the Shift Arithmetic block.

The size of the output of the Bitwise Operator block depends on the
number of inputs, their vector size, and the selected operator:

¢ The NOT operator accepts only one input, which can be a scalar or
a vector. If the input is a vector, the output is a vector of the same
size containing the bitwise logical complements of the input vector
elements.

2-40

Bitwise Operator

* For a single vector input, the block applies the operation (except the
NOT operator) to all elements of the vector. If a bit mask is not
specified, then the output is a scalar. If a bit mask is specified, then
the output is a vector.

® For two or more inputs, the block performs the operation between all
of the inputs. If the inputs are vectors, the operation is performed
between corresponding elements of the vectors to produce a vector
output.

When configured as a multi-input XOR gate, this block performs an
addition- modulo-two operation as mandated by the IEEE Standard
for Logic Elements.

If you do not select the Use bit mask check box, then the block can
accept multiple inputs. You select the number of input ports from the
Number of input ports parameter. The input data types must be
identical.

If you select the Use bit mask check box, then a single input is
associated with the bit mask you specify from the Bit Mask parameter.
You specify the bit mask using any valid MATLAB expression. For
example, you can specify the bit mask 00100101 as 2~5+2~2+2"0.
Alternatively, you can use strings to specify a hexadecimal bit mask
such as {'FE73"', '12AC"'}. If the bit mask is larger than the input
signal data type, then it is ignored.

Note The output data type, which is inherited from the driving block,
should represent zero exactly. Data types that satisfy this condition
include signed and unsigned integers and any floating-point data type.

The Treat mask as parameter list controls how the mask is treated.
The possible values are Real World Value and Stored Integer. In
terms of the general encoding scheme described in the “Scaling” section
of the Simulink Fixed Point documentation, Real World Value treats

2-41

Bitwise Operator

2-42

Data Type
Support

the mask as V = S@ + B where S is the slope and B is the bias. Stored
Integer treats the mask as a stored integer, .

You can use the bit mask to perform a bit set or a bit clear on the input.
To perform a bit set, set the Operator parameter list to OR and create
a bit mask with a 1 for each corresponding input bit that you want to
set to 1. To perform a bit clear, set the Operator parameter list to
AND and create a bit mask with a 0 for each corresponding input bit
that you want to set to 0.

For example, suppose you want to perform a bit set on the fourth
bit of an 8-bit input vector. The bit mask would be 00010000, which
you can specify as 2°4 in the Bit mask parameter. To perform a
bit clear, the bit mask would be 11101111, which you can specify as
2°7+276+2"5+2°3+2"2+2~1+270 in the Bit mask parameter.

The Bitwise Operator block supports Simulink integer, fixed-point, and
Boolean data types. The block does not support true floating-point
data types.

Bitwise Operator

Parameters
and

Dialog

Box

m Block Parameters: Bitwise Operator EHE
— Fixed-Point Bitwize Operatar [mazk] [link]

Ferform the specified bibwize operation on the inputs. The output data twpe should
reprezent Zero exactly.

—Parameters

Operator. E
¥ Uze bit mask ...

Humber of input ports:

i

Biit b agk,

Ibin2dec["| 10170017

Treat mazk az: | Stared Integer LI

I Ok Cancel Help | Apply

Operator
The bitwise logical operator associated with the specified
operands.

Use bit mask
Specify if the bit mask is used (single input only).

Number of input ports
The number of inputs.

Bit Mask
The bit mask to associate with a single input. The Bit Mask
parameter is converted from a double to the input data type
offline using round-to-nearest and saturation.

Treat mask as
Treat the mask as a real-world value or as a stored integer.

2-43

Bitwise Operator

Examples To help you understand the Bitwise Operator block logic operations,
consider the fixed-point model shown below.
105
01101001
Constant

Bitui
188 o double
]]]

10144100 (sh
Constant Bitwise [rata Type Conversion Dizplay
Operatar
45
00101101
Constant2
The Constant blocks are configured to output an 8-bit unsigned integer
(uint (8)). The results for all logic operations are shown below.
Operation Binary Value Decimal Value
AND 00101000 40
OR 11111101 253
NAND 11010111 215
NOR 00000010 2
XOR 11111000 248
NOT N/A N/A
Characteristics pjrect Feedthrough No
Scalar Expansion Yes, of inputs

2-44

Bus Assignment

Purpose

Library

Description

Bus

Bus

= zignal

Data Type
Support

Assign values to specified elements of bus
Signal Routing

The Bus Assignment block assigns values, specified by signals
connected to its assignment (:=) input ports, to specified elements of
the bus connected to its Bus input port. Use the block’s dialog box to
specify the bus elements to be assigned values. The block displays an
assignment input port for each bus element to be assigned a signal. The
signal connected to the assignment port must have the same structure
(i.e., vector, matrix, bus), data type, and numeric (i.e., real or complex)
type as the bus element to which it corresponds.

Note If an associated bus object (see Bus Creator and Simulink.Bus)
defines the bus to be assigned values, all of the assignment signals
must have the same sample time, even if the elements of the bus object
associated with the bus specify inherited sample times.

The bus input port of the Bus Assignment block accepts and outputs real
or complex values of any data type supported by Simulink, including
fixed-point data types. The assignment input ports accept the same
data and numeric types as the bus elements to which they correspond.

For a discussion on the data types supported by Simulink, see “Data
Types Supported by Simulink” in the “Working with Data” chapter of
the Using Simulink documentation.

2-45

Bus Assignment

2-46

Parameters
and

Dialog

Box

[Z]Block Parameters: Bus Assignment

—Bushssignment

Thiz block accepts a bus az input and allows signals in the bus to be assigned with new signal values. The left liztbox
showes the signals in the input bus. Use the Select button to select the zignals that are to be azzigned. The right listbox
shows the selections. Use the Up, Down, or Remowve button to reorder the selections.

—FParameters

Signalz in the bus

| Fitnd | Signals that are being azzsigned p
zignall
Selects> | Dowr
Refrezh | Remove

il

Ok I LCancel | Help | Lpply

Signals in the bus

Displays the names of the signals contained by the bus at the
block’s Bus input port. Click any item in the list to select it. To
find the source of the selected signal, click the adjacent Find
button. Simulink opens the subsystem containing the signal
source, if necessary, and highlights the source’s icon. Use the
Select>> button to move the currently selected signal into the
adjacent list of signals to be assigned values (see Signals that

are being assigned below). To refresh the display (e.g., to reflect
modifications to the bus connected to the block), click the adjacent
Refresh button.

Signals that are being assigned

Lists the names of bus elements to be assigned values. This block
displays an assignment input port for each bus element in this
list. The label of the corresponding input port contains the name
of the element. You can order the signals by using the Up, Down,

Bus Assignment

and Remove buttons. Port connectivity is maintained when the
signal order is changed.

Three question marks (???) before the name of a bus element
indicate that the input bus no longer contains an element of
that name, for example, because the bus has changed since the
last time you refreshed the Bus Assignment block’s input and
bus element assignment lists. You can fix the problem either by
modifying the bus to include a signal of the specified name or by
removing the name from the list of bus elements to be assigned
values.

2-47

Bus Creator

Purpose Create signal bus

Librury Signal Routing

Description The Bus Creator block combines a set of signals into a bus, i.e., a group
of signals represented by a single line in a block diagram. The Bus
Creator block, when used in conjunction with the Bus Selector block,
allows you to reduce the number of lines required to route signals from

one part of a diagram to another. This makes your diagram easier to
understand.

To bundle a group of signals with a Bus Creator block, set the block’s
Number of inputs parameter to the number of signals in the group.
The block displays the number of ports that you specify. Connect the
signals to be grouped to the resulting input ports. The signals in the
bus will be order from the top (or left) input port to the bottom (or right)
input port. You can connect any type of signal to the inputs, including
other bus signals. To ungroup the signals, connect the block’s output
port to a Bus Selector port.

Note Simulink hides the name of a Bus Creator block when you copy it
from the Simulink library to a model.

Naming Signals

The Bus Creator block assigns a name to each signal on the bus that
it creates. This allows you to refer to signals by name when searching
for their sources (see “Browsing Bus Signals” on page 2-50) or selecting
signals for connection to other blocks. The block offers two bus signal
naming options. You can specify that each signal on the bus inherit the
name of the signal connected to the bus (the default) or that each input
signal must have a specific name.

To specify that bus signals inherit their names from input ports, select
Inherit bus signal names from input ports from the list box on

2-48

Bus Creator

1

Constant

1

Constantl

1

Gain

Constanti

the block’s parameter dialog box. The names of the inherited bus
signals appear in the Signals in bus list box.

ammmmm==" Sighals it bus:
s
Gain H
)
P L
Di=plaxr
=
.- Eename selected signal: I
Eu= ---.----I----I .

Creatarl

The Bus Creator block generates names for bus signals whose
corresponding inputs do not have names. The names are of the form
signaln where n is the number of the port to which the input signal is
connected.

You can change the name of any signal by editing its name on the block
diagram or in the Signal Properties dialog box. If you change a name
in this way while the Bus Creator block’s dialog box is open, you must
close and reopen the dialog box or click the Refresh button next to the
Signals in bus list to update the name in the dialog box.

To specify that the bus inputs must have specific names, select Require
input signal names to match signals below from the list box on
the block’s parameter dialog box. The block’s parameter dialog box
displays the names of the signals currently connected to its inputs or

a generated name (for example, signal2) for an anonymous input. You
can now use the parameter dialog box to change the required names of
the block’s inputs. To change the required signal name, select the signal
in the Signals in bus list. The selected signal’s name appears in the
Rename selected signal field. Edit the name in the field and click the
parameter dialog box’s Apply button to apply your edits or the OK
button to apply the edits and close the dialog box.

2-49

Bus Creator

2-50

Data Type
Support

Browsing Bus Signals

The Signals in bus list on a Bus Creator block’s parameter dialog
displays a list of the signals entering the block. A plus sign (+) next to
a signal indicates that the signal is itself a bus. You can display its
contents by clicking the plus sign. If the expanded input includes bus
signals, plus signs appear next to the names of those bus signals. You
can expand them as well. In this way, you can view all signals entering
the block, including those entering via buses. To find the source of any
signal entering the block, select the signal in the Signals in bus list
and click the adjacent Find button. Simulink opens the subsystem
containing the signal source, if necessary, and highlights the source’s
icon.

The Bus Creator block accepts and outputs real or complex values of
any data type supported by Simulink, including fixed-point data types.

For a discussion on the data types supported by Simulink, refer to “Data
Types Supported by Simulink” in the “Working with Data” chapter of
the Using Simulink documentation.

Bus Creator

Parameters
and

Dialog

Box

E! Function Block Parameters: Bus Creator ; x|
—BusCreator
This block creates a bus signal from its inputs.

—Parameters

Inhert bus signal names from input ports LI

Mumber of inputs: |2

Signals in bus Find
signal1
E...signal2 Refresh

Fename selected signal:

[T Specify properties via bus object

Bus ohject: IBusOI:nje::t Edit |

[T Output a5 nonvitua! bus

oK Caned 1 Apply |

Signal naming options
Select Inherit bus signal names from input ports to assign
input signal names to the corresponding bus signals. Select
Require input signal names to match signals below to
specify that inputs must have the names listed in the Signals in

2-51

Bus Creator

2-52

bus list. Selecting this option enables the Rename selected
signal field.

Number of inputs
Specifies the number of input ports on this block.

Signals in bus
The Signals in bus list box shows the signals in the output bus.
A plus sign (+) next to a signal name indicates that the signal
is itself a bus. Click the plus sign to display the subsidiary bus
signals. Click the Refresh button to update the list after editing
the name of an input signal. Click the Find button to highlight
the source of the currently selected signal.

Rename selected signal
Lists the name of the signal currently selected in the Signals in
bus list when you select the Require input signal names to
match signals below option. Edit this field to change the name
of the currently selected signal.

Specify properties via bus object
Select this option to use a bus object to define the structure of
the bus created by this block (see “Working with Data Objects”
in the “Working with Data” chapter of the Using Simulink
documentation and the Simulink.Bus class in the online Simulink
reference to learn how to create bus objects).

Bus object
This option is enabled only if you select the Specify properties
via bus object option. It specifies the name of bus object used
to define the structure of the bus created by this block. At
the beginning of a simulation or when you update the model’s
diagram, Simulink checks whether the signals connected to this
Bus Creator block have the specified structure. If not, Simulink
displays an error message.

Bus Creator

Note If you select this option, all of the signals entering the
Bus Creator block must have the same sample time, even if the
elements of the associated bus object specify inherited sample
times.

Output as nonvirtual bus
This option is enabled only if you select the Specify properties
via bus object option. If this option is selected, this block outputs
a nonvirtual bus; otherwise, it outputs a virtual bus (see “Virtual
Versus Nonvirtual Buses” in the “Working with Signals” chapter
of the Using Simulink documentation). Select this option if you
want code generated from this model to use a C structure to define
the structure of the bus signal output by this block.

2-53

Bus Selector

Purpose Select signals from incoming bus

Librury Signal Routing

Description The Bus Selector block outputs a specified subset of the elements of
the bus at its input. The block can output the selected elements as
multiple standalone signals or as elements of a new bus. When selecting
elements from the bus, each element is output from a separate port

from top to bottom, or left to right, on the block.

Note Simulink hides the name of a Bus Selector block when you copy it
from the Simulink library to a model.

Data Type A Bus Selector block accepts and outputs real or complex values of any
Support data type supported by Simulink, including fixed-point data types.

For a discussion on the data types supported by Simulink, see “Data
Types Supported by Simulink” in the “Working with Data” chapter of
the Using Simulink documentation.

2-54

Bus Selector

Parameters
and

Dialog

Box

L] Function Block Parameters: Bus Selector x|

—BusSelector

This block accepts a bus az input which can be created from a Mus, Bus Creator, Bus Selector or a block that defines its
autput uzing a bus object. The left listbox shows the signals in the input bus. Usze the Select button to zelect the output
zignalz. The right listbox shows the selections. Usze the Up, Diown, or Remove button to reorder the selections. Check Muxed
output’ to multiplex the output.

—Farameters

Signals in the bus | FEind | Selected signals o

7Y zignall

Selects> | 277 signal2 Dasan
Refresh | flemoye

d5

[~ Output as bus

ok I Cancel | Help | Apply

Signals in the bus
The Signals in the bus list shows the signals in the input bus.
Use the Select>> button to select output signals. To find the
source of any signal entering the block, select the signal in the
Signals in the bus list and click the adjacent Find button.
Simulink opens the subsystem containing the signal source, if
necessary, and highlights the source’s icon. To refresh the display
(e.g., to reflect modifications to the bus connected to the block),
click the adjacent Refresh button.

Selected signals
The Selected signals list box shows the output signals. You can
order the signals by using the Up, Down, and Remove buttons.
Port connectivity is maintained when the signal order is changed.

2-55

Bus Selector

If an output signal listed in the Selected signals list box is not
an input to the Bus Selector block, the signal name is preceded
by three question marks (??7?).

Output as bus
If selected, this option causes the block to output the selected
elements as a bus. Otherwise, the block outputs the elements as
standalone signals, each from its own output port and labeled
with the corresponding element’s name.

2-56

Check Discrete Gradient

Purpose

Library

Description

Y

Data Type
Support

Check that absolute value of difference between successive samples of
discrete signal is less than upper bound

Model Verification

The Check Discrete Gradient block checks each signal element at its
input to determine whether the absolute value of the difference between
successive samples of the element is less than an upper bound. The
block’s parameter dialog box allows you to specify the value of the upper
bound (1 by default). If the verification condition is true, the block does
nothing. Otherwise, the block halts the simulation, by default, and
displays an error message in the Simulation Diagnostics Viewer.

The Model Verification block enabling setting under Debugging on
the Data Validity diagnostics pane of the Configuration Parameters
dialog box lets you enable or disable all model verification blocks,
including Check Discrete Gradient blocks, in a model.

The Check Discrete Gradient block and its companion blocks in

the Model Verification library are intended to facilitate creation of
self-validating models. For example, you can use model verification
blocks to test that signals do not exceed specified limits during
simulation. When you are satisfied that a model is correct, you can
turn error checking off by disabling the verification blocks. You do not
have to physically remove them from the model. If you need to modify
a model, you can temporarily turn the verification blocks back on to
ensure that your changes do not break the model.

The Check Discrete Gradient block accepts single, double, int8,
int16, and int32 input signals of any dimensions.

2-57

Check Discrete Gradient

Pa:lameters =) Block Parameters: Check Discrete Gradient
CIE\ —LChecks_Gradient [mazk] [link]
Dialog . :
B Agzert that the abzolute value of the difference between successive samples of a
ox dizcrete signal iz less than an upper bound.

—Parameters
b asirnum gradient;
i

¥ Enable assertion

Simulation callback when aszertion failz [optional]:

¥ Stop simulation when assertion Fails

[T Output aszertion zignal

Select icon type: | graphic =]

ok Cancel Help | Amply |

Maximum gradient
Upper bound on the gradient of the discrete input signal.

Enable assertion

Unchecking this option disables the Check Discrete Gradient
block, that is, causes the model to behave as if the block did
not exist. The Model Verification block enabling setting
under Debugging on the Data Validity diagnostics pane of the
Configuration Parameters dialog box allows you to enable or
disable all model verification blocks in a model, including Check
Discrete Gradient blocks, regardless of the setting of this option.

Simulation callback when assertion fails
An M-expression to be evaluated when the assertion fails.

2-58

Check Discrete Gradient

Stop simulation when assertion fails

If checked, this option causes the Check Discrete Gradient block

to halt the simulation when the block’s output is zero and display
an error message in Simulink’s Simulation Diagnostics viewer.
Otherwise, the block displays a warning message in the MATLAB

Command Window and continues the simulation.

Output assertion signal

If checked, this option causes the Check Discrete Gradient block
to output a Boolean signal that is true (1) at each time step if
the assertion succeeds and false (0) if the assertion fails. The
data type of the output signal is Boolean if you have selected
the Implement logic signals as boolean data option on
the Simulation and code generation optimization pane of
Simulink’s Configuration Parameters dialog box. Otherwise
the data type of the output signal is double.

Select icon type

Type of icon used to display this block in a block diagram: either
graphic or text. The graphic option displays a graphical
representation of the assertion condition on the icon. The text
option displays a mathematical expression that represents

the assertion condition. If the icon is too small to display the
expression, the text icon displays an exclamation point. To see the
expression, enlarge the block.

Characteristics pjrect Feedthrough

No

Sample Time

Inherited from driving block

Scalar Expansion No
Dimensionalized Yes
Zero Crossing No

2-59

Check Dynamic Gap

Purpose

Library

Description

Data Type
Support

2-60

Check that gap of possibly varying width occurs in range of signal’s
amplitudes

Model Verification

The Check Dynamic Gap block checks that a gap of possibly varying
width occurs in the range of a signal’s amplitudes. The test signal

is the signal connected to the input labeled sig. The inputs labeled
min and max specify the lower and upper bounds of the dynamic gap,
respectively. If the verification condition is true, the block does nothing.
If not, the block halts the simulation, by default, and displays an error
message.

The Check Dynamic Gap block and its companion blocks in the Model
Verification library are intended to facilitate creation of self-validating
models. For example, you can use model verification blocks to test
that signals do not exceed specified limits during simulation. When
you are satisfied that a model is correct, you can turn error checking
off by disabling the verification blocks. You do not have to physically
remove them from the model. If you need to modify a model, you can
temporarily turn the verification blocks back on to ensure that your
changes do not break the model.

The Check Dynamic Gap block accepts input signals of any dimensions
and of any data type supported by Simulink. All three input signals
must have the same dimension and data type. If the inputs are
nonscalar, the block checks each element of the input test signal to the
corresponding elements of the reference signals.

For a discussion on the data types supported by Simulink, see “Data
Types Supported by Simulink” in the “Working with Data” chapter of
the Using Simulink documentation.

Check Dynamic Gap

Parameters
and

Dialog

Box

—LChecks_DGEap [mazk] [link]

[=1Block Parameters: Check Dynamic Gap

Bgzert that the input signal 'sig’ iz always less than the lower bound 'min' or greater than
the upper bound 'max’. The first input iz the upper-bound of the gap; the second input,
the lower-bound; the third input, the test zignal.

—Parameters

Simulation callback when azsertion failz [optianal]:

¥ Stop simulation when assertion Fails

[T Output aszertion zignal

Select ican type: | graphic =

ok Cancel Help | Spply

Enable assertion
Unchecking this option disables the Check Dynamic Gap block,
that is, causes the model to behave as if the block did not
exist. The Model Verification block enabling setting under
Debugging on the Data Validity diagnostics pane of the
Configuration Parameters dialog box allows you to enable or
disable all model verification blocks in a model, including Check
Dynamic Gap blocks, regardless of the setting of this option.

Simulation callback when assertion fails
An M-expression to be evaluated when the assertion fails.

Stop simulation when assertion fails
If checked, this option causes the Check Dynamic Gap block to
halt the simulation when the block’s output is zero and display
an error message in the Simulation Diagnostics viewer.

Check Dynamic Gap

2-62

Otherwise, the block displays a warning message in the MATLAB
Command Window and continues the simulation.

Output assertion signal

If checked, this option causes the Check Dynamic Gap block

to output a Boolean signal that is true (1) at each time step if
the assertion succeeds and false (0) if the assertion fails. The
data type of the output signal is Boolean if you have selected
the Implement logic signals as boolean data option on the
Simulation and code generation optimization pane of the
Configuration Parameters dialog box. Otherwise the data type
of the output signal is double.

Select icon type

Type of icon used to display this block in a block diagram: either
graphic or text. The graphic option displays a graphical
representation of the assertion condition on the icon. The text
option displays a mathematical expression that represents

the assertion condition. If the icon is too small to display the
expression, the text icon displays an exclamation point. To see the
expression, enlarge the block.

Characteristics pjrect Feedthrough

No

Sample Time

Inherited from driving block

Scalar Expansion No
Dimensionalized Yes
Zero Crossing No

Check Dynamic Lower Bound

Purpose
Library

Description

min
zig

Data Type
Support

Check that one signal is always less than another signal
Model Verification

The Check Dynamic Lower Bound block checks that the amplitude of a

reference signal is less than the amplitude of a test signal at the current
time step. The test signal is the signal connected to the input labeled sig.

If the verification condition is true, the block does nothing. If not, the
block halts the simulation, by default, and displays an error message.

The Check Dynamic Lower Bound block and its companion blocks in
the Model Verification library are intended to facilitate creation of
self-validating models. For example, you can use model verification
blocks to test that signals do not exceed specified limits during
simulation. When you are satisfied that a model is correct, you can
turn error checking off by disabling the verification blocks. You do not
have to physically remove them from the model. If you need to modify
a model, you can temporarily turn the verification blocks back on to
ensure that your changes do not break the model.

The Check Dynamic Lower Bound block accepts input signals of any
data type supported by Simulink. The test and the reference signals
must have the same dimensions and data type. If the inputs are
nonscalar, the block checks each element of the input test signal to the
corresponding elements of the reference signal.

For a discussion on the data types supported by Simulink, see “Data
Types Supported by Simulink” in the “Working with Data” chapter of
the Using Simulink documentation.

2-63

Check Dynamic Lower Bound

Pa:lameters E! Block Parameters: Check Dynamic Lower Bound EH
an

N —LChecks_DMin [maszk] [link]

Dialog o , L

Box Agzert that one signal iz alwavs lesz than another zignal. The first input iz the

lower-bound signal. The zecond input iz the test zsignal.

—Parameters

Simulation callback when azzertion failz [optional]:

¥ Stop zimulation when assertion Fail

[T Output assertion signal

Select icon type: | graphic LI

0K Lo Hep | el |

Enable assertion
Unchecking this option disables the Check Dynamic Lower Bound
block, that is, causes the model to behave as if the block did
not exist. The Model Verification block enabling setting
under Debugging on the Data Validity diagnostics pane of the
Configuration Parameters dialog box allows you to enable or
disable all model verification blocks, including Check Dynamic

Lower Bound blocks, in a model regardless of the setting of this
option.

Simulation callback when assertion fails
An M-expression to be evaluated when the assertion fails.

Stop simulation when assertion fails
If checked, this option causes the Check Dynamic Lower Bound
block to halt the simulation when the block’s output is zero and
display an error message in the Simulation Diagnostics viewer.

2-64

Check Dynamic Lower Bound

Otherwise, the block displays a warning message in the MATLAB
Command Window and continues the simulation.

Output assertion signal
If checked, this option causes the Check Dynamic Lower Bound
block to output a Boolean signal that is true (1) at each time step
if the assertion succeeds and false (0) if the assertion fails. The
data type of the output signal is Boolean if you have selected
the Implement logic signals as boolean data option on the
Simulation and code generation optimization pane of the
Configuration Parameters dialog box. Otherwise the data type
of the output signal is double.

Select icon type
Type of icon used to display this block in a block diagram: either
graphic or text. The graphic option displays a graphical
representation of the assertion condition on the icon. The text
option displays a mathematical expression that represents
the assertion condition. If the icon is too small to display the
expression, the text icon displays an exclamation point. To see the
expression, enlarge the block.

Characteristics pjrect Feedthrough No
Sample Time Inherited from driving block
Scalar Expansion No
Dimensionalized Yes
Zero Crossing No

2-65

Check Dynamic Range

Purpose

Library

Description

max
min \]
sig

Data Type
Support

2-66

Check that signal falls inside range of amplitudes that varies from time
step to time step

Model Verification

The Check Dynamic Range block checks that a test signal falls inside a
range of amplitudes at each time step. The width of the range can vary
from time step to time step. The input labeled sig is the test signal. The
inputs labeled min and max are the lower and upper bounds of the valid
range at the current time step. If the verification condition is true, the
block does nothing. If not, the block halts the simulation, by default,
and displays an error message.

The Check Dynamic Range block and its companion blocks in the Model
Verification library are intended to facilitate creation of self-validating
models. For example, you can use model verification blocks to test
that signals do not exceed specified limits during simulation. When
you are satisfied that a model is correct, you can turn error checking
off by disabling the verification blocks. You do not have to physically
remove them from the model. If you need to modify a model, you can
temporarily turn the verification blocks back on to ensure that your
changes do not break the model.

The Check Dynamic Range block accepts input signals of any
dimensions and of any data type supported by Simulink. All three input
signals must have the same dimension and data type. If the inputs are
nonscalar, the block checks each element of the input test signal to the
corresponding elements of the reference signals.

For a discussion on the data types supported by Simulink, see “Data
Types Supported by Simulink” in the “Working with Data” chapter of
the Using Simulink documentation.

Check Dynamic Range

Parameters
and

Dialog

Box

—LChecks_DRange [mazk] [link]

[=1Block Parameters: Check Dynamic Range

Agzert that one signal always ez between bwao other zignalz. The first input iz the
upper-bound zignal; the second input, the lower-bound; the third input, the test gsignal.

—Parameters

¥ Stop simulation when assertion Fails

[T Output aszertion zignal

Select icon type: | graphic ll

ok Cancel Help | Smply

Enable assertion
Unchecking this option disables the Check Dynamic Range
block, that is, causes the model to behave as if the block did
not exist. The Model Verification block enabling setting
under Debugging on the Data Validity diagnostics pane of the
Configuration Parameters dialog box allows you to enable or
disable all model verification blocks in a model, including Check
Dynamic Range blocks, regardless of the setting of this option.

Simulation callback when assertion fails
An M-expression to be evaluated when the assertion fails.

Stop simulation when assertion fails
If checked, this option causes the Check Dynamic Range block to
halt the simulation when the block’s output is zero and display
an error message in the Simulation Diagnostics viewer.

2-67

Check Dynamic Range

2-68

Otherwise, the block displays a warning message in the MATLAB
Command Window and continues the simulation.

Output assertion signal

If checked, this option causes the Check Dynamic Range block to
output a Boolean signal that is true (1) at each time step if the
assertion succeeds and false (0) if the assertion fails. The data
type of the output signal is Boolean if you selected the Implement
logic signals as boolean data option on the Simulation
and code generation optimization pane of the Configuration
Parameters dialog box. Otherwise the data type of the output
signal is double.

Select icon type

Type of icon used to display this block in a block diagram: either
graphic or text. The graphic option displays a graphical
representation of the assertion condition on the icon. The text
option displays a mathematical expression that represents

the assertion condition. If the icon is too small to display the
expression, the text icon displays an exclamation point. To see the
expression, enlarge the block.

Characteristics pjrect Feedthrough

No

Sample Time

Inherited from driving block

Scalar Expansion No
Dimensionalized Yes
Zero Crossing No

Check Dynamic Upper Bound

Purpose
Library

Description

max
=ig

Data Type
Support

Check that one signal is always greater than another signal
Model Verification

The Check Dynamic Upper Bound block checks that the amplitude of

a reference signal is greater than the amplitude of a test signal at the

current time step. The test signal is the signal connected to the input

labeled sig. If the verification condition is true, the block does nothing.
If not, the block halts the simulation, by default, and displays an error
message.

The Check Dynamic Upper Bound block and its companion blocks in
the Model Verification library are intended to facilitate creation of
self-validating models. For example, you can use model verification
blocks to test that signals do not exceed specified limits during
simulation. When you are satisfied that a model is correct, you can
turn error-checking off by disabling the verification blocks. You do not
have to physically remove them from the model. If you need to modify
a model, you can temporarily turn the verification blocks back on to
ensure that your changes do not break the model.

The Check Dynamic Upper Bound block accepts input signals of any
dimensions and of any data type supported by Simulink. The test and
the reference signals must have the same dimensions and data type. If
the inputs are nonscalar, the block compares each element of the input
test signal to the corresponding elements of the reference signal.

For a discussion on the data types supported by Simulink, see “Data
Types Supported by Simulink” in the “Working with Data” chapter of
the Using Simulink documentation.

2-69

Check Dynamic Upper Bound

Pa:lameters E! Block Parameters: Check Dynamic Upper Bound EH
an

N —LChecks_Dbax [maszk] [link]

Dialog o . o

Box Agzert that one signal iz alwavs greater than another zignal. The firgt input iz the

upper-bound zignal. The second input iz the test zignal.

—Parameters

Simulation callback when azzertion failz [optional]:

¥ Stop zimulation when assertion Fail

[T Output assertion signal

Select icon type: | graphic LI

0K Lo Hep | el |

Enable assertion
Unchecking this option disables the Check Dynamic Upper Bound
block, that is, causes the model to behave as if the block did
not exist. The Model Verification block enabling setting
under Debugging on the Data Validity diagnostics pane of the
Configuration Parameters dialog box allows you to enable or
disable all model verification blocks, including Check Dynamic
Upper Bound blocks, in a model regardless of the setting of this
option.

Simulation callback when assertion fails
An M-expression to be evaluated when the assertion fails.

Stop simulation when assertion fails
If checked, this option causes the Check Dynamic Upper Bound
block to halt the simulation when the block’s output is zero and
display an error message in the Simulation Diagnostics viewer.

2-70

Check Dynamic Upper Bound
|

Otherwise, the block displays a warning message in the MATLAB
Command Window and continues the simulation.

Output assertion signal
If checked, this option causes the Check Dynamic Upper Bound
block to output a Boolean signal that is true (1) at each time step
if the assertion succeeds and false (0) if the assertion fails. The
data type of the output signal is Boolean if you have selected
the Implement logic signals as boolean data option on the
Simulation and code generation optimization pane of the
Configuration Parameters dialog box. Otherwise the data type
of the output signal is double.

Select icon type
Type of icon used to display this block in a block diagram: either
graphic or text. The graphic option displays a graphical
representation of the assertion condition on the icon. The text
option displays a mathematical expression that represents
the assertion condition. If the icon is too small to display the
expression, the text icon displays an exclamation point. To see the
expression, enlarge the block.

Characteristics pjrect Feedthrough No
Sample Time Inherited from driving block
Scalar Expansion No
Dimensionalized Yes
Zero Crossing No

2-71

Check Input Resolution

2-72

Purpose
Library

Description

o

Data Type
Support

Check that input signal has specified resolution
Model Verification

The Check Input Resolution block checks whether the input signal has
a specified scalar or vector resolution (see Resolution). If the resolution
is a scalar, the input signal must be a multiple of the resolution within
a 10e-3 tolerance. If the resolution is a vector, the input signal must
equal an element of the resolution vector. If the verification condition is
true, the block does nothing. If not, the block halts the simulation, by
default, and displays an error message.

The Check Input Resolution block and its companion blocks in the Model
Verification library are intended to facilitate creation of self-validating
models. For example, you can use model verification blocks to test
that signals do not exceed specified limits during simulation. When
you are satisfied that a model is correct, you can turn error checking
off by disabling the verification blocks. You do not have to physically
remove them from the model. If you need to modify a model, you can
temporarily turn the verification blocks back on to ensure that your
changes do not break the model.

The Check Input Resolution block accepts input signals of data type
double and of any dimension. If the input signal is nonscalar, the block
checks the resolution of each element of the input test signal.

For a discussion on the data types supported by Simulink, see “Data
Types Supported by Simulink” in the “Working with Data” chapter of
the Using Simulink documentation.

Check Input Resolution

Parameters [Z1Block Parameters: Check Input Resolution

cmcl —LChecks_Rezolution [mazk] [link]

Dialo

B 9 Agzert that the input signal has a specified rezolution. If the rezolution iz a scalar, the
ox input signal muzt be a multiple of the rezultion within a 10e-3 tolerance. If the

rezolution iz a vector, the input zignal must equal an element of the resolution vectar.

—Parameters
Rezolution:

1]

¥ Enable assertion

Simulation callback when aszertion failz [optional]:

V¥ Stop simulation when assertion Fails

[T Output assertion signal

ok Cancel Help Sy

Resolution
Resolution that the input signal must have.

Enable assertion

Unchecking this option disables the Check Input Resolution
block, that is, causes the model to behave as if the block did

not exist. The Model Verification block enabling setting
under Debugging on the Data Validity diagnostics pane of the
Configuration Parameters dialog box allows you to enable or
disable all model verification blocks in a model, including Check
Input Resolution blocks, regardless of the setting of this option.

Simulation callback when assertion fails
An M-expression to be evaluated when the assertion fails.

2-73

Check Input Resolution

2-74

Stop simulation when assertion fails
If checked, this option causes the Check Input Resolution block to
halt the simulation when the block’s output is zero and display
an error message in the Simulation Diagnostics viewer.
Otherwise, the block displays a warning message in the MATLAB
Command Window and continues the simulation.

Output assertion signal

If checked, this option causes the Check Input Resolution block
to output a Boolean signal that is true (1) at each time step if
the assertion succeeds and false (0) if the assertion fails. The
data type of the output signal is Boolean if you have selected
the Implement logic signals as boolean data option on the
Simulation and code generation optimization pane of the
Configuration Parameters dialog box. Otherwise the data type
of the output signal is double.

Characteristics pjrect Feedthrough

No

Sample Time

Inherited from driving block

Scalar Expansion No
Dimensionalized Yes
Zero Crossing No

Check Static Gap

Purpose
Library

Description

[3

Vi

N4

Data Type
Support

Check that gap exists in signal’s range of amplitudes
Model Verification

The Check Static Gap block checks that each element of the input signal
is less than (or optionally equal to) a static lower bound or greater than
(or optionally equal to) a static upper bound at the current time step.
If the verification condition is true, the block does nothing. If not, the
block halts the simulation, by default, and displays an error message.

The Check Static Gap block and its companion blocks in the Model
Verification library are intended to facilitate creation of self-validating
models. For example, you can use model verification blocks to test
that signals do not exceed specified limits during simulation. When
you are satisfied that a model is correct, you can turn error checking
off by disabling the verification blocks. You do not have to physically
remove them from the model. If you need to modify a model, you can
temporarily turn the verification blocks back on to ensure that your
changes do not break the model.

The Check Static Gap block accepts input signals of any dimensions
and of any data type supported by Simulink.

For a discussion on the data types supported by Simulink, see “Data
Types Supported by Simulink” in the “Working with Data” chapter of
the Using Simulink documentation.

2-75

Check Static Gap

Parameters [=)Block Parameters: Check Static Gap

CI[\CI —Checks SGap [mazsk] [link]
Dialog o : :
B Agzert that the input signal iz lezs than [or optionally equal to] a static lower bound or
ox areater than [or optionally equal ta) a static upper bound.
—Parameters
|lpper bound:
fim

¥ Inclusive upper bound

Lower bound;

o

M Inclusive lower bound

V¥ Enable aszertion

Simulation callback when azsertion failz [optional]:

¥ Stop simulation when assertion Fails

[T Output aszertion signal

Select icon type: | graphic LI

ok Cancel Help | Amply |

Upper bound
Upper bound of the gap in the input signal’s range of amplitudes.

Inclusive upper bound
If checked, this option specifies that the gap includes the upper
bound.

Lower bound
Lower bound of the gap in the input signal’s range of amplitudes.

2-76

Check Static Gap

Inclusive lower bound
If checked, this option specifies that the gap includes the lower
bound.

Enable assertion
Unchecking this option disables the Check Static Gap block, that
is, causes the model to behave as if the block did not exist. The
Model Verification block enabling setting under Debugging
on the Data Validity diagnostics pane of the Configuration
Parameters dialog box allows you to enable or disable all model
verification blocks in a model, including Check Static Gap blocks,
regardless of the setting of this option.

Simulation callback when assertion fails
An M-expression to be evaluated when the assertion fails.

Stop simulation when assertion fails
If checked, this option causes the Check Static Gap block to halt
the simulation when the block’s output is zero and display an error
message in the Simulation Diagnostics viewer. Otherwise, the
block displays a warning message in the MATLAB Command
Window and continues the simulation.

Output assertion signal
If checked, this option causes the Check Static Gap block to output
a Boolean signal that is true (1) at each time step if the assertion
succeeds and false (0) if the assertion fails. The data type of the
output signal is Boolean if you have selected the Implement
logic signals as boolean data option on the Simulation
and code generation optimization pane of the Configuration
Parameters dialog box. Otherwise the data type of the output
signal is double.

Select icon type
Type of icon used to display this block in a block diagram: either
graphic or text. The graphic option displays a graphical
representation of the assertion condition on the icon. The text
option displays a mathematical expression that represents
the assertion condition. If the icon is too small to display the

2-77

Check Static Gap

expression, the text icon displays an exclamation point. To see the
expression, enlarge the block.

Characteristics pjrect Feedthrough No
Sample Time Inherited from driving block
Scalar Expansion No
Dimensionalized Yes
Zero Crossing No

2-78

Check Static Lower Bound

Purpose

Library

Description

&

WAV

+—

Data Type
Support

Check that signal is greater than (or optionally equal to) static lower
bound

Model Verification

The Check Static Lower Bound block checks that each element of the
input signal is greater than (or optionally equal to) a specified lower
bound at the current time step. The block’s parameter dialog box allows
you to specify the value of the lower bound and whether the lower
bound is inclusive. If the verification condition is true, the block does
nothing. If not, the block halts the simulation, by default, and displays
an error message.

The Check Static Lower Bound block and its companion blocks in

the Model Verification library are intended to facilitate creation of
self-validating models. For example, you can use model verification
blocks to test that signals do not exceed specified limits during
simulation. When you are satisfied that a model is correct, you can
turn error checking off by disabling the verification blocks. You do not
have to physically remove them from the model. If you need to modify
a model, you can temporarily turn the verification blocks back on to
ensure that your changes do not break the model.

The Check Static Lower Bound block accepts input signals of any
dimensions and of any data type supported by Simulink.

For a discussion on the data types supported by Simulink, see “Data
Types Supported by Simulink” in the “Working with Data” chapter of
the Using Simulink documentation.

2-79

Check Static Lower Bound

Parameters E! Block Parameters: Check Static Lower Bound EH

and : ,
N —LChecks_Skin [maszk] [link]
Dialog o , _
Box Agzert that the input signal iz greater than [or optionally equal to] a static lower bound.

—Parameters
Lowser bound:

IE

¥ Inclusive boundany

¥ Enable assertion

Simulation callback when azzertion failz [optional]:

¥ Stop zimulation when assertion Fail

[T Output assertion signal

Select icon type: | graphic LI

Ok Cancel Help | Apply |

Lower bound
Lower bound on the range of amplitudes that the input signal

can have.

Inclusive boundary
Checking this option makes the range of valid input amplitudes

include the lower bound.

Enable assertion
Unchecking this option disables the Check Static Lower Bound
block, that is, causes the model to behave as if the block did
not exist. The Model Verification block enabling setting
under Debugging on the Data Validity diagnostics pane of the
Configuration Parameters dialog box allows you to enable or

2-80

Check Static Lower Bound

disable all model verification blocks in a model, including Check
Static Lower Bound blocks, regardless of the setting of this option.

Simulation callback when assertion fails
An M-expression to be evaluated when the assertion fails.

Stop simulation when assertion fails
If checked, this option causes the Check Static Lower Bound
block to halt the simulation when the block’s output is zero and
display an error message in the Simulation Diagnostics viewer.
Otherwise, the block displays a warning message in the MATLAB
Command Window and continues the simulation.

Output assertion signal
If checked, this option causes the Check Static Lower Bound block
to output a Boolean signal that is true (1) at each time step if
the assertion succeeds and false (0) if the assertion fails. The
data type of the output signal is Boolean if you have selected
the Implement logic signals as boolean data option on the
Simulation and code generation optimization pane of the
Configuration Parameters dialog box. Otherwise the data type
of the output signal is double.

Select icon type
Type of icon used to display this block in a block diagram: either
graphic or text. The graphic option displays a graphical
representation of the assertion condition on the icon. The text
option displays a mathematical expression that represents
the assertion condition. If the icon is too small to display the
expression, the text icon displays an exclamation point. To see the
expression, enlarge the block.

Characteristics pirect Feedthrough No
Sample Time Inherited from driving block
Scalar Expansion No

2-81

Check Static Lower Bound

Dimensionalized Yes

Zero Crossing No

2-82

Check Static Range

Purpose
Library

Description

f

AWAWAWS

T

Data Type
Support

Check that signal falls inside fixed range of amplitudes
Model Verification

The Check Static Range block checks that each element of the input
signal falls inside the same range of amplitudes at each time step. The
block’s parameter dialog box allows you to specify the upper and lower
bounds of the valid amplitude range and whether the range includes
the bounds. If the verification condition is true, the block does nothing.
If not, the block halts the simulation, by default, and displays an error
message.

The Check Static Range block and its companion blocks in the Model
Verification library are intended to facilitate creation of self-validating
models. For example, you can use model verification blocks to test
that signals do not exceed specified limits during simulation. When
you are satisfied that a model is correct, you can turn error checking
off by disabling the verification blocks. You do not have to physically
remove them from the model. If you need to modify a model, you can
temporarily turn the verification blocks back on to ensure that your
changes do not break the model.

The Check Static Range block accepts input signals of any dimensions
and of any data type supported by Simulink.

For a discussion on the data types supported by Simulink, see “Data
Types Supported by Simulink” in the “Working with Data” chapter of
the Using Simulink documentation.

2-83

Check Static Range

2-84

Parameters
and

Dialog

Box

[=1Block Parameters: Check Static Range

—LChecks S5Fange [mazk] [link]

Bgzert that the input signal lies between a static lower and upper bound or optionally
equalz either bound.

—Parameterz

|lpper bound:
i

¥ Inclusive upper bound

Lower bound;

o

M Inclusive lower bound

V¥ Enable aszertion

Simulation callback when azsertion failz [optional]:

¥ Stop simulation when assertion Fails

[T Output aszertion signal

Select icon type: | graphic LI

ok Cancel Help | Amply |

Upper bound
Upper bound of the range of valid input signal amplitudes.

Inclusive upper bound
Checking this option specifies that the valid signal range includes
the upper bound.

Lower bound
Lower bound of the range of valid input signal amplitudes.

Check Static Range

Inclusive lower bound
Checking this option specifies that the valid signal range includes
the lower bound.

Enable assertion

Unchecking this option disables the Check Static Range block,
that is, causes the model to behave as if the block did not
exist. The Model Verification block enabling setting under
Debugging on the Data Validity diagnostics pane of the
Configuration Parameters dialog box allows you to enable or
disable all model verification blocks in a model, including Check
Static Range blocks, regardless of the setting of this option.

Simulation callback when assertion fails
An M-expression to be evaluated when the assertion fails.

Stop simulation when assertion fails
If checked, this option causes the Check Static Range block to
halt the simulation when the block’s output is zero and display
an error message in the Simulation Diagnostics viewer.
Otherwise, the block displays a warning message in the MATLAB
Command Window and continues the simulation.

Output assertion signal
If checked, this option causes the Check Static Range block to
output a Boolean signal that is true (1) at each time step if the
assertion succeeds and false (0) if the assertion fails. The data
type of the output signal is Boolean if you have selected the
Implement logic signals as boolean data option on the
Simulation and code generation optimization pane of the
Configuration Parameters dialog box. Otherwise the data type
of the output signal is double.

Select icon type
Type of icon used to display this block in a block diagram: either
graphic or text. The graphic option displays a graphical
representation of the assertion condition on the icon. The text
option displays a mathematical expression that represents
the assertion condition. If the icon is too small to display the

2-85

Check Static Range

expression, the text icon displays an exclamation point. To see the
expression, enlarge the block.

Characteristics pjrect Feedthrough No
Sample Time Inherited from driving block
Scalar Expansion No
Dimensionalized Yes
Zero Crossing No

2-86

Check Static Upper Bound

Purpose
Library

Description

&

 EEE—_—

Data Type
Support

Check that signal is less than (or optionally equal to) static upper bound
Model Verification

The Check Static Upper Bound block checks that each element of the
input signal is less than (or optionally equal to) a specified upper bound
at the current time step. The block’s parameter dialog box allows you to
specify the value of the upper bound and whether the bound is inclusive.
If the verification condition is true, the block does nothing. If not, the
block halts the simulation, by default, and displays an error message.

The Check Static Upper Bound block and its companion blocks in

the Model Verification library are intended to facilitate creation of
self-validating models. For example, you can use model verification
blocks to test that signals do not exceed specified limits during
simulation. When you are satisfied that a model is correct, you can
turn error checking off by disabling the verification blocks. You do not
have to physically remove them from the model. If you need to modify
a model, you can temporarily turn the verification blocks back on to
ensure that your changes do not break the model.

The Check Static Upper Bound block accepts input signals of any
dimensions and of any data type supported by Simulink.

For a discussion on the data types supported by Simulink, see “Data
Types Supported by Simulink” in the “Working with Data” chapter of
the Using Simulink documentation.

2-87

Check Static Upper Bound

Parameters

d E! Block Parameters: Check Static Upper Bound EH
an !
N —LChecks_Skax [mask] [link]
Dialog o , _
Box Agzert that the input signal is less than [or optionally equal to] a static upper bound.
—Parameters
|lpper bound:
T

¥ Inclusive boundany
¥ Enable aszertion
Simulation callback when azzertion failz [optional]:

¥ Stop zimulation when aszertion Fails

[Output assertion signal

Select icon type: | graphic LI

ok Cancel Help | Smply |

Upper bound
Upper bound on the range of amplitudes that the input signal
can have.

Inclusive boundary
Checking this option makes the range of valid input amplitudes
include the upper bound.

Enable assertion
Unchecking this option disables the Check Static Upper Bound
block, that is, causes the model to behave as if the block did
not exist. The Model Verification block enabling setting
under Debugging on the Data Validity diagnostics pane of the
Configuration Parameters dialog box allows you to enable or

2-88

Check Static Upper Bound
|

disable all model verification blocks in a model, including Check
Static Upper Bound blocks, regardless of the setting of this option.

Simulation callback when assertion fails
An M-expression to be evaluated when the assertion fails.

Stop simulation when assertion fails
If checked, this option causes the Check Static Upper Bound
block to halt the simulation when the block’s output is zero and
display an error message in the Simulation Diagnostics viewer.
Otherwise, the block displays a warning message in the MATLAB
Command Window and continues the simulation.

Output assertion signal
If checked, this option causes the Check Static Upper Bound block
to output a Boolean signal that is true (1) at each time step if
the assertion succeeds and false (0) if the assertion fails. The
data type of the output signal is Boolean if you have selected
the Implement logic signals as boolean data option on the
Simulation and code generation optimization pane of the
Configuration Parameters dialog box. Otherwise the data type
of the output signal is double.

Select icon type
Type of icon used to display this block in a block diagram: either
graphic or text. The graphic option displays a graphical
representation of the assertion condition on the icon. The text
option displays a mathematical expression that represents
the assertion condition. If the icon is too small to display the
expression, the text icon displays an exclamation point. To see the
expression, enlarge the block.

Characteristics pirect Feedthrough No
Sample Time Inherited from driving block
Scalar Expansion No

2-89

Check Static Upper Bound

Dimensionalized Yes

Zero Crossing No

2-90

Chirp Signal

Purpose
Library

Description

"l

Data Type
Support

Generate sine wave with increasing frequency
Sources

The Chirp Signal block generates a sine wave whose frequency increases
at a linear rate with time. You can use this block for spectral analysis of
nonlinear systems. The block generates a scalar or vector output.

The parameters, Initial frequency, Target time, and Frequency at
target time, determine the block’s output. You can specify any or all
of these variables as scalars or arrays. All the parameters specified

as arrays must have the same dimensions. The block expands scalar
parameters to have the same dimensions as the array parameters. The
block output has the same dimensions as the parameters unless you
select the Interpret vector parameters as 1-D option. If you select
this option and the parameters are row or column vectors, the block
outputs a vector (1-D array) signal.

The Chirp Signal block outputs a real-valued signal of type double.

2-91

Chirp Signal

Parameters
and

Dialog

Box

2-92

=) Block Parameters: Chirp Signal |
—chirp [mazk] [link]

Cutput a linear chirp signal [zine wave whoze frequency varies
[irearly with time].

—Parameterz

[rnitial frequency [Hz]:
01

T arget time [zecz];
{100

Frequency at target time [Hz]:
[1

¥ |rterpret wectors parameters az 1-0

ok, Cancel Help

Opening this dialog box causes a running simulation to pause. See
"Changing Source Block Parameters" in the “Working with Blocks”
chapter of the Using Simulink documentation.

Initial frequency
The initial frequency of the signal, specified as a scalar or matrix
value. The default is 0.1 Hz.

Target time
The time at which the frequency reaches the Frequency at
target time parameter value, a scalar or matrix value. The
frequency continues to change at the same rate after this time.
The default is 100 seconds.

Frequency at target time
The frequency of the signal at the target time, a scalar or matrix
value. The default is 1 Hz.

Chirp Signal

Interpret vector parameters as 1-D
If selected, column or row matrix values for the Initial
frequency, Target time, and Frequency at target time
parameters result in a vector output whose elements are the
elements of the row or column. See “Determining the Output
Dimensions of Source Blocks” in the “Working with Signals”
chapter of the Using Simulink documentation.

Characteristics sample Time

Continuous

Scalar Expansion

Yes, of parameters

Dimensionalized

Yes

Zero Crossing

No

2-93

Clock

Purpose Display and provide simulation time

I.ibrclry Sources

Desc ription The Clock block outputs the current simulation time at each simulation

@ step. This block is useful for other blocks that need the simulation time.
When you need the current time within a discrete system, use the

Digital Clock block.

Data Type The Clock block outputs a real-valued signal of type double.
Support
Parameters =] Block Parameters: Clock x|
and

. —Clock
Dialog LG

Output the current sirmulation time.

Box

—Parameterz

Decimatian:
10

ok Cancel Help

Display time
Use the Display time check box to display the current simulation
time inside the Clock icon.

Decimation
The Decimation parameter value is the increment at which
the clock’s icon is updated when Display timeis checked; it can
be any positive integer. For example, if the decimation is 1000,

2-94

Clock

then, for a fixed integration step of 1 millisecond, the clock’s icon

updates at 1 second, 2 seconds, and so on.

Characteristics sampie Time

Continuous
Scalar Expansion N/A
Dimensionalized No
Zero Crossing No

2-95

Combinatorial Logic

2-96

Purpose
Library

Description

[11]

Implement truth table
Logic and Bit Operations

The Combinatorial Logic block implements a standard truth table for
modeling programmable logic arrays (PLAs), logic circuits, decision
tables, and other Boolean expressions. You can use this block in
conjunction with Memory blocks to implement finite-state machines
or flip-flops.

You specify a matrix that defines all possible block outputs as the
Truth table parameter. Each row of the matrix contains the output
for a different combination of input elements. You must specify outputs
for every combination of inputs. The number of columns is the number
of block outputs.

The relationship between the number of inputs and the number of
rows is

number of rows = 2 *~ (number of inputs)

Simulink returns a row of the matrix by computing the row’s index from
the input vector elements. Simulink computes the index by building a
binary number where input vector elements having zero values are 0
and elements having nonzero values are 1, then adding 1 to the result.
For an input vector, u, of m elements,

row index = 1 + u(m)*2° + u(m-1)*2! + ... + u(1)*2™!
Example of Two-Input AND Function

This example builds a two-input AND function, which returns 1 when
both input elements are 1, and 0 otherwise. To implement this function,
specify the Truth table parameter value as [0; 0; 0; 1]. The portion
of the model that provides the inputs to and the output from the
Combinatorial Logic block might look like this.

Combinatorial Logic

Input 1

—
Input 2 bz M‘.— [] | Output
—
P e Cambinatarial
Lagic

The following table indicates the combination of inputs that generate
each output. The input signal labeled "Input 1" corresponds to the
column in the table labeled Input 1. Similarly, the input signal "Input
2" corresponds to the column with the same name. The combination of
these values determines the row of the Output column of the table that
is passed as block output.

For example, if the input vector is [1 0], the input references the third
row:

(271*1 + 1)

The output value is 0.

Row Input 1 Input 2 Output
1 0 0 0
2 0 1 0
3 1 0 0
4 1 1 1

Example of Circuit

This sample circuit has three inputs: the two bits (a and b) to be
summed and a carry-in bit (¢). It has two outputs: the carry-out bit (¢’)
and the sum bit (s). Here are the truth table and the outputs associated
with each combination of input values for this circuit.

2-97

Combinatorial Logic

2-98

Data Type
Support

Inputs Outputs

R R|Rr|lRr|lo|lo|lo|o
R m|lo|lolr|kr|lo|lo
R|lo|lr|lo|r|lo|r|o
HlR|Rr|lolr|lo|lo|lo
Rlo|lo|lr|lo|r|r|o

To implement this adder with the Combinatorial Logic block, you enter
the 8-by-2 matrix formed by columns ¢’ and s as the Truth table
parameter.

You can also implement sequential circuits (that is, circuits with states)
with the Combinatorial Logic block by including an additional input
for the state of the block and feeding the output of the block back into
this state input.

The type of signals accepted by a Combinatorial Logic block depends
on whether you selected the Boolean logic signals option (see “Enabling
Strict Boolean Type Checking” in the “Working with Data” chapter of
the Using Simulink documentation). If this option is enabled, the block
accepts real signals of type Boolean or double. The truth table can
have Boolean values (0 or 1) of any data type. If the table contains
non-Boolean values, the table’s data type must be double.

The type of the output is the same as that of the input except that
the block outputs double if the input is Boolean and the truth table
contains non-Boolean values.

If Boolean compatibility mode is disabled, the Combinatorial Logic
block accepts only signals of type Boolean. The block outputs double if

Combinatorial Logic

the truth table contains non-Boolean values of type double. Otherwise,
the output is Boolean.

Parameters E! Block Parameters: Combinatorial Logic EH

G!\d —Combinatarial Logic
Dialog

B Look up the elements of the input vector [freated as boolean wvalues] in the tuth table
ox and outputs the corresponding row of the 'Truth table' parameter. The input zide of the
truth table iz implicit.

—Parameterz
Truth table:
[Doo1010 0010 0100 1)

Sample time [-1 far inkerited]:

K

ok Cancel Help Ay

Truth table
The matrix of outputs. Each column corresponds to an element
of the output vector and each row corresponds to a row of the
truth table.

Sample time (-1 for inherited)
Specify the time interval between samples. To inherit the sample
time, set this parameter to -1. See “Specifying Sample Time”
in the “How Simulink Works” chapter of the Using Simulink

documentation.
Characteristics pirect Feedthrough Yes
Sample Time Inherited from driving block

2-99

Combinatorial Logic

Scalar Expansion No

Dimensionalized Yes; the output width is the number of
columns of the Truth table parameter

Zero Crossing No

2-100

Compare To Constant

Purpose
Library

Description

<=3 p

Data Type
Support

Determine how signal compares to specified constant
Logic and Bit Operations

The Compare To Constant block compares an input signal to a constant.
Specify the constant in the Constant value parameter. Specify how the
input is compared to the constant value with the Operator parameter.
The Operator parameter can have the following values:

e == Determine whether the input is equal to the specified constant.
® ~= — Determine whether the input is not equal to the specified
constant.

® < — Determine whether the input is less than the specified constant.

e <= — Determine whether the input is less than or equal to the
specified constant.

® > Determine whether the input is greater than the specified
constant.

® >= — Determine whether the input is greater than or equal to the
specified constant.

The output is 0 if the comparison is false, and 1 if it is true.

The Compare To Constant block accepts inputs of any data type
supported by Simulink, including fixed-point data types. The block
output is uint8 or Boolean as specified by the Output data type
mode parameter.

For a discussion on the data types supported by Simulink, see “Data
Types Supported by Simulink” in the “Working with Data” chapter of
the Using Simulink documentation.

2-101

Compare To Constant

Pa:lameters [Z1Block Parameters: Compare To Constant x|
CIE\ —LCompare To Constant [mazk] [link]
Dialog : :
Dretermine how a signal compares to a constant.
Box
—Parameters
EEEEEEE s s
Conztant walue:
|20
Output data bppe mode; I Lints LI
[~ Enable zero crossing detection
ok Cancel Help Apply
Operator
Specify how the input is compared to the constant value, as
discussed in Description.
Constant value
Specify the constant value to which the input is compared.
Output data type mode
Specify the data type of the output, uint8 or boolean.
Enable zero crossing detection
Select to enable zero-crossing detection. For more information, see
“Zero-Crossing Detection” in the “How Simulink Works” chapter
of the Using Simulink documentation.
Characteristics pirect Feedthrough Yes
Scalar Expansion Yes
Zero Crossing Yes, if enabled.

2-102

Compare To Constant

See Also Compare To Zero

2-103

Compare To Zero

Purpose
Library

Description

"<=0Pp

Data Type
Support

2-104

Determine how signal compares to zero
Logic and Bit Operations

The Compare To Zero block compares an input signal to zero. Specify
how the input is compared to zero with the Operator parameter. The
Operator parameter can have the following values:

e == Determine whether the input is equal to zero.

® ~=_— Determine whether the input is not equal to zero.

® < — Determine whether the input is less than zero.

® <= — Determine whether the input is less than or equal to zero.

® > Determine whether the input is greater than zero.

® >= — Determine whether the input is greater than or equal to zero.

The output is 0 if the comparison is false, and 1 if it is true.

The Compare To Zero block accepts inputs of any data type supported
by Simulink, including fixed-point data types. The block output is uint8
or Boolean as specified by the Output data type mode parameter.

For a discussion on the data types supported by Simulink, see “Data
Types Supported by Simulink” in the “Working with Data” chapter of
the Using Simulink documentation.

Compare To Zero

Parameters

d [Z1Block Parameters: Compare To Zero _ x|
CIE\ —LCompare To Zera [mazk] [link]
Dialog : :
Determine how a signal compares to zera.
Box
—Parameters
O perator: | g= ll
Output data tppe mode: | wint3 LI
[~ Enable zero crossing detection
ok | Comeel ||ETTHER] seeb
Operator
Specify how the input is compared to zero, as discussed in
Description.
Output data type mode
Specify the data type of the output, uint8 or boolean.
Enable zero crossing detection
Select to enable zero-crossing detection. For more information, see
“Zero-Crossing Detection” in the “How Simulink Works” chapter
of the Using Simulink documentation.
Characteristics pjrect Feedthrough Yes
Scalar Expansion Yes
Zero Crossing Yes, if enabled.
See Also Compare To Constant

2-105

Complex to Magnitude-Angle

Purpose Compute magnitude and/or phase angle of complex signal
Librclry Math Operations
Description The Complex to Magnitude-Angle block accepts a complex-valued signal
of type double. It outputs the magnitude and/or phase angle of the
Ul input signal, depending on the setting of the Output parameter. The
C-ful outputs are real values of type double. The input can be an array of

complex signals, in which case the output signals are also arrays. The
magnitude signal array contains the magnitudes of the corresponding
complex input elements. The angle output similarly contains the angles
of the input elements.

Data Type See the preceding description.
Support
Pa;ameters E: Block Parameters: Complex to Magnitude-Angle
an
N —Complex to Magnitude-tngle
Dialog

Compute magnitude anddor radian phase anale of the inpuk.
BOX p g p [u] p

—Parameters

= | A agnitude and angle

Sample time [-1 far inkerited]:
-1

ok Cancel Help Sl

Output
Determines the output of this block. Choose from the following
values: Magnitude and angle (outputs the input signal’s
magnitude and phase angle in radians), Magnitude (outputs the

2-106

Complex to Magnitude-Angle
|

input’s magnitude), Angle (outputs the input’s phase angle in
radians).

Sample time (-1 for inherited)
Specify the time interval between samples. To inherit the sample
time, set this parameter to -1. See “Specifying Sample Time”
in the “How Simulink Works” chapter of the Using Simulink

documentation.
Characteristics pirect Feedthrough Yes
Sample Time Inherited from driving block
Scalar Expansion No
Dimensionalized Yes
Zero Crossing No

2-107

Complex to Real-lmag

Purpose
Library

Description

Relu) |
Tmiu)

T

Data Type
Support

Parameters
and

Dialog

Box

2-108

Output real and imaginary parts of complex input signal
Math Operations

The Complex to Real-Imag block accepts a complex-valued signal of any
data type supported by Simulink, including fixed-point data types. It
outputs the real and/or imaginary part of the input signal, depending on
the setting of the Output parameter. The real outputs are of the same
data type as the complex input. The input can be an array (vector or
matrix) of complex signals, in which case the output signals are arrays
of the same dimensions. The real array contains the real parts of the
corresponding complex input elements. The imaginary output similarly
contains the imaginary parts of the input elements.

See the preceding description. For a discussion on the data types
supported by Simulink, see “Data Types Supported by Simulink” in the
“Working with Data” chapter of the Using Simulink documentation.

E: Block Parameters: Complex to Real-Imag [2|

—LComplex to Beal-lmag

Clutput the real and/or imaginary components of the input,

—Parameterz

Cutput: | (MR E

Sample time [-1 far inkerited);
-1

k. Cancel Help Apply

Complex to Real-lmag

Output

Determines the output of this block. Choose from the following
values: Real and imag (outputs the input signal’s real and
imaginary parts), Real (outputs the input’s real part), Imag
(outputs the input’s imaginary part).

Sample time (-1 for inherited)
Specify the time interval between samples. To inherit the sample
time, set this parameter to -1. See “Specifying Sample Time”
in the “How Simulink Works” chapter of the Using Simulink

documentation.

Characteristics pjrect Feedthrough

Yes

Sample Time

Inherited from driving block

Scalar Expansion No
Dimensionalized Yes
Zero Crossing No

2-109

Concatenate

Purpose

Library

Description

2-110

i

L]

T

Concatenate input signals of same data type to create contiguous
output signal

Math Operations

The Concatenate block concatenates the signals at its inputs to create
an output signal whose elements reside in contiguous locations in
memory. This block operates in either vector or matrix concatenation
mode, depending on the setting of its Mode parameter. In either case,
the inputs are concatenated from the top to bottom, or left to right,
input ports

Vector Mode

In vector mode, all input signals must be either vectors or row vectors
[1xM matrices] or column vectors [Mx1 matrices] or a combination of
vectors and either row or column vectors. The output is a vector if all
inputs are vectors.

The output is a row or column vector if any of the inputs are row or
column vectors, respectively.

Matrix Mode

Matrix mode accepts vectors and matrices of any size. It treats vector
inputs as column vectors. The output is always a matrix. The block’s
Mode parameter allows you to choose either horizontal or vertical

matrix concatenation. Horizontal matrix concatenation places the input
matrices side-by-side to create the output matrix, e.g.,

Concatenate

=

— 2 1| 7| 7]
— | 7| al 7]

. Horizontal Matrix Display

Concatenate

Data Type
Support

Vertical matrix concatenation stacks the input matrices on top of each
other to create the output matrix, e.g.,

1z [z
[s &)
| o =
A [2:2) [3] | Ell 4]
ﬁ
[7x2) — |] £]
o Wertical Matrix
5 & 11%) Concatenate Display
B

For horizontal concatenation, the input matrices must have the same
column dimension; for vertical concatenation, the same row dimension.

Accepts signals of any data type supported by Simulink. All inputs
must be of the same data type. Outputs the same data type as the input.

2-111

Concatenate

Parameters
and

Dialog

Box

2-112

=1 Function Block Parameters: Vector Concatenate

—LConcatenate

Select wector or matmnx mode.

rezpechively.

mnatris.

Concatenate input zignals of the zame data type to create a contiguous output signal,

It wectar made, all input signals must be either vectars or one-row [1xk] matrices ar
one-coluri [M=1] matrices or a combination of vectars and either one-row matrices or
one-column matricez. The output is a wector if all inputs are vectors. The output iz a
ane-row of one-column matrix if any of the inputs are one-raw or one-column matrices,

b atrix mode treats wector inputz ag one-column matrices. The output iz alwans a

—Parameters

Murnber af inputz:

|2

Mu:u:le:l Yector concatenation

Ok

Cancel

....................................

Number of inputs

Number of inputs on this block.

Mode

Specifies the type of concatenation performed by this block.

Options are:

® Vector concatenation (see “Vector Mode” on page 2-110)

® Horizontal matrix concatenation (see “Matrix Mode” on

page 2-110)

e Vertical matrix concatenation (see “Matrix Mode” on page

2-110)

Concatenate

Characteristics pirect Feedthrough Yes
Sample Time Inherited from driving block
Scalar Expansion No
Dimensionalized Yes
Zero Crossing No

2-113

Configurable Subsystem

Purpose

Library

Description

Template

2-114

Represent any block selected from user-specified library of blocks
Ports & Subsystems

The Configurable Subsystem block represents one of a set of blocks
contained in a specified library of blocks. The block’s context menu lets
you choose which block the configurable subsystem represents.

Configurable Subsystem blocks simplify creation of models that
represent families of designs. For example, suppose that you want to
model an automobile that offers a choice of engines. To model such a
design, you would first create a library of models of the engine types
available with the car. You would then use a Configurable Subsystem
block in your car model to represent the choice of engines. To model a
particular variant of the basic car design, a user need only choose the
engine type, using the configurable engine block’s dialog.

To create a configurable subsystem in a model, you must first create a
library containing a master configurable subsystem and the blocks that
it represents. You can then create configurable instances of the master
subsystem by dragging copies of the master subsystem from the library
and dropping them into models.

You can add any type of block to a master configurable subsystem
library. Simulink derives the port names for the configurable subsystem
by making a unique list from the port names of all the choices. Note
that Simulink uses default port names for non-subsystem block choices.

Note that Simulink does not allow you to break library links in a
configurable subsystem because Simulink needs the links to reconfigure
the subsystem when you choose a new configuration. Breaking links
would be useful only if you never intended to reconfigure the subsystem,
in which case you could simply replace the configurable subsystem
with a nonconfigurable subsystem that implements the permanent
configuration.

Creating a Master Configurable Subsystem

To create a master configurable subsystem:

Configurable Subsystem

1 Create a library of blocks representing the various configurations
of the configurable subsystem.

2 Save the library.
3 Create an instance of the Configurable Subsystem block in the library.

To do this, drag a copy of the Configurable Subsystem block from the
Simulink Ports & Subsystems library into the library you created in
the preceding step.

4 Display the Configurable Subsystem block’s dialog by double-clicking
it. The dialog displays a list of the other blocks in the library.

5 Under List of block choices in the dialog box, select the blocks that
represent the various configurations of the configurable subsystems
you are creating.

6 Click the OK button to apply the changes and close the dialog box.

7 Select Block Choice from the Configurable Subsystem block’s
context menu.

The context menu displays a submenu listing the blocks that the
subsystem can represent.

8 Select the block that you want the subsystem to represent by default.

9 Save the library.

Note If you add or remove blocks from a library, you must recreate
any Configurable Subsystem blocks that use the library.

If you modify a library block that is the default block choice for a
configurable subsystem, the change does not immediately propagate to
the configurable subsystem. To propagate this change, do one of the
following:

2-115

Configurable Subsystem

® Change the default block choice to another block in the subsystem,
then change the default block choice back to the original block.

® Recreate the configurable subsystem block, including the selection of
the updated block as the default block choice.
Creating an Instance of a Configurable Subsystem

To create an instance of a configurable subsystem in a model,

1 Open the library containing the master configurable subsystem.
2 Drag a copy of the master into the model.
3 Select Block Choice from the copy’s context menu.

4 Select the block that you want the configurable subsystem to
represent.

The instance of the configurable system displays the icon and parameter
dialog box of the block that it represents.

Setting Instance Block Parameters

As with other blocks, you can use the parameter dialog box of a
configurable subsystem instance to set the instance’s parameters
interactively and the set _param command to set the parameters
from the MATLAB command line or in an M-file program. If you use
set_param, you must specify the full path name of the configurable
subsystem’s current block choice as the first argument of set_param,

e.g.,
curr_choice = get_param('mymod/myconfigsys', 'BlockChoice');
curr_choice = ['mymod/myconfigsys/' curr_choice];
set_param(curr_choice, 'MaskValues', ...);

Mapping 1/O Ports

A configurable subsystem displays a set of input and output ports
corresponding to input and output ports in the selected library.

2-116

Configurable Subsystem

Simulink uses the following rules to map library ports to Configurable
Subsystem block ports:

® Map each uniquely named input/output port in the library to a
separate input/output port of the same name on the Configurable
Subsystem block.

e Map all identically named input/output ports in the library to the
same input/output ports on the Configurable Subsystem block.

¢ Terminate any input/output port not used by the currently selected
library block with a Terminator/Ground block.

This mapping allows a user to change the library block represented by a
Configurable Subsystem block without having to rewire connections to
the Configurable Subsystem block.

For example, suppose that a library contains two blocks A and B and
that block A has input ports labeled a, b, and ¢ and an output port
labeled d and that block B has input ports labeled a and b and an
output port labeled e. A Configurable Subsystem block based on this
library would have three input ports labeled a, b, and ¢, respectively,
and two output ports labeled d and e, respectively, as illustrated in
the following figure.

a a a dk
bodp ofp =F| —— I8 [
5 B Configumble

A Subsystem

In this example, port a on the Configurable Subsystem block connects to
port a of the selected library block no matter which block is selected. On
the other hand, port ¢ on the Configurable Subsystem block functions
only if library block A is selected. Otherwise, it simply terminates.

2-117

Configurable Subsystem

Data Type
Support

Parameters
and

Dialog

Box

2-118

Note A Configurable Subsystem block does not provide ports that
correspond to non-I/O ports, such as the trigger and enable ports on
triggered and enabled subsystems. Thus, you cannot use a Configurable
Subsystem block directly to represent blocks that have such ports. You
can do so indirectly, however, by wrapping such blocks in subsystem
blocks that have input or output ports connected to the non-I/O ports.

The Configurable Subsystem block accepts and outputs signals of the
same types as are accepted or output by the block that it currently
represents. The data types may be any supported by Simulink,
including fixed-point data types.

«): Configuration dialog : Configurable Subsystem - |D|ﬂ
rListof block choices——————————————Portnames
Block name Member Inpors Outports |

Pulse Generator

Randorm Mumber I 4

Sine \Wave 2 ;l

5
oK Cancel Help Apply

List of block choices
Select the blocks you want to include as members of the
configurable subsystem. You can include user-defined subsystems
as blocks.

Configurable Subsystem

Port information
Lists of input and output ports of member blocks. In the case of
multiports, you can rearrange selected port positions by clicking
the Up and Down buttons.

Characteristics A Configurable Subsystem block has the characteristics of the block
that it currently represents. Double-clicking the block opens the dialog
box for the block that it currently represents.

2-119

Constant

Purpose
Library

Description

Data Type
Support

2-120

Generate constant value
Sources

The Constant block generates a real or complex constant value. The
block generates scalar (one-element array), vector (1-D array), or matrix
(2-D array) output, depending on the dimensionality of the Constant
value parameter and the setting of the Interpret vector parameters
as 1-D parameter. Also, the block can generate either a sample-based
or frame-based signal, depending on the setting of the Sampling mode
parameter.

The output of the block has the same dimensions and elements as the
Constant value parameter. If you specify a vector for this parameter,
and you want the block to interpret it as a vector (i.e., a 1-D array),
select the Interpret vector parameters as 1-D parameter; otherwise,
the block treats the Constant value parameter as a matrix (i.e., a
2-D array).

By default, the Constant block outputs a signal whose data type
and complexity are the same as that of the block’s Constant value
parameter. However, you can specify the output to be any data type
supported by Simulink, including fixed-point data types.

For a discussion on the data types supported by Simulink, see “Data
Types Supported by Simulink” in the “Working with Data” chapter of
the Using Simulink documentation.

Constant

Parameters The Main pane of the Constant block dialog appears as follows:

and

Dialog [Z1source Block Parameters: Constant X|
Box Constarit

Output the conztant specified by the 'Conztant walue' parameter. |f 'Conzstant value' iz
a wector and Interpret vector parameters az 1-D' iz on, treat the constant value az a
1-0r array. Othenwize, output a matrix with the same dimensions as the constant
value.

S ET ISignaIData Types

Conztant value:

¥ Interpret vector parameters az 1-D

Sampling mode: | Sample bazed ;I

Sample time;

inf

k. Cancel | Help |

Opening this dialog box causes a running simulation to pause. See
“Changing Source Block Parameters During Simulation” in the
“Working with Blocks” chapter of the Using Simulink documentation.

Constant value
Specify the constant value output by the block. You can enter any
MATLAB expression in this field, including the Boolean keywords,
true or false, that evaluates to a matrix value. The Constant
value parameter is converted from its data type to the specified
output data type offline using round-to-nearest and saturation.

Interpret vector parameters as 1-D
If you select this check box, the Constant block outputs a vector
of length N if the Constant value parameter evaluates to an
N-element row or column vector, i.e., a matrix of dimension 1xN

2-121

Constant

or Nx1. If you uncheck this option, you can interact with the
Sampling mode parameter. See “Determining the Output
Dimensions of Source Blocks” in the “Working with Signals”
chapter of the Using Simulink documentation.

Sample time
Specify the interval between times that the Constant block’s
output can change during simulation (e.g., as a result of tuning
its Constant value parameter). The default sample time is inf,
i.e., the block’s output can never change. This setting speeds
simulation and generated code by avoiding the need to recompute
the block’s output. See “Specifying Sample Time” in the “How
Simulink Works” chapter of the Using Simulink documentation.

Sampling mode
Specify whether the output signal is Sample based or Frame
based. For more information about these types of signals, see
“Sample-Based Signals” and “Frame-Based Signals” in the Signal
Processing Blockset User’s Guide.

Note To generate frame-based signals, you must have the Signal
Processing Blockset installed.

The Signal Data Types pane of the Constant block dialog appears
as follows:

2-122

Constant

=] source Block Parameters: Constant X|

Constant

Output the constant specified by the Tonstant value’ parameter. f Constant value'
ig @ vector and Interpret vector parameters as 1-0'is on, treat the constant value as
a 1-0 amay. Ctherwise, output @ matrix with the same dimensions as the constant

Output data type mode: I Specify via dialog LI
Output data type (e.g. sfod18), uint{8), float{=single):

| sfix(16)

Cutput scaling mode I |Ise specified scaling ;I

Output scaling value (Slope, e.g. 279 or [Slope Bias], e.g. [1.25 3]
0

QK Cancel Help

Output data type mode
Specify how the data type of the output is designated. The

data type can be inherited through backpropagation, or can

be designated in the Constant value parameter, for example
int8(29). You can also choose a built-in data type from the list.
If you choose Specify via dialog, the following parameters

become visible.

Output data type
Specify any data type, including fixed-point data types. This

parameter is only visible you select Specify via dialog for the
Output data type mode parameter.

Output scaling mode
Specify how the scaling of the output is designated. The output

can be automatically scaled to maintain best vector-wise precision
without overflow, or you can choose to specify the scaling in the

2-123

Constant

dialog via the Output scaling value parameter. This parameter
is only visible if you select Specify via dialog for the Output
data type mode parameter.

Output scaling value
Set the output scaling using binary point-only or [Slope Bias]
scaling. This parameter is only visible if you select Specify via
dialog for the Output data type mode parameter and Use
specified scaling for the Qutput Scaling Mode parameter.

Characteristics Dpjrect Feedthrough N/A
Sample Time Specified in the Sample time parameter
Scalar Expansion No
Dimensionalized Yes
Zero Crossing No

2-124

Cosine

Purpose Implement cosine function in fixed-point using lookup table approach
that exploits quarter wave symmetry
Librclry Lookup Tables
Description The Cosine block is an implementation of the Sine and Cosine block.
cos(27pitu)

2-125

Coulomb and Viscous Friction

Purpose
Library

Description

Data Type
Support

2-126

Model discontinuity at zero, with linear gain elsewhere
Discontinuities

The Coulomb and Viscous Friction block models Coulomb (static) and
viscous (dynamic) friction. The block models a discontinuity at zero
and a linear gain otherwise. The offset corresponds to the Coulombic
friction; the gain corresponds to the viscous friction. The block is
implemented as

y = sign(u) * (Gain * abs(u) + Offset)

where y is the output, u is the input, and Gain and 0ffset are block
parameters.

The block accepts one input and generates one output. The input can be
a scalar, vector, or matrix. If using a vector or matrix input, the offset
and gain must have the same dimensions as the input or be scalars.

If using a scalar input, the output will be a scalar, vector, or matrix
based on the dimensions of the offset and gain. For example, passing

a scalar input to the block when using the default offset produces an
output vector with four elements.

The Coulomb and Viscous Friction block accepts and outputs real
signals of type double.

Coulomb and Viscous Friction

Parameters

d E! Block Parameters: Coulomb & ¥iscous Friction EHE
an
N — Coulambic and Yizcous Friction [mazk] [link]
Dialog o L : :
B A digcontinuity offzet at zero models coulomb fiction. Linear gain models viscous
ox friction.
u=gzign[x] * [Gain * abs(x] + Offzet]
—Parameters
Coulomb friction walue [Offzet):
[TEET
Coefficient of vigcous friction [Gain):
1
ak Cancel Help Spply
Coulomb friction value
The offset, applied to all input values. The defaultis [1 3 2 0].
Coefficient of viscous friction
The signal gain at nonzero input points. The default is 1.
Characteristics pjrect Feedthrough Yes
Sample Time Inherited from driving block
Scalar Expansion Yes
Dimensionalized Yes
Zero Crossing Yes, at the point where the static friction
is overcome

2-127

Counter Free-Running

Purpose

Library

Description

A

Data Type
Support

Parameters
and

Dialog

Box

2-128

Count up and overflow back to zero after maximum value possible is
reached for specified number of bits

Sources

The Counter Free-Running block counts up until the maximum possible
value, 2V - 1. is reached, where Nbits is the number of bits. Then the
counter overflows to zero, and restarts counting up. The counter is
always initialized to zero.

You can specify the number of bits with the Number of Bits parameter.
You can specify the sample time with the Sample time parameter.

The output is an unsigned integer. If you select the global doubles
override, the Counter Free-Running block does not wrap back to zero.

The Counter Free-Running block outputs an unsigned integer.

E Block Parameters: Counter Free-Running X|

— Counter Free-Running [mask] [link]

Thiz block iz a free-unning counter that averflows back o zera after it has reached
the mawinm value pozzible for the zpecified number of bitz. The count iz alwapz
initialized to zera, The output iz normally an unzigned integer with the zpecified
nurnber of bitz.

—Parameters
MHurber of Bitz
iE

Sample time:

[

ak Cancel Help

Counter Free-Running

Number of Bits
Specified number of bits.

Sample time
Specify the time interval between samples. To inherit the sample
time, set this parameter to -1. See “Specifying Sample Time”
in the “How Simulink Works” chapter of the Using Simulink

documentation.
Characteristics Sample Time Specified in the Sample time parameter
Scalar Expansion No
See Also Counter Limited

2-129

Counter Limited

Purpose
Library

Description

”?Ifl .

Data Type
Support

Parameters
and

Dialog

Box

2-130

Count up and wrap back to zero after outputting specified upper limit
Sources

The Counter Limited block counts up until the specified upper limit is
reached. Then the counter wraps back to zero, and restarts counting
up. The counter is always initialized to zero.

You can specify the upper limit with the Upper limit parameter.

You can specify the sample time with the Sample time parameter. A
Sample time of - 1 means that the sample time is inherited.

The output is an unsigned integer of 8, 16, or 32 bits, with the smallest
number of bits needed to represent the upper limit.

The Counter Limited block outputs an unsigned integer.

E! Block Parameters: Counter Limited x|
—Counter Limited [mazk] [link]

Thiz block iz a counter that wraps back to zero after it haz output the zpecified upper
limit. The count iz always initialized to zero. The output iz nommally an unzigned
integer af 3, 16, or 32 bitz. The smallest number of bits needed ta represent the
upper limit iz uzed.

—Parameterz
|Ipper limit;
|7

Sample time:

[

ok Cancel Help

Counter Limited

Upper limit
Upper limit.

Sample time
Specify the time interval between samples. To inherit the sample
time, set this parameter to -1. See “Specifying Sample Time”
in the “How Simulink Works” chapter of the Using Simulink

documentation.
Characteristics Sample Time Specified in the Sample time parameter
Scalar Expansion No
See Also Counter Free-Running

2-131

Data Store Memory

Purpose
Library

Description

2-132

A

Define data store
Signal Routing

The Data Store Memory block defines and initializes a named shared
data store, which is a memory region usable by Data Store Read and
Data Store Write blocks with the same data store name.

The location of the Data Store Memory block that defines a data store
determines the Data Store Read and Data Store Write blocks that can
access the data store:

e If the Data Store Memory block is in the top-level system, the data
store can be accessed by Data Store Read and Data Store Write
blocks located anywhere in the model.

e If the Data Store Memory block is in a subsystem, the data store
can be accessed by Data Store Read and Data Store Write blocks
located in the same subsystem or in any subsystem below it in the
model hierarchy.

Note You can use signal objects in addition to or instead of Data
Store Memory blocks to define data stores. See “Working with Data
Stores” for more information.

You initialize the data store by specifying a scalar value or an array of
values in the Initial value parameter. The dimensions of the array
determine the dimensionality of the data store. Any data written to the
data store must have the dimensions designated by the Initial value
parameter. Otherwise, an error occurs.

Data Store Memory

Data Type The Data Store Memory block stores real or complex signals of any data
Support type supported by Simulink, including fixed-point data types.

For a discussion on the data types supported by Simulink, see “Data
Types Supported by Simulink” in the “Working with Data” chapter of
the Using Simulink documentation.

2-133

Data Store Memory

Parameters The Main pane of the Data Store Memory block dialog appears as

and follows:
Dialog :
Box m Block Parameters: Data Store Memory X|

DataStore Memony

Define a memany region for use by the Data Store Read and Data Store Write blocks.
Al Read and Write blocks that are in the cument {sub)system level or below and have
the same data store name will be able to read from or write to this block.

Main IData Types I Diagnostics I

Diata store name: I;’-‘-.

Comesponding Data Store ReadWrite blocks: refresh

Initial value: ID
[T Data store name must resolve to Simulink signal object
RTW storage class: I Auto ;I

RTW type gualifier: I
¥ Interpret vector parameters as 1-0

0K Cancel C e Aephy

Data store name
Specify a name for the data store you are defining with this block.
Data Store Read and Data Store Write blocks with the same name

2-134

Data Store Memory

will be able to read from and write to the data store initialized
by this block.

Corresponding Data Store Read blocks
This parameter lists all the Data Store Read and Data Store
Write blocks that have the same data store name as the current
block, and that are in the current (sub)system or in any subsystem
below it in the model hierarchy. Double-click any entry on this list
to highlight the block and bring it to the foreground.

Initial value
Specify the initial value or values of the data store. The
dimensions of this value determine the dimensions of data that
may be written to the data store.

Data store must resolve to Simulink signal object
Causes Simulink, when compiling the model, to search the model
and base workspace for a Simulink.Signal object having the
same name. If such an object is not found, Simulink halts the
compilation and displays an error. Otherwise Simulink compares
the attributes of the signal object with the corresponding
attributes of the data store memory block. If the block and
the object attributes are inconsistent, Simulink halts model
compilation and displays an error.

These following parameters pertain to code generation and have no
effect during model simulation:

¢ Data store name must resolve to Simulink signal object
e RTW storage class
e RTW type qualifier

See “Block States: Storing and Interfacing” in the Real-Time Workshop®
documentation for more information.

2-135

Data Store Memory

Interpret vector parameters as 1-D
If selected and the Initial value parameter is specified as a
column or row matrix, the data store is initialized to a 1-D array
whose elements are equal to the elements of the row or column
vector. See “Determining the Output Dimensions of Source
Blocks” in the “Working with Signals” chapter of the Using
Simulink documentation.

The Data Types pane of the Data Store Memory block dialog appears
as follows:

2-136

Data Store Memory

m Block Parameters: Data Store Memory x|

DiataStore Memony

Define a memany region for use by the Data Store Read and Data Store Write blocks.
All Read and Write blocks that are in the cument {sub)system level or below and have
the same data store name will be able to read from or write to this block.

Main | Data Types IDiagnnstics I

Data type: I Specify via dialog ;I
Qutput data type (e.g. sfo(16), uint(3), float(single’):

| fix{16)

Output scaling value (Slope, e.g. 279 or [Slope Bias], e.g. [1.25 3]k

{20

Signal type: I auto ;I

QK Cancel Help Apply

Data type
Select the data type of the values stored in the data store from

the drop-down menu. If you select auto, Simulink sets the data
type of the data store to the data type of the data store read and
write blocks that access it. If you select Specify via dialog, the
dialog box displays the Qutput data type and Output scaling

2-137

Data Store Memory

2-138

value fields, which enable you to specify fixed-point and other
data types not listed in the drop-down menu.

Output data type
Specify any data type for the data store, including fixed-point
data types. This parameter is only visible if you select Specify
via dialog for the Data type parameter.

Output scaling value
Set the output scaling using either binary point-only or [Slope
Bias] scaling. This parameter is only visible if you select Specify
via dialog for the Data type parameter.

Signal type
Specify the numeric type, real or complex, of the values stored
in the data store.

The Diagnostics pane of the Data Store Memory block dialog appears
as follows:

Data Store Memory

m Block Parameters: Data Store Memory x|

DataStore Memony

Define a memaony region for use by the Data Store Read and Data Store Write blocks.
All Read and Write blocks that are in the cument {sub)system level or below and have
the same data store name will be able to read from or write to this block.

Main Data Types | Diagnostics |

Detect read before write: I waming

Detect write after read: I Warming

Ll Led L

Detect write after write: I waming

QK Cancel Help Apphy

Detect read before write
The model is attempting to read data from this data store without
having previously written data into the store in the current time
step.

2-139

Data Store Memory

Detect write after write
The model is attempting to store data in this data store twice in
succession in the current time step.

Detect write after read
The model is attempting to store data in this data store after
previously reading data from it in the current time step.

Characteristics sample Time N/A
Dimensionalized Yes
See Also Data Store Read, Data Store Write

2-140

Data Store Read

Purpose
Library

Description

A P

Data Type
Support

Read data from data store
Signal Routing

The Data Store Read block copies data from the named data store to
its output.

The data store from which the data is read is determined by the location
of the Data Store Memory block or signal object that defines the data
store. For more information, see “Working with Data Stores”and Data
Store Memory.

More than one Data Store Read block can read from the same data store.

Note Be careful when setting an execution priority on a Data Store
Read block. Make sure that the block reads from the data store after
the store is updated by any Data Store Write blocks that write to the
store in the same time step.

The Data Store Read block can output a real or complex signal of any
data type supported by Simulink, including fixed-point data types.

For a discussion on the data types supported by Simulink, see “Data
Types Supported by Simulink” in the “Working with Data” chapter of
the Using Simulink documentation.

2-141

Data Store Read

Parameters

d [Z)Block Parameters: DataStoreRead
CIE\ —DataStoreR ead
Dialog -
Fiead values from specified data store,
Box
—Parameters
Data store name: IE =]

[rata store memony block: untitled/Data Store bemory

Sample time; IIJ

Correzponding Data Store Write blocks: refrezh
untitled/Dr ata Store Write

Ok Cancel Help Ay

Data store name

2-142

Specifies the name of the data store from which this block reads
data. The adjacent pull-down list lists the names of Data Store

Memory blocks that exist at the same level in the model as the

Data Store Read block or at higher levels. To change the name,

select a name from the pull-down list or enter the name directly
in the edit field.

When Simulink compiles the model containing this block,
Simulink searches the model upwards from this block’s level for a
Data Store Memory block having the specified data store name.
If Simulink does not find such a block, it searches the model
workspace and the MATLAB workspace for a Simulink.Signal
object having the same name. If Simulink finds the signal object,
it creates a hidden Data Store Memory block at the model’s root
level having the properties specified by the signal object and

Data Store Read

an initial value of 0. If Simulink finds neither the Data Store
Memory block nor the signal object, it halts the compilation and
displays an error.

Data store memory block
This field lists the Data Store Memory block that initialized the
store from which this block reads.

Data store write blocks
This parameter lists all the Data Store Write blocks with the same
data store name as this block that are in the same (sub)system or
in any subsystem below it in the model hierarchy. Double-click
any entry on this list to highlight the block and bring it to the
foreground.

Sample time
The sample time, which controls when the block reads from
the data store. A value of -1 indicates that the sample
time is inherited. See Specifying Sample Time in the online
documentation for more information.

Characteristics Sample Time Specified in the Sample time parameter

Dimensionalized Yes

See Also Data Store Memory, Data Store Write

2-143

Data Store Write

Purpose
Library

Description

A

Data Type
Support

Parameters
and

Dialog

Box

2-144

Write data to data store
Signal Routing

The Data Store Write block copies the value at its input to the named
data store.

Each write operation performed by a Data Store Write block writes over
the data store, replacing the previous contents.

The data store to which this block writes is determined by the location
of the Data Store Memory or signal object that defines the data store.
For more information, see “Working with Data Stores” and Data Store
Memory. The size of the data store is set by the signal object or the Data
Store Memory block that defines and initializes the data store. Each
Data Store Write block that writes to that data store must write the
same amount of data.

More than one Data Store Write block can write to the same data store.
However, if two Data Store Write blocks attempt to write to the same
data store during the same simulation step, results are unpredictable.

The Data Store Write block accepts a real or complex signal of any data
type supported by Simulink, including fixed-point data types.

For a discussion on the data types supported by Simulink, see “Data
Types Supported by Simulink” in the “Working with Data” chapter of
the Using Simulink documentation.

Data store name
Specifies the name of the data store to which this block writes
data. The adjacent pull-down list lists the names of Data Store
Memory blocks that exist at the same level in the model as the
Data Store Write block or at higher levels. To change the name,
select a name from the pull-down list or enter the name directly
in the edit field.

Data Store Write

Characteristics sample Time

See Also

When Simulink compiles the model containing this block,
Simulink searches the model upwards from this block’s level for a
Data Store Memory block having the specified data store name.
If Simulink does not find such a block, it searches the model
workspace and the MATLAB workspace for a Simulink.Signal
object having the same name. If Simulink finds the signal object,
it creates a hidden Data Store Memory block at the model’s root
level having the properties specified by the signal object and

an initial value of 0. If Simulink finds neither the Data Store
Memory block nor the signal object, it halts the compilation and
displays an error.

Data store memory block

This field lists the Data Store Memory block that initialized the
store to which this block writes.

Data store read blocks

This parameter lists all the Data Store Read blocks with the same
data store name as this block that are in the same (sub)system or
in any subsystem below it in the model hierarchy. Double-click
any entry on this list to highlight the block and bring it to the
foreground.

Sample time

Specify the sample time that controls when the block writes
to the data store. A value of -1 indicates that the sample
time is inherited. See Specifying Sample Time in the online
documentation for more information.

Specified in the Sample time parameter

Dimensionalized Yes

Data Store Memory, Data Store Read

2-145

Data Type Conversion

Purpose
Library

Description

2-146

Convert input signal to specified data type
Signal Attributes

The Data Type Conversion block converts an input signal of any
Simulink data type to the data type and scaling specified by the block’s
Output data type mode, Output data type, and/or Output scaling
parameters. The input can be any real- or complex-valued signal. If the
input is real, the output is real. If the input is complex, the output

is complex.

Note This block requires that you specify the data type and/or scaling
for the conversion. If you want to inherit this information from an input
signal, you should use the Data Type Conversion Inherited block.

The Input and output to have equal parameter controls how the
input is processed. The possible values are Real World Value (RWV)
and Stored Integer (SI):

® Select Real World Value (RWV) to treat the input as V=SQ + B
where S is the slope and B is the bias. V is used to produce @ = (V -
B)/S, which is stored in the output. This is the default value.

® Select Stored Integer (SI) to treat the input as a stored integer,
@. The value of @ is directly used to produce the output. In this
mode, the input and output are identical except that the input is a
raw integer lacking proper scaling information. Selecting Stored
Integer may be useful in these circumstances:

= Ifyou are generating code for a fixed-point processor, the resulting
code only uses integers and does not use floating-point operations.

= If you want to partition your model based on hardware
characteristics. For example, part of your model may involve
simulating hardware that produces integers as output.

Data Type Conversion

Working with Fixed-Point Values Greater than 32 Bits

The MATLAB built-in integer data types are limited to 32 bits. If you
want to output fixed-point numbers that range between 33 and 53 bits
without loss of precision or range, you should break the number into
pieces using the Gain block, and then output the pieces using the Data
Type Conversion block to store the value inside a double.

For example, suppose the original signal is an unsigned 128-bit value
with default scaling. You can break this signal into four pieces using

four parallel Gain blocks configured with the gain and output settings
shown below.

Piece Gain Output Data Type

1 270 uint(32) - Least significant 32 bits
2 2~.32 uint(32)

3 2" -64 uint(32)

4 27-96 uint(32) - Most significant 32 bits

For each Gain block, you must also configure the Round integer
calculations toward parameter to Floor, and the Saturate on
integer overflow check box must be cleared.

Data Type The Data Type Conversion block handles any data type supported by
Suppori‘ Simulink, including fixed-point data types.

For a discussion on the data types supported by Simulink, see “Data
Types Supported by Simulink” in the “Working with Data” chapter of
the Using Simulink documentation.

2-147

Data Type Conversion

Parameters
and

Dialog

Box

2-148

E! Function Block Parameters: Data Type Conversio ll

—Data Type Conversion

Corert the input bo the data type and zcaling of the output,

The converzion has bwo pozzible goals. One goal is to have the Real World W alues of
the input and the output be equal. The ather goal iz to have the Stored Integer
Yalues aof the input and the output be equal. Overflows and quantization errors can
prevvent the goal from being fully achieved.

The input and the output support all builk-in and fized point data types.

—Parameters

Output data ype m-:u:le:l [nherit via back propagation

[nput and output to have equal:l Real warld W alue [RWw]

Ll L) L

Round integer calculations tu:uwaru:l:l Floor

[~ iSaturate on integer overflow;

Sample tirme [-1 far inkerited]:

[

k. Cancel Help Apply

Output data type mode

You can set the output signal to a built-in data type from this
drop-down list, or you can choose to inherit the output data type
and scaling by backpropagation. Lastly, if you choose Specify
via dialog, the Output data type, Output scaling value, and
Lock output scaling against changes by the autoscaling
tool parameters become visible.

Data Type Conversion

Examples

Output data type
Set the output data type. This parameter is only visible if you
select Specify via dialog for the Output data type mode
parameter.

Output scaling value
Set the output scaling using either binary point-only or [Slope
Bias] scaling. This parameter is only visible if you select Specify
via dialog for the Output data type mode parameter.

Lock output scaling against changes by the autoscaling tool
Select to lock scaling of outputs. This parameter is only visible if
you select Specify via dialog for the Output data type mode
parameter.

Input and output to have equal
Specify whether the Real World Value (RWV) or the Stored
Integer (SI) of the input and output should be the same.

Round integer calculations toward
Select the rounding mode for fixed-point operations.

Saturate on integer overflow
Select to have overflows saturate.

Sample time (-1 for inherited)
Specify the time interval between samples. To inherit the sample
time, set this parameter to -1. See Specifying Sample Time
in the “How Simulink Works” chapter of the Using Simulink
documentation.

Example 1 — Real World Values Versus Stored Integers

This example uses the Data Type Conversion block to help you
understand the difference between a real-world value and a stored
integer. Consider the two fixed-point models shown below.

2-149

Data Type Conversion

15 —.i_d-:-uble Conwert sfix$_End Conwert —Fdnuble

Constant [rata Type Conversion Crata Type Conversiond Display
Conwert double

S
(=0
Crata Twpe Conversion2 Dizplay
15 double) Convert =find_EnZ Canwert double) Wi
(=h
Constant Crata Type Conwversion3 Crata Type Conversiong Displayz

2-150

Data Type ConmversionS Display3

In the top model, the Data Type Conversion block treats the input as a
real-world value, and maps that value to an 8-bit signed generalized
fixed-point data type with a scaling of 22. When the value is then output
from the Data Type Conversionl block as a real-world value, the scaling
and data type information is retained and the output value is 001111.00,
or 15. When the value is output from the Data Type Conversion2 block
as a stored integer, the scaling and data type information is not retained
and the stored integer is interpreted as 00111100, or 60.

In the bottom model, the Data Type Conversion3 block treats the input
as a stored integer, and the data type and scaling information is not
applied. When the value is then output from the Data Type Conversion4
block as a real-world value, the scaling and data type information is
applied to the stored integer, and the output value is 000011.11, or 3.75.

Data Type Conversion

When the value is output from the Data Type Conversion5 block as a
stored integer, you get back the original input value of 15.

Example 2 — Real World Values and Stored Integers in
Summations

The model shown below illustrates how a summation operation applies
to real-world values and stored integers, and how scaling information is
dealt with in generated code.

b Comen [>
[rata Type Conwersion2 Cisplayvd
— | Comvert 2B > EEEL
[rata Type Conwersion2 Lizplay=
Rl double . 1503
.+ >
SFum Dizplayz
int16 =finlfi_EnZ
14 = Convert = o .
L ; . =finifi_End > Convert double - 15 ad
Constant [ata Type Conwversion = -
um Data Type Conwversions Dizplay1
it Cormvert =fin16_End = Cormvert double = 510
15 - - sh -
Caonstant Crata Type Conwersion [rata Type Conwersiond Display

Note that the summation operation produces the correct result when
the Data Type Conversion (2 or 5) block outputs a real-world value.
This is because the specified scaling information is applied to the stored
integer value. However, when the Data Type Conversion4 block outputs
a stored integer value, then the summation operation produces an
unexpected result due to the absence of scaling information.

2-151

Data Type Conversion

If you generate code for the above model, then the code captures

the appropriate scaling information. The code for the Sum block is
shown below. The inputs to this block are tagged with the specified
scaling information so that the necessary shifts are performed for the
summation operation.

/* Sum Block: <Root>/Sum

*

* y = uo+ ul

*

* InputO0 Data Type: Fixed Point S16 2"-2
* Input1 Data Type: Fixed Point S16 2"-4
* QutputO Data Type: Fixed Point S16 2"-5
*

* Round Mode: Floor

* Saturation Mode: Wrap

*

*/

sum = ((in1) << 3);

sum += ((in2) << 1);

Characteristics pirect Feedthrough Yes
Sample Time Inherited from driving block
Scalar Expansion N/A
Dimensionalized Yes
Zero Crossing No
See Also Data Type Conversion Inherited

2-152

Data Type Conversion Inherited

Purpose

Library

Description

Convert y

w

AU

Data Type
Support

Convert from one data type to another using inherited data type and
scaling

Signal Attributes

The Data Type Conversion Inherited block forces dissimilar data types
to be the same. The first (top, or left) input is used as the reference
signal and the second (bottom, or right) input is converted to the
reference type by inheriting the data type and scaling information.
Either input is scalar expanded such that the output has the same
width as the widest input.

Inheriting the data type and scaling provides these advantages:

* It makes reusing existing models easier.

® It allows you to create new fixed-point models with less effort since
you can avoid the detail of specifying the associated parameters.

The Data Type Conversion Inherited block handles any data type
supported by Simulink, including fixed-point data types.

For a discussion on the data types supported by Simulink, see “Data
Types Supported by Simulink” in the “Working with Data” chapter of
the Using Simulink documentation.

2-153

Data Type Conversion Inherited

Parameters

m Block Parameters: Data Type Conversion Inherited
and) , :
R — Corverzion Inhernited [mask] [link]
Dialog . : L
Convert the second input to the data type and zcaling of the first input.
Box
The converzion has bwo pozsible goalz. One goal iz to have the Real Wiarld Y alues
aof the input and the output be equal. The other goal is to have the Stored [nteger
"alues of the input and the output be equal. Overflows and quantization ermors can
present the goal fram being fully achieved.
The both inputz and the output support all built-in and fised point data types.
—Parameters
[nput and Output to have equal: |[{TEE R sk
Found toward: I Floor
[T Saturate to max or min when overflows occur
I ok Cancel Help | Apply
Input and Output to have equal
Specify whether the Real World Value (RWV) or the Stored
Integer (SI) of the input and output should be the same. Refer
to Description in the Data Type Conversion block reference page
for more information about these choices.
Round toward
Select the rounding mode for fixed-point operations.
Saturate to max or min when overflows occur
Select to have overflows saturate.
Characteristics pjrect Feedthrough Yes
See Also Data Type Conversion

2-154

Data Type Duplicate

Purpose
Library

Description

Same
OT

Data Type
Support

Force all inputs to same data type
Signal Attributes

The Data Type Duplicate block forces all inputs to have exactly the
same data type. Other attributes of input signals, such as dimension,
complexity, and sample time, are completely independent.

You can use the Data Type Duplicate block to check for consistency of
data types among blocks. If all signals do not have the same data type,
the block returns an error message.

The Data Type Duplicate block is typically used such that one signal to
the block controls the data type for all other blocks. The other blocks
are set to inherit their data types via backpropagation.

The block is also used in a user created library. These library blocks
can be placed in any model, and the data type for all library blocks are
configured according to the usage in the model. To create a library block
with more complex data type rules than duplication, use the Data Type
Propagation block.

The Data Type Duplicate block accepts signals of any data type
supported by Simulink, including fixed-point data types.

2-155

Data Type Duplicate

Parameters

d Z)Block Parameters: Data Type Duplicate
CIE\ —D'ata Tupe Duplicate [mask] (link]
Dialog .
Force all inputs to have the exact same data type.
Box
—Parameters
Humber of input parts:
[E
I ok Cancel Help Spply
Number of input ports
Number of input ports.
Characteristics gcalar Expansion Yes

States 0

2-156

Data Type Propagation

Purpose

Library

Description

A .

Het1
Ref2
Frop

Set data type and scaling of propagated signal based on information
from reference signals

Signal Attributes

The Data Type Propagation block allows you to control the data type and
scaling of signals in your model. You can use this block in conjunction
with fixed-point blocks that have their Specify data type and scaling
parameter configured to Inherit via back propagation.

The block has three inputs: Refl and Ref2 are the reference inputs,
while the Prop input back propagates the data type and scaling
information gathered from the reference inputs. This information is
then passed on to other fixed-point blocks.

The block provides you with many choices for propagating data type
and scaling information. For example, you can:

® Use the number of bits from the Refl reference signal, or use the
number of bits from widest reference signal.

® Use the range from the Ref2 reference signal, or use the range of the
reference signal with the greatest range.

® Use a bias of zero, regardless of the biases used by the reference
signals.

® Use the precision of the reference signal with the least precision.

You specify how data type information is propagated with the
Propagated data type parameter list. If the parameter list is
configured as Specify via dialog, then you manually specify the data
type via the Propagated data type edit field. If the parameter list is
configured as Inherit via propagation rule, then you must use the
parameters described in “Parameters and Dialog Box” on page 2-160.

You specify how scaling information is propagated with the Propagated
scaling parameter list. If the parameter list is configured as Specify
via dialog, then you manually specify the scaling via the Propagated
scaling edit field. If the parameter list is configured as Inherit via

2-157

Data Type Propagation

2-158

propagation rule, then you must use the parameters described in
“Parameters and Dialog Box” on page 2-160.

After you use the information from the reference signals, you can apply
a second level of adjustments to the data type and scaling by using
individual multiplicative and additive adjustments. This flexibility has
a variety of uses. For example, if you are targeting a DSP, then you
can configure the block so that the number of bits associated with a
MAC (multiply and accumulate) operation is twice as wide as the input
signal, and has a certain number of guard bits added to it.

The Data Type Propagation block also provides a mechanism to force
the computed number of bits to a useful value. For example, if you are
targeting a 16-bit micro, then the target C compiler is likely to support
sizes of only 8 bits, 16 bits, and 32 bits. The block will force these three
choices to be used. For example, suppose the block computes a data type
size of 24 bits. Since 24 bits is not directly usable by the target chip, the
signal is forced up to 32 bits, which is natively supported.

There is also a method for dealing with floating-point reference signals.
This makes it easier to create designs that are easily retargeted from
fixed-point chips to floating-point chips or vice versa.

The Data Type Propagation block allows you to set up libraries of useful
subsystems that will be properly configured based on the connected
signals. Without this data type propagation process, a subsystem

that you use from a library will almost certainly not work as desired
with most integer or fixed-point signals, and manual intervention to
configure the data type and scaling would be required. This block can
eliminate the manual intervention in many situations.

Precedence Rules
The precedence of the dialog box parameters decreases from top to
bottom. Additionally:

® Double-precision reference inputs have precedence over all other
data types.

Data Type Propagation

® Single-precision reference inputs have precedence over integer and
fixed-point data types.

® Multiplicative adjustments are carried out before additive
adjustments.

® The number of bits is determined before the precision or positive
range is inherited from the reference inputs.

Data Type The Data Type Propagation block accepts signals of any data type
Suppori‘ supported by Simulink, including fixed-point data types.

2-159

Data Type Propagation

Parameters The Propagated type pane of the Data Type Propagation block dialog
and appears as follows:

Dialog

Box m Block Parameters: Data Type Propagation

—Data Tope Propagation [mazk] [link]

Set the Data Type and Scaling of the propagated zignal based on information from the
reference signals.

Motes:

1] Items clozer to the top of the dialog hawve higher prionty/precedence.

a] Reference inputs of type double have prionty over all others.

b] Singles have priarity over integer and fised paint data types.

] Multiplhicative adjustrents are carmed out before additive adjuztments.

d] Mumber-of-Bitz iz determined before the precizion or pozitive-range iz inkerited from
the reference signals.

21 PozRange iz ane bit higher than the exact maximum pozitive range of the sighal.
3] The computed Mumber-of-Bitz iz promated ta the zmallest allowable value that iz
areater than or equal. If none exists, then ermor.

Fropagated type IPrnpagated zcaling |

1. Propagated data pe: I Inherit via propagation mile

1.1 IF any reference input iz double, cutput is: I double

1.2 If any reference input iz zsingle, output iz I gingle

1.3. ls-Sigred: | I5Signed1 or 1sSignedz

Ll L L L e

1.4.1. Mumber-of-Bits: Base | max([NumBits1 NumBits2])
1.4.2. Number-of-Bitz: Mulliplicative adjustmett

1

1.4.3. Mumber-of-Bitz: Additive adjustment

o

1.4.4. Mumber-of-Bitz: Allowable final values

[1:128

Cancel Help Amply

2-160

Data Type Propagation

Propagated data type
Use the parameter list to propagate the data type via the dialog
box, or inherit the data type from the reference signals. Use the
edit field to specify the data type via the dialog box.

If any reference input is double, output is
Specify single or double. This parameter makes it easier to
create designs that are easily retargeted from fixed-point chips to
floating-point chips or vice versa.

This parameter is only visible if Inherit via propagation rule
is selected for the Propagated data type parameter list.

If any reference input is single, output is
Specify single or double. This parameter makes it easier to
create designs that are easily retargeted from fixed-point chips to
floating-point chips or visa versa.

This parameter is only visible if Inherit via propagation rule
is selected for the Propagated data type parameter list.

Is-Signed
Specify the sign of Prop as one of the following values:

Parameter

Value Description

IsSignedH Prop is a signed data type if Refl is a signed
data type.

IsSigned2 Prop is a signed data type if Ref2 is a signed
data type.

IsSigned1 or | Prop is a signed data type if either Refl or

IsSigned2 Ref2 are signed data types.

TRUE Refl and Ref2 are ignored, and Prop is always

a signed data type.

FALSE Refl and Ref2 are ignored, and Prop is always
an unsigned data type.

2-161

Data Type Propagation

2-162

For example, if the Refl signal is ufix (16), the Ref2 signal
is sfix(16), and the Is-Signed parameter is IsSigned1 or
IsSigned2, then Prop is forced to be a signed data type.

This parameter is only visible if Inherit via propagation rule
is selected for the Propagated data type parameter list.

Number-of-bits: Base

Specify the number of bits used by Prop for the base data type
as one of the following values:

Parameter Value

Description

NumBits1 The number of bits for Prop is given by the
number of bits for Refl.
NumBits2 The number of bits for Prop is given by the

number of bits for Ref2.

max ([NumBits1
NumBits2])

The number of bits for Prop is given by
the reference signal with largest number
of bits.

min([NumBits1

The number of bits for Prop is given by

NumBits2]) the reference signal with smallest number
of bits.
NumBits1+NumBits2 The number of bits for Prop is given by the

sum of the reference signal bits.

Refer to Targeting an Embedded Processor in the “Simulink Fixed
Point User’s Guide” documentation for more information about

the base data type.

This parameter is only visible if Inherit via propagation rule
is selected for the Propagated data type parameter list.

Data Type Propagation

Number-of-bits: Multiplicative adjustment
Specify the number of bits used by Prop by including a
multiplicative adjustment. For example, suppose you want to
guarantee that the number of bits associated with a multiply and
accumulate (MAC) operation is twice as wide as the input signal.
To do this, you configure this parameter to the value 2.

This parameter is only visible if Inherit via propagation rule
is selected for the Propagated data type parameter list.

Number-of-bits: Additive adjustment
Specify the number of bits used by Prop by including an additive
adjustment. For example, if you are performing multiple additions
during a MAC operation, the result may overflow. To prevent
overflow, you can associate guard bits with the propagated data
type. To associate four guard bits, you specify the value 4.

This parameter is only visible if Inherit via propagation rule
is selected for the Propagated data type parameter list.

Number-of-bits: Allowable final values
Force the computed number of bits used by Prop to a useful value.
For example, if you are targeting a processor that supports only 8,
16, and 32 bits, then you configure this parameter to [8,16,32].
The block always propagates the smallest specified value that
fits. If you want to allow all fixed-point data types, you would
specify the value 1:128.

This parameter is only visible if Inherit via propagation rule
is selected for the Propagated data type parameter list.

The Propagated scaling pane of the Data Type Propagation block
dialog appears as follows:

2-163

Data Type Propagation

[=1Block Parameters: Data Type Propagation

—Data Tope Propagation [mazk] [link]

Set the Data Type and Scaling of the propagated zignal based on information from the
reference signals.

Motes:

1] Items clozer to the top of the dialog hawve higher prionty/precedence.

a] Reference inputs of type double have prionty over all others.

b] Singles have priarity over integer and fised paint data types.

] Multiplhicative adjustrents are carmed out before additive adjuztments.

d] Mumber-of-Bitz iz determined before the precizion or pozitive-range iz inkerited from
the reference signals.

21 PozRange iz ane bit higher than the exact maximum pozitive range of the sighal.
3] The computed Mumber-of-Bitz iz promated ta the zmallest allowable value that iz
areater than or equal. If none exists, then ermor.

2. Propagated zcaling: I Inkerit wia propagation e

L] L

21.1. Slope: Base | min{[Slopel Slope2])
21.2. Slope: Multiplicative adjustrent

|1

2.1.3. Slope: Additive adjustment

o

221, Bias: Baze | Biazl ;I
222 Biaz Multiplicative adjuztment;

|1

2.2.3. Biaz: Additive adjustment;

o

ok Cancel Help Amply

2-164

Data Type Propagation

Propagated scaling

Use the parameter list to propagate the scaling via the dialog box,
or inherit the scaling from the reference signals. Use the edit field
to specify the scaling via the dialog box.

Values used to determine best precision scaling
Specify any values to be used to constrain the precision, such as
the upper and lower limits on the propagated input. Based on
the data type, the scaling will automatically be selected such
that these values can be represented with no overflow error and
minimum quantization error.

This parameter is only visible if Obtain via best precision is
selected for the Propagated scaling parameter list.

Slope: Base

Specify the slope used by Prop for the base data type as one of

the following values:

Parameter Value

Description

Slopet The slope of Prop is given by the slope
of Refl.
Slope2 The slope of Prop is given by the slope

of Ref2.

max ([Slopel
Slope2])

The slope of Prop is given by the
maximum slope of the reference
signals.

min([Slopel

The slope of Prop is given by the

Slope2]) minimum slope of the reference
signals.
Slope1*Slope2 The slope of Prop is given by the

product of the reference signal slopes.

Slopel/Slope2

The slope of Prop is given by the ratio
of the Refl slope to the Ref2 slope.

2-165

Data Type Propagation

Parameter Value Description

PosRange1 The range of Prop is given by the range
of Refl.

PosRange2 The range of Prop is given by the range
of Ref2.

max ([PosRange1 The range of Prop is given by the

PosRange2]) maximum range of the reference
signals.

min([PosRange1 The range of Prop is given by the

PosRange2]) minimum range of the reference
signals.

PosRange1*PosRange2 | The range of Prop is given by the
product of the reference signal ranges.

PosRange1/PosRange2 | The range of Prop is given by the ratio
of the Refl range to the Ref2 range.

You control the precision of Prop with Slope1 and Slope2, and
you control the range of Prop with PosRange1 and PosRange2.
Additionally, PosRange1 and PosRange?2 are one bit higher than
the maximum positive range of the associated reference signal.

This parameter is only visible if Inherit via propagation rule
is selected for the Propagated scaling parameter list.

Slope: Multiplicative adjustment
Specify the slope used by Prop by including a multiplicative
adjustment. For example, if you want 3 bits of additional precision
(with a corresponding decrease in range), the multiplicative
adjustment is 2~ - 3.

This parameter is only visible if Inherit via propagation rule
is selected for the Propagated scaling parameter list.

2-166

Data Type Propagation

Slope: Additive adjustment
Specify the slope used by Prop by including an additive
adjustment. An additive slope adjustment is often not needed.
The most likely use is to set the multiplicative adjustment to
0, and set the additive adjustment to force the final slope to a

specified value.

This parameter is only visible if Inherit via propagation rule

is selected for the Propagated scaling parameter list.

Bias: Base

Specify the bias used by Prop for the base data type. The
parameter values are described below.

Parameter

Value Description

Bias1 The bias of Prop is given by the bias of Refl.
Bias2 The bias of Prop is given by the bias of Ref2.

max ([Bias1
Bias2])

The bias of Prop is given by the maximum
bias of the reference signals.

min([Bias1
Bias2])

The bias of Prop is given by the minimum
bias of the reference signals.

Biasi1*Bias2

The bias of Prop is given by the product of
the reference signal biases.

Bias1/Bias2

The bias of Prop is given by the ratio of the
Refl bias to the Ref2 bias.

Biasi1+Bias2

The bias of Prop is given by the sum of the
reference biases.

Bias1-Bias2

The bias of Prop is given by the difference of

the reference biases.

This parameter is only visible if Inherit via propagation rule

is selected for the Propagated scaling parameter list.

2-167

Data Type Propagation

Bias:

Bias:

Multiplicative adjustment
Specify the bias used by Prop by including a multiplicative
adjustment.

This parameter is only visible if Inherit via propagation rule
is selected for the Propagated scaling parameter list.

Additive adjustment
Specify the bias used by Prop by including an additive adjustment.

If you want to guarantee that the bias associated with Prop is
zero, you should configure both the multiplicative adjustment and
the additive adjustment to 0.

This parameter is only visible if Inherit via propagation rule
is selected for the Propagated scaling parameter list.

Characteristics pjrect Feedthrough Yes

2-168

Scalar Expansion Yes

Data Type Scaling Strip

Purpose Remove scaling and map to built in integer
Librclry Signal Attributes
Description The Scaling Strip block strips the scaling off a fixed point signal. It
maps the input data type to the smallest built in data type that has
enough data bits to hold the input. The stored integer value of the input
Seali ng is the value of the output. The output always has nominal scaling (slope
> Strip P = 1.0 and bias = 0.0), so the output does not make a distinction between
real world value and stored integer value.
Data Type The Data Type Scaling Strip block accepts signals of any data type
Support supported by Simulink, including fixed-point data types.
Parameters E! Block Parameters: Data Type Scaling Strip EHE
and Scaling Strip [mazk] [link]
Dialog . . _ L .
B Thiz block zstips the zcaling off a fised point zignal. |t maps the input data type to the
ox gmallest buil-in data type that has sufficient bits to kald the input. The stored [Rteger
“alue of the input will be the value of the output. The output always has nominal
zcaling [zlope = 1.0 and biaz = 0.0), g0 the output does not have a distinction
bebween Real World W alue and Stored Integer ' alue.
Cancel Help Smply
Characteristics pirect Feedthrough Yes

Scalar Expansion Yes

2-169

Dead Zone

Purpose Provide region of zero output
Librclry Discontinuities
Description The Dead Zone block generates zero output within a specified region,
7 called its dead zone. The lower and upper limits of the dead zone
7 are specified as the Start of dead zone and End of dead zone
parameters. The block output depends on the input and dead zone:

e Ifthe input is within the dead zone (greater than the lower limit and
less than the upper limit), the output is zero.

® If the input is greater than or equal to the upper limit, the output is
the input minus the upper limit.

¢ If the input is less than or equal to the lower limit, the output is

the input minus the lower limit.

This sample model uses lower and upper limits of -0.5 and +0.5, with a
sine wave as input.

£
) Dead Zone Tl e
- -

Sine Wave Ml To Miorksp dce

This plot shows the effect of the Dead Zone block on the sine wave. While
the input (the sine wave) is between -0.5 and 0.5, the output is zero.

2-170

Dead Zone

Data Type The Dead Zone block accepts and outputs a real signal of any data type
Support supported by Simulink, except Boolean. The Dead Zone block supports
fixed-point data types.

For a discussion on the data types supported by Simulink, see “Data
Types Supported by Simulink” in the “Working with Data” chapter of
the Using Simulink documentation.

2-171

Dead Zone

Parameters E! Block Parameters: Dead Zone EH

and
. —Dead £one
Dialog , - - ,
Box Clatput zero for inputs within the deadzone. Offset input zsignals by either the Start ar

End walue when outzide of the deadzone.

—Parameters
Start of dead zone:
e
End of dead zone:
|05

¥ Saturate on integer overflow

W Treat az gain when linearizing
¥ Enable zero crossing detection

Sample tirme [-1 far inkerited]:

|

k. Cancel Help Apply

Start of dead zone
Specify the lower limit of the dead zone. The default is -0.5.

End of dead zone
Specify the upper limit of the dead zone. The default is 0.5.

Saturate on integer overflow
Select to have overflows saturate.

Treat as gain when linearizing
The linearization commands in Simulink treat this block as a gain
in state space. Select this option to cause the commands to treat
the gain as 1; otherwise, the commands treat the gain as 0.

2-172

Dead Zone

Enable zero crossing detection
Select to enable zero crossing detection to detect when the limits
are reached. For more information, see Zero Crossing Detection
in the “How Simulink Works” chapter of the Using Simulink
documentation.

Sample time (-1 for inherited)
Specify the time interval between samples. To inherit the sample
time, set this parameter to -1. See Specifying Sample Time
in the “How Simulink Works” chapter of the Using Simulink

documentation.
Characteristics pirect Feedthrough Yes
Sample Time Specified in the Sample time parameter
Scalar Expansion Yes, of parameters
Dimensionalized Yes
Zero Crossing Yes, if enabled
See Also Dead Zone Dynamic

2-173

Dead Zone Dynamic

Purpose
Library

Description

Aup
U7+4Y
2o

Set inputs within bounds to zero
Discontinuities

The Dead Zone Dynamic block dynamically bounds the range of the
input signal, providing a region of zero output. The bounds change
according to the upper and lower limit input signals where

® The input within the bounds is set to zero.

® The input below the lower limit is shifted down by the lower limit.
® The input above the upper limit is shifted down by the upper limit.

The input for the upper limit is the up port, and the input for the lower
limit is the 1o port.

Data Type The Dead Zone Dynamic block accepts signals of any data type
Support supported by Simulink, including fixed-point data types.
Pu;ameters [=]Block Parameters: Dead Zone Dynamic
S?CIIO Dead Zone Dynamic [mazk] [link]
B 9 Output zena for inputs within deadzone. Offset input gignalz by either the Start ar End
ox walue when outzide of the deadzone.
Cancel Help Spply

Characteristics pjrect Feedthrough Yes

Scalar Expansion Yes
See Also Dead Zone

2-174

Decrement Real World

Purpose Decrease real world value of signal by one
Libra ry Additional Math & Discrete / Additional Math: Increment - Decrement
Description The Decrement Real World block decreases the real world value of the
signal by one. Overflows always wrap.
o V—— p
Data Type The Decrement Real World block accepts signals of any data type
Supporf supported by Simulink, including fixed-point data types.
Pa;ameters m Block Parameters: Decrement Real World EH
S{‘ | Real World Y alue Decrement [maszk] [link]
1alog Decreaze the Real Wiarld Yalue of Signal by 1.0
Box Overtlaws will always wrap.
Cancel Help Lpply

Characteristics pjrect Feedthrough Yes

Scalar Expansion No
See Also Decrement Stored Integer, Decrement Time To Zero, Decrement To

Zero, Increment Real World

2-175

Decrement Stored Integer

Purpose Decrease stored integer value of signal by one
Libra ry Additional Math & Discrete / Additional Math: Increment - Decrement
Description The Decrement Stored Integer block decreases the stored integer value
of a signal by one.
Floating-point signals are also decreased by one, and overflows always
A Q— p wra
p.
Data Type The Decrement Stored Integer block accepts signals of any data type
Suppart supported by Simulink, including fixed-point data types.
Pa:':lameters m Block Parameters: Decrement Stored Integer
dl.1 Stored Integer Y alue Decrement [maszk] [link]
Dialog)
B Decreaze the Stared Walue of Signal by 1
ox Flaating Paint signals are decreased by 1.0
Owerfloves will always wrap.
Cancel Help Spply
Characteristics pjrect Feedthrough Yes
Scalar Expansion No
See Also Decrement Real World, Decrement Time To Zero, Decrement To Zero,

2-176

Increment Stored Integer

Decrement Time To Zero

Purpose Decrease real-world value of signal by sample time, but only to zero
Libra ry Additional Math & Discrete / Additional Math: Increment - Decrement
Description The Decrement Time To Zero block decreases the real-world value of
the signal by the sample time, Ts. The output will never go below zero.
This block only works with fixed sample rates.
max(V-Ts, 0)
Data Type The Decrement Time To Zero block accepts signals of any data type
Support supported by Simulink, including fixed-point data types.
Pa;ameters m Block Parameters: Decrement Time To Zero ﬂ E
aD?GlO Decrement Time To Zera [mazk] [link]
9 Decreaze the Real \World ‘Walue of Signal by the Sample Time Tz,
ut never go below zera.
Box b bel
Thiz block only worl.s with fiked zample rates, zo it will not work, inzide a triggered
subzpztem.
Cancel Help Apply
Characteristics pjrect Feedthrough Yes
Scalar Expansion No
See Also Decrement Real World, Decrement Stored Integer, Decrement To Zero

2-177

Decrement To Zero

Purpose Decrease real-world value of signal by one, but only to zero
Libra ry Additional Math & Discrete / Additional Math: Increment - Decrement
Description The Decrement To Zero block decreases the real-world value of the
signal by one. The output will never go below zero.
max(V—-0) p
Data Type The Decrement To Zero block accepts signals of any data type supported
Support by Simulink, including fixed-point data types.
m Block Parameters: Decrement To Zero EH
Decrement Tao Lero [mazk] [link]
Decreaze the Real Warld Yalue of Signal by 1.0,
but never go below zero.
Cancel Help Lpply
Parameters
and
Dialog
Box
Characteristics pjrect Feedthrough Yes
Scalar Expansion No
See Also Decrement Real World, Decrement Stored Integer, Decrement Time

2-178

To Zero

Demux

Purpose
Library

Description

|

Extract and output elements of bus or vector signal
Signal Routing

The Demux block extracts the components of an input signal and
outputs the components as separate signals. The output signals are
ordered from top to bottom, or left to right, output port. The block
accepts either vector (1-D array) signals or bus signals (see “Signal
Buses” in the “Working with Signals” chapter of the Using Simulink
documentation). The Number of outputs parameter allows you to
specify the number and, optionally, the dimensionality of each output
port. If you do not specify the dimensionality of the outputs, the block
determines the dimensionality of the outputs for you.

The Demux block operates in either vector or bus selection mode,
depending on whether you selected the Bus selection mode parameter.
The two modes differ in the types of signals they accept. Vector mode
accepts only a vector-like signal, that is, either a scalar (one-element
array), vector (1-D array), or a column or row vector (one row or one
column 2-D array). Bus selection mode accepts only the output of a
Mux block or another Demux block.

The Demux block’s Number of outputs parameter determines the
number and dimensionality of the block’s outputs, depending on the
mode in which the block operates.

Specifying the Number of Outputs in Vector Mode

In vector mode, the value of the parameter can be a scalar specifying
the number of outputs or a vector whose elements specify the widths of
the block’s output ports. The block determines the size of its outputs
from the size of the input signal and the value of the Number of
outputs parameter.

The following table summarizes how the block determines the outputs
for an input vector of width n.

2-179

Demux

Parameter Value

Block outpuits...

Comments

p=n

p scalar signals

For example, if the input is
a three-element vector and
you specify three outputs,
the block outputs three
scalar signals.

Error

=}
3
o
o
o
1}
o

p vector signals each having
n/p elements

If the input is a six-element
vector and you specify three
outputs, the block outputs
three two-element vectors.

S
3
o
o
©
1l
3

m vector signals each having
(n/p)+1 elements and p-m
signals having n/p elements

If the input is a five-element
vector and you specify
three outputs, the block
outputs two two-element
vector signals and one scalar

signal.

[Py Py -+ Pyl
PPyt . . +p, =N

p; > 0

m vector signals having
widths p;, py, ... P,

If the input is a five-element
vector and you specify [3,
2] as the output, the block
outputs three of the input
elements on one port and the
other two elements on the
other port.

[Py Py - Pyl
P tPyt. . . +p, =N

some or all

m vector signals

If pi is greater than zero,
the corresponding output
has width p;. If p; is -1, the
width of the corresponding
output is dynamically sized.

p; = -1

[Py Py -+ Pyl Error
P;tPgt. - . +pl=n

pp =>0

2-180

Demux

Note that you can specify the number of outputs as fewer than the
number of input elements, in which case the block distributes the
elements as evenly as possible over the outputs as illustrated in the
following example.

Terminator

Terminator?

MZ224567]

Canstant
Terminator

You can use -1 in a vector expression to indicate that the block should
dynamically size the corresponding port. For example, the expression
[-1, 3 -1] causes the block to output three signals in which the second
signal always has three elements while the sizes of the first and third
signals depend on the size of the input signal.

If a vector expression comprises positive values and -1 values, the block
assigns as many elements as needed to the ports with positive values
and distributes the remain elements as evenly as possible over the ports
with -1 values. For example, suppose that the block input is seven
elements wide and you specify the output as [-1, 3 -1]. In this case,
the block outputs two elements on the first port, three elements on the
second, and two elements on the third.

2-181

Demux

2-182

Terminator
1234867 i 2
Terminator2
Constant

Terminatord

Specifying the Number of Outputs in Bus Selection Mode

In bus selection mode, the value of the Number of outputs parameter
can be a

® Scalar specifying the number of output ports

The specified value must equal the number of input signals. For
example, if the input bus comprises two signals and the value of this
parameter is a scalar, the value must equal 2.

5
S > 0
Canstant Display
3
v > -
Constanti Crizplay1

® Vector each of whose elements specifies the number of signals to
output on the corresponding port

For example, if the input bus contains five signals, you can specify
the output as [3, 2], in which case the block outputs three of the
input signals on one port and the other two signals on a second port.

Demux

¢ Cell array each of whose elements is a cell array of vectors specifying
the dimensions of the signals output by the corresponding port

The cell array format constrains the Demux block to accept only signals
of specified dimensions. For example, the cell array {{[2 2], 3} {1}} tells
the block to accept only a bus signal comprising a 2-by-2 matrix, a
three-element vector, and a scalar signal. You can use the value -1 in

a cell array expression to let the block determine the dimensionality

of a particular output based on the input. For example, the following
diagram uses the cell array expression {{-1}, {-1,-1}} to specify the output
of the leftmost Demux block.

G
Drisplay
Caonstant
3w]
Constantd Displayt
=
Constant? [222] t
DrizplayZ

In bus selection mode, if you specify the dimensionality of an output
port, i.e., if you specify any value other than -1, the corresponding input
element must match the specified dimensionality.

Note Simulink hides the name of a Demux block when you copy it from
the Simulink library to a model.

2-183

Demux

Data Type
Support

Parameters
and

Dialog

Box

2-184

The Demux block accepts and outputs complex or real signals of any
data type supported by Simulink, including fixed-point data types.

For a discussion on the data types supported by Simulink, see “Data
Types Supported by Simulink” in the “Working with Data” chapter of
the Using Simulink documentation.

1 Function Block Parameters: Demusx x|

—Demus

Split vector zsignals into scalars or smaller vectorz. Check 'Bus Selection Mode' to zplit
buz signals.

—Parameterz

Murnber of outputs;
E

Dizplay option: | bar ;I

[~ Bus selection mode

,. I:IK Cancel He||:| | ,-'l‘-,ppl_l,l

....................................

Number of outputs
The number and dimensions of outputs.
Display option
Options for displaying the Demux block. The options are

Demux

Option Description Example
bar Display the icon as a

solid bar of the block’s

foreground color.
none Display the icon as a box

containing the block’s
type name.

Do mux

Bus selection mode
Enable bus selection mode.

2-185

Derivative

Purpose
Library

Description

A du/dt p

2-186

Output time derivative of input
Continuous

The Derivative block approximates the derivative of its input by
computing

du
dt
where du is the change in input value and dt is the change in time since

the previous simulation time step. The block accepts one input and
generates one output. The initial output for the block is zero.

The accuracy of the results depends on the size of the time steps taken
in the simulation. Smaller steps allow a smoother and more accurate
output curve from this block. Unlike blocks that have continuous states,
the solver does not take smaller steps when the input changes rapidly.

When the input is a discrete signal, the continuous derivative of the
input is an impulse when the value of the input changes, otherwise it is
0. You can obtain the discrete derivative of a discrete signal using

yik) = j—lrm Ri—nik=1n

and taking the z-transform

er]_l—z'l_ z-1
mizy At T Atz

Using linmod to linearize a model that contains a Derivative block
can be troublesome. To improve the accuracy of linearizations of this
block, use the optional linearization parameter within the block dialog
box. Additionally, for more information about how to avoid problems
linearizing Derivative blocks, see Linearizing Models in the “Analyzing
Simulation Results” chapter of the Using Simulink documentation.

Derivative

Data Type
Support

Parameters
and

Dialog

Box

The Derivative block accepts and outputs a real signal of type double.

m Function Block Parameters: Derivative X|

—Derivative

Mumnerical derivative: duddt.

—Parameterz

Linearization Time Constant s/Ms + 17

inf

0E. Cancel Help Apply

...............................

The exact linearization of the Derivative block is difficult due to the
fact that the block cannot be represented as a state space system since

the dynamic equation for the block is y =u . However, it is possible to
approximate the linearization by adding a pole to the Derivative to
create a proper transfer function. The addition of the pole has the effect
of filtering the signal before differentiating it, to remove the effect of
noise. The approximated linearization of the Derivative block is then

ﬁ . You can change the Linearization Time Constant, N, to more
accurately approximate the linearization for your system. Its default
value is Inf, corresponding to a linearization of 0, but it is common

practice to change it to fl , where f; is the break frequency for the filter.
b

Characteristics pjrect Feedthrough Yes

Sample Time Continuous

Scalar Expansion N/A

States 2*[1+(number of input elements)]

2-187

Derivative

Dimensionalized Yes
Zero Crossing No
See Also Discrete Derivative

2-188

Detect Change

Purpose
Library

Description

> ~=U/z

Data Type
Support

Parameters
and

Dialog

Box

Detect change in signal’s value
Logic and Bit Operations

The Detect Change block determines if an input does not equal its
previous value where

® The output is true (equal to 1), when the input signal does not equal
its previous value.

® The output is false (equal to 0), when the input signal equals its
previous value.

The Detect Change block accepts signals of any data type supported by
Simulink, including fixed-point data types. The block output is uints8.

E Block Parameters: Detect Change

—Detect Change [maszk] [link]

[f the input does not equal itz previous value, then output TRUE, othenise output
FALSE. The initial condition determines the initial value of the previous input Uz

—Parameters

|nitial condition:

I k. Cancel Help Lpply

Initial condition
Set the initial condition for the previous input U/z.

2-189

Detect Change

Characteristics pjrect Feedthrough Yes
Scalar Expansion Yes
See Also Detect Decrease, Detect Fall Negative, Detect Fall Nonpositive, Detect

Increase, Detect Rise Nonnegative, Detect Rise Positive

2-190

Detect Decrease

Purpose
Library

Description

A U< Uz

Data Type
Support

Parameters
and

Dialog

Box

Detect decrease in signal’s value
Logic and Bit Operations

The Detect Decrease block determines if an input is strictly less than
its previous value where

® The output is true (equal to 1), when the input signal is less than
its previous value.

® The output is false (equal to 0), when the input signal is greater than
or equal to its previous value.

The Detect Decrease block accepts signals of any data type supported by
Simulink, including fixed-point data types. The block output is uints8.

E Block Parameters: Detect Decrease

—Detect Decreaze [maszk] [link]

[f the input iz ztrictly lezs than ite previous value, then output TRUE , athenwize output
FALSE. The initial condition determines the initial value of the previous input Uz

—Parameters

|nitial condition:

I k. Cancel Help Lpply

Initial condition
Set the initial condition for the previous input U/z.

2-191

Detect Decrease

Characteristics pjrect Feedthrough Yes
Scalar Expansion Yes
See Also Detect Change, Detect Fall Negative, Detect Fall Nonpositive, Detect

Increase, Detect Rise Nonnegative, Detect Rise Positive

2-192

Detect Fall Negative

Purpose Detect falling edge when signal’s value decreases to strictly negative
value, and its previous value was nonnegative
Librclry Logic and Bit Operations
Descripl‘ion The Detect Fall Negative block determines if the input is less than zero,
and its previous value was greater than or equal to zero where
U<0 ® The output is true (equal to 1), when the input signal is less than
b | & NOT p zero, and its previous value was greater than or equal to zero.

Uiz <0 ® The output is false (equal to 0), when the input signal is greater than
or equal to zero, or if the input signal is nonnegative, its previous
value was positive or zero.

Data Type The Detect Fall Negative block accepts signals of any data type
Support supported by Simulink, including fixed-point data types. The block
output is uint8.
Parameters Initial condition
and Set the initial condition of the Boolean expression U/z < 0.
Dialog
Box
Characteristics pjrect Feedthrough Yes
Scalar Expansion Yes
See Also Detect Change, Detect Decrease, Detect Fall Nonpositive, Detect

Increase, Detect Rise Nonnegative, Detect Rise Positive

2-193

Detect Fall Nonpositive

Purpose

Library

Description

Data Type
Support

Parameters
and

Dialog

Box

2-194

Detect falling edge when signal’s value decreases to nonpositive value,
and its previous value was strictly positive

Logic and Bit Operations

The Detect Fall Nonpositive block determines if the input is less than or
equal to zero, and its previous value was positive where

® The output is true (equal to 1), when the input signal is less than or
equal to zero, and its previous value was greater than zero.

® The output is false (equal to 0), when the input signal is greater than
zero, or if it is nonpositive, its previous value was nonpositive.

The Detect Fall Nonpositive block accepts signals of any data type
supported by Simulink, including fixed-point data types. The block
output is uint8.

m Block Parameters: Detect Fall Monpositive

—Detect Fall Monposzitive [mazk] [link]

[f the input iz nonposzitive and its previous value was stictly pozitive, then oubput
TRUE, othenwize output FALSE. The initial condition determines the initial «alue of
the boolean exprezsion [I/z <= 0].

—Parameters

|nitial condition:

I ok Cancel Help Apply

Initial condition
Set the initial condition of the Boolean expression U/z <= 0.

Detect Fall Nonpositive

Characteristics pjrect Feedthrough Yes
Scalar Expansion Yes
See Also Detect Change, Detect Decrease, Detect Fall Negative, Detect Increase,

Detect Rise Nonnegative, Detect Rise Positive

2-195

Detect Increase

Purpose
Library

Description

¥ U>U/z

Data Type
Support

Parameters
and

Dialog

Box

2-196

Detect increase in signal’s value
Logic and Bit Operations

The Detect Increase block determines if an input is strictly greater than
its previous value where

® The output is true (equal to 1), when the input signal is greater than
its previous value.
® The output is false (equal to 0), when the input signal is less than or

equal to its previous value.

The Detect Increase block accepts signals of any data type supported by
Simulink, including fixed-point data types. The block output is uint8.

—Detect Increase [maszk] [link]

[f the input iz ztrictly greater than itz previous value, then output TRUE, athenize
output FALSE. The initial condition determines the initial walue of the previous input
Iz

— Parameters

[nitial condition:

I k. Cancel Help Lpply

Initial condition
Set the initial condition for the previous input U/z.

Detect Increase

Characteristics pjrect Feedthrough Yes
Scalar Expansion Yes
See Also Detect Change, Detect Decrease, Detect Fall Negative, Detect Fall

Nonpositive, Detect Rise Nonnegative, Detect Rise Positive

2-197

Detect Rise Nonnegative

Purpose

Library

Description

Data Type
Support

Parameters
and

Dialog

Box

2-198

Detect rising edge when signal’s value increases to nonnegative value,
and its previous value was strictly negative

Logic and Bit Operations

The Detect Rise Nonnegative block determines if the input is greater
than or equal to zero, and its previous value was less than zero where

® The output is true (equal to 1), when the input signal is greater than
or equal to zero, and its previous value was less than zero.

® The output is false (equal to 0), when the input signal is less than
zero, or if nonnegative, its previous value was greater than or equal
to zero.

The Detect Rise Nonnegative block accepts signals of any data type
supported by Simulink, including fixed-point data types. The block
output is uint8.

m Block Parameters: Detect Rise Nonnegative

—Detect Rize Maonnegative [mazk] [link]

[f the input iz nonnegative and itz previous value was stictly negative, then output
TRUE, othenwize output FALSE. The initial condition determines the initial «alue of
the boolean exprezsion [I4z == 0.

—Parameters

|nitial condition:

I ok Cancel Help Apply

Detect Rise Nonnegative

Initial condition
Set the initial condition of the Boolean expression U/z >= 0.

Characteristics pirect Feedthrough Yes
Scalar Expansion Yes
See Also Detect Change, Detect Decrease, Detect Fall Negative, Detect Fall

Nonpositive, Detect Increase, Detect Rise Positive

2-199

Detect Rise Positive

Purpose

Library

Description

U=20
¥ & NOT p
Uiz=0

Data Type
Support

Parameters
and

Dialog

Box

2-200

Detect rising edge when signal’s value increases to strictly positive
value, and its previous value was nonpositive

Logic and Bit Operations

The Detect Rise Positive block determines if the input is strictly
positive, and its previous value was nonpositive where

® The output is true (equal to 1), when the input signal is greater than
zero, and its previous value was less than zero.

® The output is false (equal to 0), when the input is negative or zero, or
if the input is positive, its previous value was also positive.

The Detect Rise Positive block accepts signals of any data type
supported by Simulink, including fixed-point data types. The block
output is uint8.

—Detect Rize Positive [mazk] [link]

[f the input iz strictly positive and itz previous value was nonpositive, then oubput
TRUE, othenwize output FALSE. The initial condition determines the initial «alue of
the boolean exprezsion [I/z > 0]

—Parameters

|nitial condition:

I ok Cancel Help Apply

Initial condition
Set the initial condition of the Boolean expression U/z > 0.

Detect Rise Positive

Characteristics pjrect Feedthrough Yes
Scalar Expansion Yes
See Also Detect Change, Detect Decrease, Detect Fall Negative, Detect Fall

Nonpositive, Detect Increase, Detect Rise Nonnegative

2-201

Difference

Purpose Calculate change in signal over one time step

Library Discrete

Desc ription The Difference block outputs the current input value minus the previous
input value.

z-1

b — P

Data Type The Difference block accepts signals of any data type supported by

Support Simulink, including fixed-point data types.

Parameters The Main pane of the Difference block dialog appears as follows:

and

Diqlog E! Function Block Parameters: Difference 5[

Box Difference [mazk] [link]
’7 Clutput the current input walue minus the previous input value.

I air ISignaIData Types

Initial condition far previous input;
[0

F. Cancel Help Apply

....................................

Initial condition for previous output
Set the initial condition for the previous output.

2-202

Difference

The Signal Data Types pane of the Difference block dialog appears
as follows:

E! Function Block Parameters: Difference x|

Output the current input walue minus the previous input value.

’—Difference [mazk] [link]

Main | Signal Data Tepes |

Output data bype and scaling:l Specify via dialog ;I
Output data bype: ex. sfix(16], wint(3). float‘zingle’]

fsfix(15]

Output szaling: Slope or [Slope Biag] ex 279

|z~10

[~ Lock output scaling against changes by the autozcaling tool

Raund taward: | Floar j

[T Saturate ko rmas o min when overflows occur

(] Cancel Help | Apply

Output data type and scaling
Specify the output data type and scaling via the dialog box, or
inherit the data type and scaling from an internal rule or by

backpropagation.

Output data type
Set the output data type. This parameter is only visible if you

select Specify via dialog for the Output data type and
scaling parameter.

2-203

Difference

Output scaling
Set the output scaling using either binary point-only or [Slope
Bias] scaling. This parameter is only visible if you select Specify
via dialog for the Output data type and scaling parameter.

Lock output scaling against changes by the autoscaling tool
If you select this check box, the output scaling is locked.

Round toward
Rounding mode for the fixed-point output.

Saturate to max or min when overflows occur
If selected, fixed-point overflows saturate.

Characteristics pirect Feedthrough Yes

2-204

Scalar Expansion Yes, of inputs and gain

Digital Clock

Purpose
Library

Description

12:34

Data Type
Support

Parameters
and

Dialog

Box

Output simulation time at specified sampling interval
Sources

The Digital Clock block outputs the simulation time only at the specified
sampling interval. At other times, the output is held at the previous
value.

Use this block rather than the Clock block (which outputs continuous
time) when you need the current time within a discrete system.

The Digital Clock block outputs a real signal of type double.

=] Block Parameters: Digital Clock x|
—Diigital Clock:

Clutput current gimulation time at the zpecified rate.

—Parameterz

Sample time:

i

0k LCancel Help

Sample time
The sampling interval. The default value is 1 second. See
Specifying Sample Time in the “How Simulink Works” chapter of
the Using Simulink documentation.

2-205

Digital Clock

Characteristics gample Time

2-206

Specified in the Sample time parameter

Scalar Expansion

No

Dimensionalized

No

Zero Crossing

No

Direct Lookup Table (n-D)

Purpose Index into N-dimensional table to retrieve element, column, or 2-D
matrix
Librclry Lookup Tables

Description The Direct Lookup Table (n-D) block uses its block inputs as zero-based
indices into an n-D table. The number of inputs varies with the shape
of the output desired. The output can be an element, a column, or a
:kibp 2-D matrix. The lookup table uses zero-based indexing, so integer data

types can fully address their range. For example, a table dimension
using the uint8 data type can address all 256 elements.

2-DTH

You define a set of output values as the Table data parameter. You
specify what object the inputs select from the table: an element, a
column, or a 2-D matrix. The first (top, or left) input specifies the
zero-based index to the first dimension higher than the number of
dimensions in the output, the next input specifies the index to the next
table dimension, and so on, as shown by this figure:

Table(R,C,X2,%)
First Input 4
Second Inpur
Third Input

The figure shows a 5-D table with an output shape set to "2-D Matrix";
the output is a 2-D Matrix with R rows and C columns.

This figure shows the set of all the different icons that the Direct
Lookup Table block shows (depending on the options you choose in the
block’s dialog box).

2-207

Direct Lookup Table (n-D)

2-208

1-0 TH 2-0' TH] 30 TH 40 TH a0 TH

E_,—-{}b :kﬁ}b /E{}b o b [Lo |
T

Direct LookUp Direct Look-Up Direct Look-Up Direct Look-Up Direct Look-Up
Table (n-07 Table (n-Di3 Table (n-D% Table (n-0'@ Table (n-0)12

1-0 TH] 2-0 TH 20 TH 40 T 50 TH

1 (il [[@

Drirect Look-Up Lirect Laok-Up Direct Look-Up

=

irect Look-Up Direct Look-Up
Tabla (n-D Tabla (n-D Tabla (n-D77 Table (n-Di0 Table (D713
20 TH 20 TH 3D TH 40 TH 5D TH

Direct Look-Up Direct Laok-Up Direct Look-Up Direct Look-Up Direct Loak-Up
Table (n-Cr2 Table (n-L5 Table (n-05 Table (n-C1 Table (n-0014

With dimensions higher than 4, the icon matches the 4-D icons, but
shows the exact number of dimensions in the top text, e.g., "8-D T[k]."
The top row of icons is used when the block output is made from one
or more single-element lookups on the table. The blocks labeled "n-D
Direct Table Lookup5," 6, 8, and 12 are configured to extract a column
from the table, and the two blocks ending in 7 and 9 are extracting a
plane from the table. Blocks in the figure ending in 10, 11, and 12 are
configured to have the table be an input instead of a parameter.

Example

In this example, the block parameters are defined as

Inputs select this object from table: "Column"
Table data: inti16(a)

Direct Lookup Table (n-D)

where a is a 4-D array of linearly increasing numbers calculated using
MATLAB.

a = ones(20,4,5,7); L = prod(size(a));
a(t:L) = [1:L]";

The figure shows the block outputting a vector of the 20 values in the
second column of the fourth element of the third dimension from the
third element of the fourth dimension.

__‘1061
Jenable
1 | D TH]
1062

irels
Constant I > =]
. uintle 1054
uint18i3) Direct Lookup hi
— Table (n-00 Crisplay
onstan
intaczy |2
Constant2

Note that the output has the same data type as the table, i.e., int16.
Also note that the block uses zero-based indexing. The output values
in this example can be calculated manually in MATLAB (which uses
1-based indexing):

a(:,1+1,1+3,1+2)
ans =

1061
1062
1063
1064
1065
1066
1067
1068

2-209

Direct Lookup Table (n-D)

Data Type
Support

2-210

1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080

The Direct Lookup Table (n-D) block accepts mixed-type signals of
data type supported by Simulink. For a discussion on the data types
supported by Simulink, see “Data Types Supported by Simulink” in the
“Working with Data” chapter of the Using Simulink documentation.

The output type can differ from the input type and can be any of the
types listed for input; the output type is inherited from the data type of
the Table data parameter.

In the case that the table comes into the block on an input port, the
output port type is inherited from the table input port. Inputs for
indexing must be real; table data can be complex.

Direct Lookup Table (n-D)

Parameters
and

Dialog

Box

m Block Parameters: Direct Lookup Table {n-D)

—LookupMDDirect [mazk] [link]

T able member zelection. Inputs are zero-bazed indices into the table, e.q., an input of
3 returnz the fourth elemnent in that dimension. Block can also be uzed to select a
colurmn ar 2-0 matris out of the table. The firgt 2election index corezponds to the top
[or left] input port.

—Parameters
Number of table dimensions: |2 ~ |
Inputs select thiz object from table; I Element LI
[T Make table an input
Table data:
[[456:1619 201018 23]
&ction far out of range input: I"-.-'-.-"arning LI

ok Cancel Help | Amply

Number of table dimensions
The number of dimensions that the Table data parameter must
have. This determines the number of independent variables
for the table and hence the number of inputs to the block. The
options are 1, 2, 3, 4, or More dimensions. If you choose More,
the dialog box displays an edit field, Explicit number of table
dimensions, that allows you to enter a number of dimensions.

Explicit number of table dimensions
This field appears if you select more as the value of the Number
of table dimensions. Enter the number of table dimensions in
this field.

Inputs select this object from table
Specify whether the output data is a single element, a column, or
a 2-D matrix. The number of ports changes for each selection:

2-211

Direct Lookup Table (n-D)

Element — # of ports = # of dimensions
Column — # of ports = # of dimensions - 1
2-D matrix — # of ports = # of dimensions - 2

This numbering agrees with MATLAB indexing. For example, if
you have a 4-D table of data, to access a single element you must
specify four indices, as in array(1,2,3,4). To specify a column,
you need three indices, as in array(:,2,3,4). Finally, to specify
a 2-D matrix, you only need two indices, as in array(:,:,3,4).

Make table an input

Selecting this box forces the Direct Lookup Table (n-D) block to
ignore the Table Data parameter. Instead, a new port appears
with "T" next to it. Use this port to input table data.

Table data

The table of output values. The matrix size must match the
dimensions defined by the Number of table dimensions
parameter or by the Explicit number of dimensions
parameter when the number of dimensions exceeds four. During
block diagram editing, you can leave the Table data field
empty, but for running the simulation, you must match the
number of dimensions in the Table data to the Number of
table dimensions. For information about how to construct
multidimensional arrays in MATLAB, see “Multidimensional
Arrays” in the MATLAB online documentation. (This field
appears only if Make table an input is not selected.)

Action for out of range input

None, Warning, Error.

Characteristics pirect Feedthrough Yes

2-212

Sample Time Inherited from driving blocks

Direct Lookup Table (n-D)

Scalar Expansion

For scalar lookups only (not when
returning a column or a 2-D matrix from
the table)

Dimensionalized

For scalar lookups only (not when
returning a column or a 2-D matrix from
the table)

Zero Crossing

No

2-213

Discrete Derivative

Purpose
Library

Description

Ki{z=1)

Ts z

Data Type
Support

2-214

Compute discrete time derivative
Discrete

The Discrete Derivative block computes an optionally scaled discrete
time derivative as follows

Ku(t,) Kult, ;)
T T

S S

y(t,) =

where y(¢,) and u(t,) are the block’s input and output at the current
time step, respectively, u(¢,_1) is the block’s input at the previous time

step, K 1is a scaling factor, and T is the simulation’s discrete step size,
which must be fixed.

The Discrete Derivative block supports all Simulink data types,
including fixed-point data types.

For a discussion on the data types supported by Simulink, see “Data
Types Supported by Simulink” in the “Working with Data” chapter of
the Using Simulink documentation.

Discrete Derivative

Parameters
and

Dialog

Box

The Main pane of the Discrete Derivative block dialog appears as
follows:

E! Function Block Parameters: Discrete Derivative El

Dizcrete Denvative [mask] [link]

Dizcrete-time dervative of the input.

Thiz block only waorks with fixed sample rates, so it will not work ingide a triggered
zubzpztem.

I ait ISignaIData Tvpes

[3aln value:

[1.0

[nitial condition far previous weighted input K20 T 2
0.0

Cancel Help Amply

Gain value
Scaling factor used to weight the block’s input at the current
time step.

Initial condition for previous weighted input K*u/Ts
Set the initial condition for the previous scaled input.

The Signal Data Types pane of the Discrete Derivative block dialog
box appears as follows:

2-215

Discrete Derivative

2-216

E! Function Block Parameters: Discrete Derivative 5[

Dizcrete Denvative [mazk] [link]

Dizcrete-time dervative of the input.

Thiz block only waorks with fixed sample rates, so it will not work ingide a triggered
subzystem.

b ain | Signal Data Types |

Output data bpe and scaling:l Specify via dialog ;I
Output data bype: ex. sfix(16], wint(3). float‘zingle’]

|sfix(16)

Output szaling: Slope or [Slope Biag] ex 279

[z~10

[T Lock output scaling against changes by the autoscaling ool

Round toward: | Floor j

[T Saturate bo max o min when overflows ocour

............. I:IK Cancel He|p | ,u'l‘-,pp|_|r|

Output data type and scaling
Specify the output data type and scaling via the dialog box, or
inherit the data type and scaling from the driving block or by
backpropagation. If you choose Specify via dialog, the Output
data type and Output scaling parameters appear.

Output data type
Set the output data type. This parameter is only visible if you

select Specify via dialog for the Output data type and
scaling parameter.

Discrete Derivative

Output scaling
Set the output scaling using either binary point-only or [Slope
Bias] scaling. This parameter is only visible if you select Specify
via dialog for the Output data type and scaling parameter.

Lock output scaling against changes by the autoscaling tool
If you select this check box, the output scaling is locked.

Round toward
Select the rounding mode for fixed-point operations.

Saturate to max or min when overflows occur
If selected, fixed-point overflows saturate.

Characteristics pirect Feedthrough Yes
Scalar Expansion Yes, of inputs and gain
See Also Derivative

2-217

Discrete Filter

Purpose Model IIR and FIR filters
Librclry Discrete
Description The Discrete Filter block models Infinite Impulse Response (ITR) and

Finite Impulse Response (FIR) filters. You specify the filter as a ratio of

1 polynomials in z!. You can specify that the block have a scalar output or
14221 vector output where the elements correspond to a set of filters that have
the same denominator polynomial but different numerator polynomials.

Use the Numerator coefficient parameter to specify the coefficients
of the discrete filter’s numerator polynomial or polynomials. Use a
vector to specify the coefficients for a single numerator polynomial. Use
a matrix to specify the coefficients of multiple numerator polynomials
where each row contains the coefficients of one of the polynomials. Use
the Denominator coefficient parameter to specify the coefficients of
the function’s denominator polynomial. The value of the Denominator
coefficient parameter must be a vector of coefficients.

You must specify the coefficients of the numerator and denominator
polynomials in ascending powers of z'1. The order of the denominator
must be greater than or equal to the order of the numerator.

If you specify a single numerator polynomial, i.e., a vector as the value
of the Numerator coefficient parameter, the block’s output is a scalar
signal. If you specify multiple numerator polynomials, i.e., a matrix as
the value of the Numerator coefficientsparameter, the block’s output
is a vector signal whose width equals the number of matrix rows, i.e.,
the number or numerator polynomials.

The Discrete Filter block lets you use polynomials in z! (the delay
operator) to represent a discrete system, a method typically used by
signal processing engineers. By contrast, the Discrete Transfer Fen
block lets you use polynomials in z to represent a discrete system,
the method typically used by control engineers. The two methods are
identical when the numerator and denominator polynomials have the
same length.

2-218

Discrete Filter

The block displays the numerator and denominator according to how
they are specified. For a discussion of how Simulink displays the icon,
see Transfer Fcn.

Data Type The Discrete Filter block accepts and outputs a real signal of type
Support double.
Parameters =1 Function Block Parametets: Discrete Filter x|
and : :

R Dizcrete Filker
Dialog) . . .
Box The numerator coefficient can be a wector or matrix expression. The denominator

coefficient must be a vector. The output width equals the number of rows in the
nurmeratar coefficient. ¥au should specify the coefficients in azcending arder of
povers of 142,

Main I Ctate Properties
Murnerator coefficient:
|1]
Denominatar coefficient:
|11 0.5]

Sample time [-1 for inkerited]:

1

Cancel Help Apply

Numerator coefficient
A vector of polynomial coefficients or a matrix of coefficients
where each row of coefficients corresponds to a distinct numerator
polynomial. You must specify the polynomial coefficients in
ascending powers of z''. If you specify a vector of coefficients,
i.e., a single numerator polynomial, the output of the block
is a scalar signal. If you specify a matrix of coefficients, i.e.,
multiple polynomials, the block’s output is a vector of signals,

2-219

Discrete Filter

each corresponding to the filter consisting off the corresponding
numerator polynomial and the denominator polynomial specified
by the Denominator coefficients parameter. The defaultis [1].

Denominator coefficient
The vector of denominator coefficients. The defaultis [1 0.5].
The width of the vector, i.e., the order of the denominator, must
be greater than or equal to the width of the numerator vector or
matrix rows, i.e., the order of the numerator.

Sample time
The time interval between samples. See Specifying Sample Time
in the “How Simulink Works” chapter of the Using Simulink
documentation.

The State Properties pane of this block pertains to code generation
and has no effect on model simulation. See “Block States: Storing
and Interfacing” in the Real-Time Workshop User’s Guide for more
information.

Characteristics Dpjrect Feedthrough Only if the lengths of the Numerator and
g
Denominator parameters are equal

Sample Time Specified in the Sample time parameter
Scalar Expansion No

States Length of Denominator parameter -1
Dimensionalized No

Zero Crossing No

2-220

Discrete State-Space

Purpose
Library

Description

yin)=Cxin)+Du(n)
*(n+1)=Axin)+Bu(n)

Data Type
Support

Implement discrete state-space system
Discrete

The Discrete State-Space block implements the system described
xin+1l) = Axin)+Euin)

by ¥n) = Cx(r)+Duin)

where u is the input, x is the state, and y is the output. The matrix
coefficients must have these characteristics, as illustrated in the
following diagram:

* A must be an n-by-n matrix, where n is the number of states.

¢ B must be an n-by-m matrix, where m is the number of inputs.

¢ C must be an r-by-n matrix, where r is the number of outputs.

¢ D must be an r-by-m matrix.

n m
n A B
r C D

The block accepts one input and generates one output. The input vector
width is determined by the number of columns in the B and D matrices.
The output vector width is determined by the number of rows in the C
and D matrices.

Simulink converts a matrix containing zeros to a sparse matrix for
efficient multiplication.

The Discrete State Space block accepts and outputs a real signal of
type double.

2-221

Discrete State-Space

Parameters

d E! Function Block Parameters: Discrete State-Space El
an .

N Dizcrete State Space

Dialog _

Box Digorete state-space model:

w[n+1] = Ax[n] + Buln]
¥ir] = Cxln] + Duln]

Main IState Froperties |
A
1

B:
[

C:
[1

D
[1
[nitial conditions:

|0

Sample time [-1 far inherited]:

[

k. Cancel Help Apply

....................................

AB,CD
The matrix coefficients, as defined in the preceding equations.

Initial conditions
The initial state vector. The default is 0. Simulink does not allow
the initial states of this block to be inf or NaN.

2-222

Discrete State-Space

Sample time

The time interval between samples. See Specifying Sample Time
in the “How Simulink Works” chapter of the Using Simulink

documentation.

The State Properties pane of this block pertains to code generation
and has no effect on model simulation. See “Block States: Storing
and Interfacing” in the Real-Time Workshop User’s Guide for more

information.

Characteristics pjrect Feedthrough

Only if D # 0

Sample Time

Specified in the Sample time parameter

Scalar Expansion

Yes, of the initial conditions

States Determined by the size of A
Dimensionalized Yes
Zero Crossing No

2-223

Discrete-Time Integrator

Purpose
Library

Description

2-224

kK T=

=1

Perform discrete-time integration or accumulation of signal
Discrete

You can use the Discrete-Time Integrator block in place of the Integrator
block to create a purely discrete system.

The Discrete-Time Integrator block allows you to

® Define initial conditions on the block dialog box or as input to the
block.

® Define an input gain (K) value.

® QOutput the block state.

® Define upper and lower limits on the integral.

® Reset the state depending on an additional reset input.

These features are described below.
Integration and Accumulation Methods

The block can integrate or accumulate using the Forward Euler,
Backward Euler, and Trapezoidal methods. For a given step n, Simulink
updates y(n) and x(n+1). In integration mode, T is the block’s sample
time (delta T in the case of triggered sample time). In accumulation
mode, T = 1; the block’s sample time determines when the block’s
output is computed but not the output’s value. K is the gain value.
Values are clipped according to upper or lower limits.

e Forward Euler method (the default), also known as Forward
Rectangular, or left-hand approximation.

For this method, 1/s is approximated by T/(z-1). The resulting
expression for the output of the block at step n is

y(n) = y(n-1) + K*T*u(n-1)

Discrete-Time Integrator

Let x(n+1) = x(n) + K*T*u(n). The block uses the following steps
to compute its output:

Step O: y(0) = x(0) = IC (clip if necessary)
x(1) = y(0) + K*T*u(0)

Step 1: y(1)
x(2) = x(1)

x(1)
K*T*u (1)

+

Step n: y(n) x(n)
x(n+1) = x(n) + K*T*u(n) (clip if necessary)

With this method, input port 1 does not have direct feedthrough.

¢ Backward Euler method, also known as Backward Rectangular or
right-hand approximation.

For this method, 1/s is approximated by T*z/(z-1). The resulting
expression for the output of the block at step n is

y(n) = y(n-1) + K*T*u(n)

Let x(n) = y(n-1). The block uses the following steps to compute its
output

Step O: y(0) = x(0) = IC (clipped if necessary)
x(1) = y(0)

or, depending on Use initial condition as initial and
reset value for

parameter:

Step O: x(0) = IC (clipped if necessary)
x(1) =y(0) = x(0) + K*T*u(0)

Step 1: y(1) = x(1) + K*T*u(1)
x(2) =y(1)

2-225

Discrete-Time Integrator

2-226

Step n: y(n) = x(n) + K*T*u(n)
x(n+1) = y(n)

With this method, input port 1 has direct feedthrough.
Trapezoidal method. For this method, 1/s is approximated by
T/2%(z+1)/(z-1)
When T is fixed (equal to the sampling period), let
x(n) = y(n-1) + K*T/2 * u(n-1)
The block uses the following steps to compute its output

Step O: x(0) = IC (clipped if necessary)
x(1) = y(0) + K*T/2 * u(0)

or, depending on Use initial condition as initial and
reset value for

parameter:

Step O: y(0) = x(0) = IC (clipped if necessary)
x(1) = y(0) = x(0) + K*T/2*u(0)

Step 1: y(1) = x(1) + K*T/2 * u(1)
x(2) =y(1) + K*T/2 * u(1)

Step n: y(n) = xX(n) + K*T/2 * u(n)

+

x(n+1) = y(n) + K*T/2 * u(n)

Here, x(n+1) is the best estimate of the next output. It isn’t quite
the state, in the sense that x(n) != y(n).

If T is variable (i.e. obtained from the triggering times), the block
uses the following algorithm to compute its outputs

Step O: y(0) = x(0) = IC (clipped if necessary)
x(1) = y(0)

Discrete-Time Integrator

or, depending on Use initial condition as initial and
reset value for

parameter:

Step O: y(0) = x(0) = IC (clipped if necessary)
x(1) = y(0) = x(0) + K*T/2*u(0)

Step 1: y(1) = x(1) + T/2 * (u(1) + u(0))
x(2) =y(1)

Step n: y(n) = x(n) + T/2 * (u(n) + u(n-1))

x(n+1) = y(n)

With this method, input port 1 has direct feedthrough.

The block reflects the selected integration or accumulation method,

as

—F

=1 =1

Dizcrete-Time Dizcrete-Time

Integratar Integratar

Fanmward Euler Badauward Euler

K Ts K T=zz
b

this figure shows.

b T=iz+1) 1 Kz K (z+1)
[_ — B F

2iz-17 =1 =1 2iz1)
Discrete-Time Dizcrete-Time Dizcrete-Time Discrete-Time
Integratar Accumulator Accumulator Accumulator
Trapezaidal Fonward Euler Badaward Euler Trapezoidal

Defining Initial Conditions

You can define the initial conditions as a parameter on the block dialog
box or input them from an external signal:

To define the initial conditions as a block parameter, specify the
Initial condition source parameter as internal and enter the
value in the Initial condition parameter field.

To provide the initial conditions from an external source, specify the
Initial condition source parameter as external. An additional
input port appears under the block input, as shown in this figure.

2-227

Discrete-Time Integrator

[nput
K Ts
Intfialcondifion | ——
— ez

Output

Discrete-Time

Integratar

Using the State Port

In two situations, you must use the state port instead of the output port:

® When the output of the block is fed back into the block through the
reset port or the initial condition port, causing an algebraic loop. For
an example of this situation, see the bounce model.

® When you want to pass the state from one conditionally executed
subsystem to another, which can cause timing problems. For an
example of this situation, see the clutch model.

You can correct these problems by passing the state through the state
port rather than the output port. Although the values are the same,
Simulink generates them at slightly different times, which protects
your model from these problems. You output the block state by selecting
the Show state port check box.

By default, the state port appears on the top of the block, as shown in

this figure.

Sfe

[nput K Ts

=1

Discrate-Time
Integrator

Output

Limiting the Integral

To prevent the output from exceeding specifiable levels, select the Limit
output check box and enter the limits in the appropriate parameter

2-228

Discrete-Time Integrator

fields. Doing so causes the block to function as a limited integrator.
When the output reaches the limits, the integral action is turned off to
prevent integral wind up. During a simulation, you can change the
limits but you cannot change whether the output is limited. The output
is determined as follows:

® When the integral is less than or equal to the Lower saturation
limit and the input is negative, the output is held at the Lower
saturation limit.

® When the integral is between the Lower saturation limit and the
Upper saturation limit, the output is the integral.

® When the integral is greater than or equal to the Upper saturation
limit and the input is positive, the output is held at the Upper
saturation limit.

To generate a signal that indicates when the state is being limited,
select the Show saturation port check box. A saturation port appears
below the block output port, as shown in this figure.

Output

Input K Ts —
» =1 Saturatian
e

Discrete-Time
Integrator

The signal has one of three values:

¢ 1 indicates that the upper limit is being applied.
¢ (0 indicates that the integral is not limited.

¢ -1 indicates that the lower limit is being applied.

Resetting the State

The block can reset its state to the specified initial condition, based on
an external signal. To cause the block to reset its state, select one of the

2-229

Discrete-Time Integrator

2-230

External reset parameter choices. A trigger port appears below the
block’s input port and indicates the trigger type, as shown in this figure.

Input
» K Ts Output
Reset P 1

Discrete-Time
Integrator

The reset port has direct feedthrough. If the block output is fed back
into this port, either directly or through a series of blocks with direct
feedthrough, an algebraic loop results. To resolve this loop, feed the
output of the block’s state port into the reset port instead. To access the
block’s state, select the Show state port check box.

Reset Trigger Types

The External reset parameter lets you determine the attribute of the
reset signal that triggers the reset. The trigger options include:

® rising

Resets the state when the reset signal has a rising edge. For example,
the following figure shows the effect that a rising reset trigger has
on backward Euler integration.

Reset | ;
. 7 P a9 . >
Rising ; i No Integration | :
Reset P / A
Input -

Discrete-Time Integrator

e falling

Resets the state when the reset signal has a falling edge. For
example, the following figure shows the effect that a falling reset
trigger has on backward Euler integration.

Reset ‘
P T q S >
Falling Integrate ntegration
Reset
Input E ! 5 E

® either

Resets the state when the reset signal rises or falls. For example,
the following figure shows the effect that an either reset trigger has
on backward Euler integration.

Reset ‘ : ;
—p T
Either Intégrate | iNo Integration
Reset S N R T T T |
Input /
LA\ .
- g

® level

2-231

Discrete-Time Integrator

2-232

Resets and holds the output to the initial condition while the reset
signal is nonzero. For example, the following figure shows the effect
that a level reset trigger has on backward Euler integration.

Reset‘

Level
Reset

Input‘

h

"
Integr

S B

a“:te

G a v

N Integration

sampled level

v

Resets the output to the initial condition when the reset signal is
nonzero. For example, the following figure shows the effect that a
sampled level reset trigger has on backward Euler integration.

A

Reset

5]

Sampled
Level Reset

Input

b

---go--

tion:

il 4

Inte%g rate

v

Discrete-Time Integrator

Note The sampled level reset option requires fewer computations
and hence is more efficient than the level reset option. However,
the level reset option, but may introduces a discontinuity when
integration resumes.

Choosing All Options

When all options are selected, the icon looks like this.

e
Input Output
LN _
Initial condifion |~ =4 Saturatian
*a
Dizcrete-Time
Integratar
Data Type The Discrete-Time Integrator block accepts real signals of any data type
Support supported by Simulink, including fixed-point data types.

2-233

Discrete-Time Integrator

Parameters
and

Dialog

Box

2-234

E! Function Block Parameters: Discrete-Time IntEgra:

The Main pane of the Discrete-Time Integrator block dialog appears
as follows:

Dizcrete-Time |ntegratar
’7 Dizcrete-time integration or accumulation of the input zignal.

k4 ain I Signal D ata Types | State Properties

[ntegrataor methu:u:l:l [rtegration: Fonmard Euler

[3ain value:

1.0

Esternal reset; I nohe

Initial condition s::nurn::e:l irternal

[ritial condition:

1

I1ze initial condition az initial and reset value for; | State and output

Sample time [-1 for inkernted]:

[1
[Lirnit cutput

|Ipper zaturation limit;

fin

Lawer saturatian limit:

[-in
[~ Show saturation port
[T Show state part

[~ lgnare limit and reset when linearnizing

(] Cancel Help

Apply

Discrete-Time Integrator

Integrator method
Specify the integration or accumulation method.

Gain value
Specify a value by which to multiply the integrator input.
Specifying a value other than 1.0 (the default) is semantically
equivalent to connecting a signal to the input of the integrator
via a Gain block, i.e., to

K T=
O
_ z1 Ot
Zain Discrete-Time

Integratar

Using this parameter to specify the input gain eliminates a
multiplication operation in the generated code. Realizing this
benefit, however, requires that this parameter be nontunable.
Accordingly, the Real-Time Workshop generates a warning during
code generation if the Model Parameter Configuration dialog
box for this model declares this parameter to be tunable. If you
want to tune the input gain, set this parameter to 1.0 and use an
external Gain block to specify the input gain.

External reset
Resets the states to their initial conditions when a trigger event
occurs in the reset signal. See “Resetting the State” on page 2-229
for more information.

Initial condition source
Gets the states’ initial conditions from the Initial condition
parameter (internal) or from an external block (external).
Simulink does not allow the initial condition of this block to be
inf or NaN.

Initial condition
The states’ initial conditions. This parameter is only available
if the Initial condition source parameter is set to internal.

2-235

Discrete-Time Integrator

Simulink does not allow the initial condition of this block to be
inf or NaN.

Use initial condition as initial and reset value for
When you set this parameter to State and output,

y(0) = IC
x(0) = IC
or at reset
y(n) = IC
x(n) = IC

When you set this parameter to State only (most efficient),

x(0) = IC
or at reset
x(n) = IC

Sample time
The time interval between samples. The default is 1. In
accumulation mode, the sample time specifies when the block’s
output is computed. See Specifying Sample Time in the “How
Simulink Works” chapter of the Using Simulink documentation.

Limit output
If selected, limits the block’s output to a value between the Lower
saturation limit and Upper saturation limit parameters.

Upper saturation limit
The upper limit for the integral. This parameter is only available
if you select the Limit output parameter.

2-236

Discrete-Time Integrator

Lower saturation limit
The lower limit for the integral. This parameter is only available
if you select the Limit output parameter.

Show saturation port
If selected, adds a saturation output port to the block.

Show state port
If selected, adds an output port to the block for the block’s state.

Ignore limit and reset when linearizing
Select this option to cause Simulink linearization commands to
treat this block as unresettable and as having no limits on its
output, regardless of the settings of the block’s reset and output
limitation options. This allows you to linearize a model around an
operating point that causes the integrator to reset or saturate.

The Signal Data Types pane of the Discrete-Time Integrator block
dialog appears as follows:

2-237

Discrete-Time Integrator

2-238

E! Function Block Parameters: Discrete-Time Integr

Dizcrete-Time [ntegratar
’7 Digcrete-time integration or accumulation of the input signal.

I ain | Signal Data Types IState Properties |

Cutput data type mu:u:le:l Specify via dialog
Cutput data type [e.q. =fi[16], vint[3). float[*zingle']):

| sfix(18]
Output saling value [Slope, e.g. 279 or [Slope Bias], e.q. [1.25 3]

|20

[~ Lock output scaling against changes by the autozcaling tool

Raound integer calculations toward: | Floar

[~ Saturate on integer overflow

Cancel Help

Apply

Discrete-Time Integrator

Output data type mode
Specify the output data type and scaling via the dialog box, or
inherit the data type and scaling from the driving block or by
backpropagation.

Output data type
Specify any data type, including fixed-point data types. This
parameter is only visible if you select Specify via dialog for
the Output data type and scaling parameter.

Output scaling value
Set the output scaling using either binary point-only or [Slope
Bias] scaling. This parameter is only visible if you select Specify
via dialog for the Output data type and scaling parameter.

Lock output scaling against changes by the autoscaling tool
Select to lock scaling of outputs. This parameter is only visible if
you select Specify via dialog for the Output data type mode
parameter.

Round integer calculations toward
Select the rounding mode for fixed-point operations.

Saturate on integer overflow
Select to have overflows saturate.

The State Properties pane of this block pertains to code generation
and has no effect on model simulation. See “Block States: Storing
and Interfacing” in the Real-Time Workshop User’s Guide for more

information.

Characteristics pjrect Feedthrough Yes, of the reset and external initial
condition source ports. The input has
direct feedthrough for every integration
method except forward Euler and
accumulation forward Euler.

Sample Time Specified in the Sample time parameter

2-239

Discrete-Time Integrator

2-240

Scalar Expansion

Yes, of parameters

States

Inherited from driving block and
parameter

Dimensionalized

Yes

Zero Crossing

No

Discrete Transfer Fcn

Purpose
Library

Description

1

z+0 .5

Data Type
Support

Implement discrete transfer function
Discrete

The Discrete Transfer Fcn block implements the z-transform transfer
function described by the following equations:

m m=1 T —m
HI'E'] _numiz) _ RUMpE + AU Z + . tRHm, T

deniz) dengz" +d’enlz"_l+ .. +den_

where m+1 and n+1 are the number of numerator and denominator
coefficients, respectively. num and den contain the coefficients of the
numerator and denominator in descending powers of z. num can be

a vector or matrix, den must be a vector, and both are specified as
parameters on the block dialog box. The order of the denominator must
be greater than or equal to the order of the numerator.

Block input is scalar; output width is equal to the number of rows in
the numerator.

The Discrete Transfer Fen block represents the method typically used
by control engineers, representing discrete systems as polynomials in z.
The Discrete Filter block represents the method typically used by signal
processing engineers, who describe digital filters using polynomials

in z'! (the delay operator). The two methods are identical when the
numerator is the same length as the denominator.

The Discrete Transfer Fen block displays the numerator and
denominator within its icon depending on how they are specified. See
Transfer Fcn for more information.

The Discrete Transfer Function block accepts and outputs real signals
of type double.

2-241

Discrete Transfer Fcn

Parameters
and

Dialog

Box

2-242

E! Function Block Parameters: Discrete Transfer x|

Dizcrete Transfer Fon

The numerator coefficient can be a wector or matrix expreszion. The denominator
coefficient must be a vector. The output width equals the number of rows in the
nurmeratar coefficient, Yaou should specify the coeffizients in dezcending arder of
povers of 2.

Main I State Properties

MHurmerator coefficient:

Denominator coefficient;
{11 0.5]

S ample time [-1 for inkernted];

[1

2k, Cancel Help Epply

Numerator coefficient
The row vector of numerator coefficients. A matrix with multiple
rows can be specified to generate multiple output. The default
is [1].

Denominator coefficient
The row vector of denominator coefficients. The default is [1
0.5].

Sample time
The time interval between samples. The default is 1. See
Specifying Sample Time in the “How Simulink Works” chapter of
the Using Simulink documentation.

The State Properties pane of this block pertains to code generation
and has no effect on model simulation. See “Block States: Storing

Discrete Transfer Fcn

and Interfacing” in the Real-Time Workshop User’s Guide for more

information.

Characteristics pjrect Feedthrough

Only if the lengths of the Numerator and
Denominator parameters are equal

Sample Time

Specified in the Sample time parameter

Scalar Expansion

No

States Length of Denominator parameter -1
Dimensionalized No
Zero Crossing No

2-243

Discrete Zero-Pole

Purpose

Library

Description

Data Type
Support

2-244

(=1
Zz-0.5)

Model system defined by zeros and poles of discrete transfer function
Discrete

The Discrete Zero-Pole block models a discrete system defined by the
zeros, poles, and gain of a z-domain transfer function. This block
assumes that the transfer function has the following form

Ziz) _ (z—Z)iz-Z5)..(2-2Z,)

Hiz) :KPI'E'] - [g_Pl]fz—P‘z]...l'E—P_,t]

where Z represents the zeros vector, P the poles vector, and K the gain.
The number of poles must be greater than or equal to the number of
zeros (n > m). If the poles and zeros are complex, they must be complex
conjugate pairs.

The block displays the transfer function depending on how the
parameters are specified. See Zero-Pole for more information.

The Discrete Zero-Pole block accepts and outputs real signals of type
double.

Discrete Zero-Pole

Parameters
and

Dialog

Box

51 Function Block Parameters: Discrete Zero-Pole

Dizcrete £ero-Pole

b atris expression for zemos. Yector expression for poles and gain. Output width
equals the number of columns in zeros matnx, or one if zeros 1z a vector.

M ain I State Properties

£l

|[1]

Poles:

{10 05]

[3 air;

[1

Sample time [-1 far inhented):

1

k. Cancel Help Amply

Zeros
The matrix of zeros. The defaultis [1].

Poles
The vector of poles. The defaultis [0 0.5].

Gain
The gain. The default is 1.

Sample time

The time interval between samples. See Specifying Sample Time

in the “How Simulink Works” chapter of the Using Simulink

documentation.

2-245

Discrete Zero-Pole

Characteristics pjrect Feedthrough

2-246

The State Properties pane of this block pertains to code generation
and has no effect on model simulation. See “Block States: Storing
and Interfacing” in the Real-Time Workshop User’s Guide for more

information.

Yes, if the number of zeros and poles are
equal

Sample Time

Specified in the Sample time parameter

Scalar Expansion

No

States

Length of Poles vector

Dimensionalized

No

Zero Crossing

No

Display

Purpose
Library

Description

[0]

Show value of input
Sinks

The Display block shows the value of its input on its icon.

You control the display format using the Format parameter:

® short — displays a 5-digit scaled value with fixed decimal point
® long — displays a 15-digit scaled value with fixed decimal point
® short_e — displays a 5-digit value with a floating decimal point
® long_e — displays a 16-digit value with a floating decimal point

® bank — displays a value in fixed dollars and cents format (but with
no $ or commas)

® hex (Stored Integer) — displays the stored integer value of a
fixed-point input in hexadecimal format

® binary (Stored Integer) — displays the stored integer value of a
fixed-point input in binary format

® decimal (Stored Integer) — displays the stored integer value of a
fixed-point input in decimal format

® octal (Stored Integer) — displays the stored integer value of a
fixed-point input in octal format

The amount of data displayed and the time steps at which the data is
displayed are determined by the Decimation block parameter and
the SampleTime property:

* The Decimation parameter enables you to display data at every nth
sample, where n is the decimation factor. The default decimation, 1,
displays data at every time step.

® The SampleTime property, settable with set param, enables you to
specify a sampling interval at which to display points. This property
is useful when you are using a variable-step solver where the interval

2-247

Display

2-248

between time steps might not be the same. The default value of -1
causes the block to ignore the sampling interval when determining
the points to display.

If the block input is an array, you can resize the block to show more
than just the first element. You can resize the block vertically or
horizontally; the block adds display fields in the appropriate direction.
A black triangle indicates that the block is not displaying all input
array elements. For example, the following figure shows a model that
passes a vector (1-D array) to a Display block. The black triangle on the
Display block indicates more data to be displayed.

A [1

Display

¥

The following figure shows the resized block displaying both input
elements.

]

2 Display

1=

B

Note that the Display block displays up to ten columns of a matrix.
Display Abbreviations

The following abbreviations appear on the Display block to help you
identify the format of the number being displayed.

Display

Data Type
Support

Symbol Description

(SI) This alerts you to the fact that the number being
displayed is the stored integer value. This symbol
does not appear when the signal is of an integer data

type.
hex The number being displayed is in hexadecimal
format.
bin The number being displayed is in binary format.
oct The number being displayed is in octal format.

Floating Display

To use the block as a floating display, select the Floating display
check box. The block’s input port disappears and the block displays the
value of the signal on a selected line. If you select the Floating display
option, you must turn off the signal storage reuse feature in Simulink.
See “Signal storage reuse” in the “Running Simulations” chapter of the
Using Simulink documentation.

The Display block accepts and outputs real or complex signals of any
data type supported by Simulink, including fixed-point data types.

For a discussion on the data types supported by Simulink, see “Data
Types Supported by Simulink” in the “Working with Data” chapter of
the Using Simulink documentation.

2-249

Display

Parameters

= sink Block Parameters: Display . |

and :
N —Dizplay
Dialog oy :
Box Mumeric dizplay of input walues.

—Parameterz

Decimatior:

Pt 3

[1

[~ Floating display

Ok

Cancel Help Apply

Format

Specify the format of the data displayed, as discussed in
Description. The default is short.

Decimation

Specify how often to display data. The default value, 1, displays
every input point.

Floating display

If selected, the block’s input port disappears, which enables the
block to be used as a floating Display block.

Characteristics sampleTime

Use set_param to specify the SampleTime
property

Dimensionalized

Yes

2-250

Divide
|

Purpose Multiply or divide inputs
Librclry Math Operations
Description The Divide block is an implementation of the Product block. See
Product for more information.
AX
>
>

2-251

DocBlock

Purpose
Library

Description

Data Type
Support

2-252

Create text that documents model and save text with model
Model-Wide Utilities

The DocBlock allows you to create and edit text that documents a
model, and save that text with the model. Double-clicking an instance
of the block creates a temporary file containing the text associated with
this block and opens the file in an editor. Use the editor to modify the
text and save the file. Simulink stores the contents of the saved file in
the model file.

The DocBlock supports HTML, Rich Text Format (RTF), and ASCII
text document types. The default editors for these different document
types are

e HTML — Microsoft Word (if available). Otherwise, the DocBlock
opens HTML documents using the editor specified on the
Editor/Debugger Preferences pane of the Preferences dialog box.

® RTF — Microsoft Word (if available). Otherwise, the DocBlock opens
RTF documents using the editor specified on the Editor/Debugger
Preferences pane of the Preferences dialog box.

® Text — The DocBlock opens text documents using the editor specified
on the Editor/Debugger Preferences pane of the Preferences
dialog box.

Use the docblock command to change the default editors.

Note Simulink embeds DocBlock documents in the model file (see
Chapter 11, “Model File Format”). This can greatly increase the size
of a model file, for example, if the RTF document contains bitmapped
images, and can require more time to open and save the model.

Not applicable.

DocBlock

Parameters
and

Dialog

Box

Double-clicking an instance of the DocBlock opens an editor. To access
the DocBlock parameter dialog box, select the block in the Model Editor
and then select Mask Parameters from either the Edit menu or the

block’s context menu.

E! Block Parameters: DocBlock

—DocBlock [mazk] [link]

will apen an editar.

Iz this block to zave long descriphive test with the model. Double-clicking the block

—Parameters

BT Embedded Coder Flag

Document Tope| Tesxt

Cancel

Help

Apply

RTW Embedded Coder Flag (Real-Time Workshop Embedded Coder

license required)

Enter a template symbol name in this field. Real-Time Workshop
Embedded Coder uses this symbol to add comments to the code

generated from the model. See “Adding Global Comments”

under “Module Packaging Features” in the Real-Time Workshop
Embedded Coder documentation for more information.

Document Type

Specifies the type of document associated with the DocBlock. The

options are

® Text (the default)
® RTF

® HTML

2-253

DocBlock

Characteristics Not applicable

2-254

Dot Product

Purpose
Library

Description

Data Type
Support

Generate dot product of two vectors
Math Operations

The Dot Product block generates the dot product of the vectors at its
inputs. The scalar output, y, is equal to the MATLAB operation

y = sum(conj(ul) .* u2)

where u1 and u2 represent the vectors at the block’s top (or left) and
bottom (or right) inputs, respectively. The inputs can be vectors, column
vectors (single-column matrices), or scalars. If both inputs are vectors
or column vectors, they must be the same length. If u1 and u2 are
both column vectors, the block outputs the equivalent of the MATLAB
expression uil'*u2.

The elements of the input vectors can be real- or complex-valued
signals. The signal type (complex or real) of the output depends on the
signal types of the inputs.

Input 1 Input 2 Output
real real real

real complex complex
complex real complex
complex complex complex

To perform element-by-element multiplication without summing, use
the Product block.

The Dot Product block accepts and outputs signals of any data type
supported by Simulink, including fixed-point data types.

For a discussion on the data types supported by Simulink, see “Data
Types Supported by Simulink”.

2-255

Dot Product

Parameters =1 Block Parameters: Dot Product EHE
and .
N — Dok Praduct [mazk] [link]
Dialog AP
Box nner [dot] product.

w = gumlconjul] *uZ]. The operand ul corresponds to the bop [or left] input part.

—Parameters

[iRequire all inputs to have same data type!

Dutput data type mode:; | Specify via dialog LI

Qutput data type [e.g., sfix(16], uint[2], float[single"]]:
| sfis(1E]

Output sealing [Slope, eg. 279 or [Slope Biaz], e.g. [1.25 3]
ERD

[Lock output scaling against changes by the autoscaling tool

Found integer calculation toward: I Floar LI

[~ Saturate on integer averflow

I ok Cancel Help | Apply

Require all inputs to have same data type
Select to require all inputs to have the same data type.

Output data type mode
Set the data type and scaling of the output to be the same as
that of the first input, or to be inherited via an internal rule or
by backpropagation. Alternatively, choose to specify the data type

and scaling of the output through the Qutput data type and
Output scaling value parameters.

2-256

Dot Product
|

Output data type
Set the output data type. This parameter is only visible if you
select Specify via dialog for the Output data type mode
parameter.

Output scaling
Set the output scaling using either binary point-only or [Slope
Bias] scaling. This parameter is only visible if you select Specify
via dialog for the Output data type and scaling parameter.

Lock output scaling against changes by the autoscaling tool
Select to lock scaling of outputs. This parameter is only visible if
you select Specify via dialog for the Output data type mode
parameter.

Round integer calculations toward
Select the rounding mode for fixed-point operations.

Saturate on integer overflow
Select to have overflows saturate.

Characteristics pjrect Feedthrough Yes
Sample Time Inherited from driving block
Scalar Expansion No
States 0
Dimensionalized Yes
Zero Crossing No

2-257

Embedded MATLAB Function

Purpose Include MATLAB code in models that generate embeddable C code

I.ibrclry User-Defined Functions

Description An Embedded MATLAB Function block lets you compose a MATLAB

function in Simulink like the following example:

Embedded
A TLAE Function

File Edit

=1olx]

Text Debug Tools ‘Window Help Ao

1 function [mweah,stdew] = stats(vals)
2
3 ¥ caloulates a statistical mean and a standard
4 % deviation for the wvalues in wvals.
=
6 - len = lengthiwvals):
T - ean = avg(vals, len):
8§ - astdev = agrtisumi i (vals-avg(vals, lenj).*211/ len):
= M plot(vals, ' —+'):
10
11 - function mean = avglarray,size)
12 — mean = sumlarray)//aize:;
Ready [tn 1 col 1 4

2-258

The MATLAB function you create executes for simulation and generates

code for a Real-Time Workshop target. If you are new to Simulink
and MATLAB, see Using the Embedded MATLAB Function Block in

Embedded MATLAB Function

Simulink documentation for a comprehensive overview including a
step-by-step example.

You create the MATLAB function in the Embedded MATLAB Editor.
To learn about this editor’s capabilities see Using the Embedded
MATLAB Editor.

You specify input and output data to the Embedded MATLAB Function
block in the function header as arguments and return values. Notice
that the argument and return values of the preceding example function
correspond to the inputs and outputs of the block in Simulink.

=] call_stats_block . =101 %]

File Edit “iew Simulation Format Tools Help

DI@E@I%EISQI} llinf INn:nrmaI j|

Bl | .
mean
Disp laoy
(2 2 ¢ 8) —fuals StAS
g S | E—1
sonstant Embadd=d WA TLAE Function -
Ciisp lawy1
Ready |100% | | |odz45 &

The Embedded MATLAB Function block supports a subset of the
language for which it can generate efficient embeddable code. The
following table gives a high-level overview of its capabilities with links
to more detailed information.

2-259

Embedded MATLAB Function

2-260

Supported MATLAB Features

Unsupported MATLAB
Features

Two-Dimensional Arrays

N-Dimensional Arrays

Matrix operations(+,-,*,....)

Matrix Deletion (X(1) = [])
Logical Indexing

Complex Numbers

Sparse Matrices

Double/Single Math

try-catch

if/switch/while/for

Cell Arrays, Structures, Java,
User-Defined Classes

Numeric Types

Calling out to functions on the
path (except for simulation)

Subfunctions

global

persistent

Command Duality

Simulink Parameters as Inputs

See the Chapter 12, “Embedded MATLAB Basics” for full details.

To generate embeddable code, the Embedded MATLAB Function block
relies on an analysis that determines the size and class of each variable.
This analysis imposes the following additional restrictions on the way
in which the above features may be used.

1 The first definition of a variable must define both its class and size.
The class and size of a variable cannot be changed once it has been
set.

2 Whether data is complex or real is determined by the first definition.
Subsequent definitions may assign real numbers into complex
storage but may not assign complex numbers into real storage.

The preceding limitations require you to code in a certain style.
Some common idioms to avoid are listed in “Limitations on Indexing

Embedded MATLAB Function

Operations” on page 12-77 and “Limitations with Complex Numbers” on
page 12-78 in Simulink documentation.

In addition to language restrictions, Embedded MATLAB Function
blocks support only a subset of the functions available in MATLAB.
A list of supported functions is given in the “Embedded MATLAB
Run-Time Function Library” on page 12-8. These functions include
functions in common categories like

e Arithmetic functions like plus, minus, and power

® Matrix operations like size, and length

¢ Advanced matrix operations like 1u, inv, svd, and chol

® Trigonometric functions like sin, cos, sinh, and cosh

to name just a few. See “Embedded MATLAB Run-Time Library —
Categorical List” on page 12-26 for a complete list of function categories.

Note Although Embedded MATLAB attempts to produce exactly the
same results as MATLAB, there will be occasions when they will differ
due to rounding errors. These numerical differences, which may be a
few eps initially, might be magnified after repeated operations. Reliance
on the behavior of nan is not recommended. Different C compilers may
yield different results for the same computation.

To support visualization of data, Embedded MATLAB Function blocks
support calls to MATLAB functions for simulation only. See “Calling
MATLAB Functions” on page 12-46 in Simulink documentation to
understand some of the limitations of this capability, and how it

is integrated into Embedded MATLAB analysis. If these calls do

not directly affect any of the Simulink inputs or outputs, they are
eliminated from the generated code when generating code with
Real-Time Workshop.

2-261

Embedded MATLAB Function

Data Type
Support

Parameters
and

Dialog

Box

2-262

You can declare an Embedded MATLAB input to be a Simulink
parameter instead of a port in the Model Explorer. The Embedded
MATLAB Function block also supports inheritance of types and size
for inputs, outputs, and parameters. If needed, you can also set these
explicitly using the Model Explorer. See Typing Function Argument
and Return Variables, Sizing Function Argument and Return Variables,
and Parameter Arguments in Embedded MATLAB Functions for more
detailed descriptions of variables that you use in Embedded MATLAB
Functions.

Note that recursive calls are not allowed in Embedded MATLAB.

The Embedded MATLAB Function block accepts inputs of any type
supported by Simulink. For a discussion on the variable types supported
by Embedded MATLAB functions in Simulink, refer to “Data Types
Supported by Simulink” in the Simulink documentation.

For more information on fixed-point support in Embedded MATLAB,
refer to “Using the Fixed-Point Toolbox with Embedded MATLAB” in
the Fixed-Point Toolbox documentation.

Simulink frames are not supported. However, you can use the Rate
Transition block to convert frames into vectors.

The Block Parameters dialog box for an Embedded MATLAB Function
block is identical to the Block Parameters dialog box for a Subsystem
block. See the reference page for the Subsystem, Atomic Subsystem,
CodeReuse Subsystem blocks for an identification of each field.

Embedded MATLAB Function
|

Characteristics pirect Feedthrough Yes
Sample Time Specified in the Sample time
parameter
Scalar Expansion Yes
Dimensionalized Yes
Zero Crossing No

2-263

Enable

Purpose
Library

Description

Il

Data Type
Support

2-264

Add enabling port to subsystem
Ports & Subsystems

Adding an Enable block to a subsystem makes it an enabled subsystem.
An enabled subsystem executes while the input received at the Enable
port is greater than zero.

At the start of simulation, Simulink initializes the states of blocks
inside an enabled subsystem to their initial conditions. When an
enabled subsystem restarts (executes after having been disabled), the
States when enabling parameter determines what happens to the
states of blocks contained in the enabled subsystem:

* reset resets the states to their initial conditions (zero if not defined).
® held holds the states at their previous values.
You can output the enabling signal by selecting the Show output

port check box. Selecting this option allows the system to process the
enabling signal.

A subsystem can contain no more than one Enable block.

The data type of the input of the Enable port, i.e., the enable port that
appears on the subsystem in which the Enable block resides, can be any
data type supported by Simulink, including fixed-point data types.

For a discussion on the data types supported by Simulink, see “Data
Types Supported by Simulink” in the “Working with Data” chapter of
the Using Simulink documentation.

Enable

Parameters
and

Dialog

Box

=1 Block Parameters: Enable EE2
—Enable Part

Place this block in a subsystem ko create an enabled subsystem.

—Parameters

Stetes when ensbling >

[Show output port

¥ Enable zero crossing detection

Ok Cancel Help Apply

States when enabling
Specifies how to handle internal states when the subsystem
becomes reenabled.

Show output port
If selected, Simulink draws the Enable block output port and
outputs the enabling signal.

Enable zero crossing detection
Select to enable zero crossing detection. For more information, see
Zero Crossing Detection in the “How Simulink Works” chapter of
the Using Simulink documentation.

Characteristics Sample Time Determined by the signal at the enable

port

Dimensionalized Yes

Zero Crossing Yes, if enabled.

2-265

Enabled and Triggered Subsystem

Purpose

Library

Description

2-266

Inl

n E3
tht1

Represent subsystem whose execution is enabled and triggered by
external input

Ports & Subsystems

This block is a Subsystem block that is preconfigured to serve as the
starting point for creating an enabled and triggered subsystem. For
more information, see “Iriggered and Enabled Subsystems” in the
online Simulink help.

Enabled Subsystem
|

Purpose Represent subsystem whose execution is enabled by external input
Librclry Ports & Subsystems
Description This block is a Subsystem block that is preconfigured to serve as the

starting point for creating an enabled subsystem. For more information,
see “Enabled Subsystems” in the “Creating a Model” chapter of the
Using Simulink documentation.

2-267

Environment Controller

Purpose

Library

Description

2-268

Create branches of block diagram that apply only to simulation or only
to code generation

Signal Routing

This block outputs the signal at its Sim port only if the model that
contains it is being simulated. It outputs the signal at its RTW port
only if code is being generated from the model. This allows you to create
branches of a model’s block diagram that apply only to simulation or
only to code generation. The table below describes various scenarios
where either the Sim or RTW port applies.

Scenario Output
Normal mode simulation Sim
Simulation with the Simulink Sim
Accelerator

Simulation of a referenced model | Sim

External mode simulation RTW

Standard code generation RTW

Code generation of a referenced RTW
model

Processor-in-the-loop target code | Sim
generation

Real-Time Workshop does not generate code for blocks connected to
the Sim port. If you enable block reduction optimization (see “Block
reduction” in the online Simulink documentation), Simulink eliminates
blocks in the branch connected to the block’s RTW port when compiling
the model for simulation.

Environment Controller

Data Type
Support

Parameters
and

Dialog

Box

Note Real-Time Workshop eliminates the blocks connected to the Sim
branch only if the Sim branch has the same signal dimensions as the
RTW branch. Regardless of whether it eliminates the Sim branch,
Real-Time Workshop uses the sample times on the Sim branch as well
as the RTW branch to determine the fundamental sample time of the
generated code and may, in some cases, generate sample-time handling
code that applies only to sample times specified on the Sim branch.

The Environment Controller block accepts signals of any numeric or
data type. It outputs the type at its input.

=1 Block Parameters: Environment Controller 2=

E nvironment Contraller [mask] [link]

Clutput the zimulation [Sim] or Beal-Time *Workshop [R T port depending on the
curent ervironment. Yfith optimizations enabled, unnecessany blocks l2ading to the
unugzed port are not executed,

OE. Cancel Help Apply

2-269

Extract Bits

Purpose Output selection of contiguous bits from input signal
Librclry Logic and Bit Operations
Description The Extract Bits block allows you to output a contiguous selection of bits
from the stored integer value of the input signal. The Bits to extract
Extract Bits parameter defines the method by which you select the output bits.
Uppar Half
Exiroct Biis ® Select Upper half to output the half of the input bits that contain

the most significant bit. If there is an odd number of bits in the input
signal, the number of output bits is given by the equation

number of output bits = ceili number of input bits/2)

® Select Lower half to output the half of the input bits that contain
the least significant bit. If there is an odd number of bits in the input
signal, the number of output bits is given by the equation

number of output bits = ceili number of input bits/2)

® Select Range starting with most significant bit to output
a certain number of the most significant bits of the input signal.
Specify the number of most significant bits to output in the Number
of bits parameter.

® Select Range ending with least significant bit to output a
certain number of the least significant bits of the input signal.
Specify the number of least significant bits to output in the Number
of bits parameter.

e Select Range of bits to indicate a series of contiguous bits of the
input to output in the Bit indices parameter. You indicate the range
in [start end] format, and the indices of the input bits are labeled
contiguously starting at 0 for the least significant bit.

2-270

Extract Bits

Data Type
Support

Parameters
and

Dialog

Box

The Extract Bits block accepts inputs of any data type supported by
Simulink, including fixed-point data types. Floating-point inputs are
passed through the block unchanged. Boolean inputs are treated as
uint8 signals.

For a discussion on the data types supported by Simulink, see “Data
Types Supported by Simulink” in the Simulink documentation.

«): Block Parameters: Extract Bits

—Estract Bitz [maszk] [link]

Dutput zelected bits from each of the fised-point input zamples. Selecting "Upper half*'
ar "Lower half' results in a pozsitive number af bits in the output ward lenath, according
to the equation numJutputBits = ceillnuml nputBits 2],

—Parameters

Bitz to extract: [N m=i x

Clutput zcaling mode: I Freserve fied-point scaling LI

oK Cancel Hop | ool |

Bits to extract
Select the mode by which to extract bits from the input signal, as
discussed in Description.

Number of bits
(Not shown on dialog above.) Select the number of bits to output
from the input signal.

This parameter is only visible if you select Range starting

with most significant bit or Range ending with least
significant bit for the Bits to extract parameter.

2-271

Extract Bits

Example

2-272

Bit indices
(Not shown on dialog above.) Specify a contiguous range of bits
of the input signal to output. Specify the range in [start end]
format. The indices are assigned to the input bits starting with 0
at the least significant bit.

This parameter is only visible if you select Range of bits for
the Bits to extract parameter.

Output scaling mode
Select the scaling mode to use on the output bits selection:

® When you select Preserve fixed-point scaling, the fixed-point
scaling of the input is used to determine the output scaling during
the data type conversion.

® When you select Treat bit field as an integer, the fixed-point
scaling of the input is ignored, and only the stored integer is used to
compute the output data type.

Consider an input signal that is represented in binary by 110111001:

¢ If you select Upper half for the Bits to extract parameter, the
output is 11011 in binary.

¢ If you select Lower half for the Bits to extract parameter, the
output is 11001 in binary.

¢ Ifyou select Range starting with most significant bit for the
Bits to extract parameter, and specify 3 for the Number of bits
parameter, the output is 110 in binary.

¢ Ifyou select Range ending with least significant bit for the
Bits to extract parameter, and specify 8 for the Number of bits
parameter, the output is 10111001 in binary.

¢ Ifyou select Range of bits for the Bits to extract parameter, and
specify [4 7] for the Bit indices parameter, the output is 1011 in
binary.

Extract Bits

Characteristics pirect Feedthrough Yes
Sample Time Inherited
Scalar Expansion N/A
States None
Dimensionalized Inherited
Zero Crossing No

2-273

Fen

Purpose Apply specified expression to input
Librclry User-Defined Functions
Description The Fen block applies the specified C language style expression to
its input. The expression can be made up of one or more of these
LTy} components:

® u — The input to the block. If u is a vector, u(i) represents the ith
element of the vector; u(1) or u alone represents the first element.

® Numeric constants
® Arithmetic operators (+ - * /*)

® Relational operators (== != > < >= <=) — The expression returns 1
if the relation is true; otherwise, it returns 0.

® Logical operators (&& || !) — The expression returns 1 if the
relation is true; otherwise, it returns 0.

e Parentheses

® Mathematical functions — abs, acos, asin, atan, atan2, ceil, cos,
cosh, exp, fabs, floor, hypot, 1n, 1og, 1og10, pow, power, rem, sgn,
sin, sinh, sqrt, tan, and tanh.

® Workspace variables —Variable names that are not recognized in the
preceding list of items are passed to MATLAB for evaluation. Matrix
or vector elements must be specifically referenced (e.g., A(1,1)
instead of A for the first element in the matrix).

The Fcn block observes the following rules of operator precedence:
1(0)

2 A

3 + - (unary)

4

2-274

Fecn

Data Type
Support

10 ||

The expression differs from a MATLAB expression in that the
expression cannot perform matrix computations. Also, this block does
not support the colon operator (:).

Block input can be a scalar or vector. The output is always a scalar. For
vector output, consider using the Math Function block. If a block input
is a vector and the function operates on input elements individually (for
example, the sin function), the block operates on only the first vector
element.

The Fcn block accepts and outputs signals of type double.

2-275

Fen

Parameters

E! Block Parameters: Fcn EHE
and —Fen
Dialog _ : .
B eneral expreszion block. Usze "'u"' as the input vanable name.
ox Example: zinfu[1] * expl2.3 = -ul2]1]
—Parameters
E wprezzion;

Jsinful1 Pexp(2 F-ul2I)I

Sample time [-1 far inkerited]:

E

Ok Cancel Help Apply

Expression
The C language style expression applied to the input.
Expression components are listed above. The expression must be
mathematically well formed (i.e., matched parentheses, proper
number of function arguments, etc.).

Note You cannot tune the expression during accelerated-mode
simulation (see “Simulink Accelerator”), in referenced models, or
in code generated from the model. The Fcn block also does not
support custom storage classes.

Sample time (-1 for inherited)
Specify the time interval between samples. To inherit the sample
time, set this parameter to -1. See “Specifying Sample Time” in
the online documentation for more information.

2-276

Fecn

Characteristics pjrcct Feedthrough

Yes

Sample Time

Inherited from driving block

Scalar Expansion No
Dimensionalized No
Zero Crossing No

2-277

First-Order Hold

Purpose Implement first-order sample-and-hold
Libra ry Discrete

Description The First-Order Hold block implements a first-order sample-and-hold

that operates at the specified sampling interval. This block has little

J.-"\/ value in practical applications and is included primarily for academic
purposes.

This figure compares the output from a Sine Wave block and a
First-Order Hold block.

| 21

s P!
A £ N
Nt N
N AN

'\\II
[
Data Type The First-Order Hold block accepts and outputs signals of type double.
Support
Pa;ameters =]Block Parameters: First-Order Hold E
aDpCIIO —First-Order Hold [maszk] [link]
' 9 Firgt-order hold.
Box
—Parameters
Sample time:
1
ok Cancel Help Spply

2-278

First-Order Hold

Sample time

The time interval between samples. See “Specifying Sample
Time” in the online documentation for more information.

Characteristics pjrect Feedthrough

No

Sample Time

Specified in the Sample time
parameter

Scalar Expansion

No

States 1 continuous and 1 discrete per input
element

Dimensionalized Yes

Zero Crossing No

2-279

Fixed-Point State-Space

Purpose

Library

Description

y(n)=Cx(n}+Duin)
x(n+1)=Ax(n)+Bu(n)

Data Type
Support

2-280

Implement discrete-time state space
Additional Math & Discrete / Additional Discrete

The Fixed-Point State-Space block implements the system described by

y(n) = Cx(n) + Du(n)

x(n+l) = Ax(n) + Bu(n)

where u is the input, x is the state, and y is the output. Both equations
have the same data type.

The matrices A, B, C and D have the following characteristics:

* A must be an n-by-n matrix, where n is the number of states.
* B must be an n-by-m matrix, where m is the number of inputs.
® C must be an r-by-n matrix, where r is the number of outputs.

* D must be an r-by-m matrix.
In addition:

¢ The state x must be a n-by-1 vector

® The input u must be a m-by-1 vector

® The output y must be a r-by-1 vector

The block accepts one input and generates one output. The input vector
width is determined by the number of columns in the B and D matrices.

The output vector width is determined by the number of rows in the C
and D matrices.

The Fixed-Point State-Space block accepts signals of any data type
supported by Simulink, including fixed-point data types.

Fixed-Point State-Space

Parameters
and

Dialog

Box

The Main pane of the Fixed-Point State-Space block dialog appears

as follows:

E! Function Block Parameters: Fixed-Poinkt State-Spa

Digcrete-time State-Space Realization

’—Fi:-:eu:l-F'Dint State-Space [mask] [link]

k4 ain I Signal Data Tepes |
State b atrix A

|[2.E‘-EIEEI 227323 06708;100:010]
[nput b atriz B:

[[1:0:0
Clutput b atris C:

|[EI.EI184 00024 0.0085]
Direct Feedthraough katrix D

|[0.0033]

Iritial condition for state;

0.0

Cancel Help

Apply

State Matrix A
Specify the matrix of states.

Input Matrix B
Specify the column vector of inputs.

Output Matrix C
Specify the column vector of outputs.

Direct Feedthrough Matrix D
Specify the matrix for direct feedthrough.

2-281

Fixed-Point State-Space

Initial condition for state
Specify the initial condition for the state.

The Signal Data Types pane of the Fixed-Point State-Space block

dialog appears as follows:

E! Function Block Parameters: Fikred-Point State-5 .:' C

Fixed-Paoint State-5pace [mazk] [link]
’7 Digorete-time State-Space Fealization

b ain | Signal Data Types

[ata type for internal calculations: ex #fix(16]. wint[2]. float'zsingle’]

| loat] double'
Scaling for State Equation &:+EBL: ex. 279

|20
Scaling far Output Equation Cx+D1L: ex. 279

[2"0

[T Lock output scaling against changes by the autoscaling ool

Found toward: | Floor

[T Saturate to mas o min when overfloss ocour

F. Cancel Help

....................................

Apply

Data type for internal calculations
Specify the data type for internal calculations.

Scaling for State Equation AX+BU
Specify the scaling for state equations.

Scaling for Output Equation CX+DU
Specify the scaling for output equations.

2-282

Fixed-Point State-Space

Lock output scaling against changes by the autoscaling tool
If you select this check box, the output scaling is locked.

Round toward

Select the rounding mode for fixed-point operations.

Saturate to max or min when overflows occur
If selected, fixed-point overflows saturate.

Characteristics pjrect Feedthrough

Yes

Scalar Expansion

Yes, of initial conditions

2-283

For Iterator

Purpose Repeatedly execute contents of subsystem at current time step until
iteration variable exceeds specified iteration limit
Librclry Ports & Subsystems/For Iterator Subsystem
Description The For Iterator block, when placed in a subsystem, repeatedly executes
the contents of the subsystem at the current time step until an iteration
For | variable exceeds a specified iteration limit. You can use this block
ltermtar to implement the block diagram equivalent of a for loop in the C

programming language.

The block’s parameter dialog allows you to specify the maximum value
of the iteration variable or an external source for the maximum value
and an optional external source for the next value of the iteration
variable. If you do not specify an external source for the next value of
the iteration variable, the next value is determined by incrementing the
current value:

in+1 = in +1
The model in the following figure uses a For Iterator block to increment
an initial value of zero by 10 over 20 iterations at every time step.

2-284

For lterator

20— forf .}

temtions
dﬂ_a—"# Forsubsystem el
O o
Itemtor
In
Far temtar
o (=1
—
= GEmph
=umm
R | [e——

10 [sur_increment

The following figure shows the result.

2-285

For Iterator

+} ¥ Graph _ (O] %]
X Plot
EOO I 1 1 1 1]
Points:
150 | i (1,10)
(2,20)
2 efc.
< 100} :
.
G0 L :
0 1 1 1 1
0 G 10 15 20
x A

The For Iterator subsystem in this example is equivalent to the
following C code.

sum = 0;

iterations = 20;

sum_increment = 10;

for (i = 0; i < iterations; i++) {
sum = sum + sum_increment;

}

Note Placing a For Iterator block in a subsystem makes it an atomic
subsystem if it is not already an atomic subsystem.

2-286

For lterator

Data Type
Support

The following rules apply to the data type of the number of iterations
(N) input port:

¢ The input port accepts data of mixed types.

e Ifthe input port value is noninteger, it is first truncated to an integer.

¢ Internally, the input value is cast to an integer of the type specified
for the iteration variable output port.

¢ If no output port is specified, the input port value is cast to type
int32.

o If the input port value exceeds the maximum value of the output
port’s type, it is truncated to that maximum value.
Data output for the iterator value can be selected as double, int32,

int16, or int8 in the Block Properties dialog.

The following rules apply to the iteration variable input port.

® It can appear only if the iteration variable output port is enabled.

® The data type of the iteration variable input port is the same as the
data type of the iteration variable output port.

2-287

For Iterator

Parameters
and

Dialog

Box

2-288

m Source Block Parameters: For Iterator

—Far Iterator

Fun the blocks in this subsyztem far a number of iterationz. The iteration limit may be
zpecified either in the block's dialog ar through an external input port. IF the iteration
warable iz incremented externally, then the nest ikeration value iz read in through an
external input part, atherwize it iz incremented by ohe. The iteration continues o run
Lntil the iteration vanable exceeds the iteration limit. [F the autput part iz zkhaowi, it will
output the current iteration number starting at zena or one. YWhen the iteration iz
gtarted, any states in the subsystem may be either reset to their initial value or held at
their previous value.

—Parameters

States when starting: 2

[teration limit zource:; I internal - I

[teration limit;
|5

[~ Set next i [iteration vanable] externally

[Show iteration variable

Index mcu:lel One-based

L] L

|teration wariable data pe: | int32

k. Cancel | Help

States when starting

Set this field to reset if you want the states of the For subsystem
to be reinitialized before the first iteration at each time step.

Otherwise, set this field to held (the default) to make sure that
these subsystem states retain their values from the last iteration
at the previous time step.

For lterator

Iteration limit source
If you set this field to internal, the value of the Number of
iterations field determines the number of iterations. If you set
this field to external, the signal at the For Iterator block’s N port
determines the number of iterations. The iteration limit source
must reside outside the For Iterator subsystem.

Iteration limit
Set the number of iterations for the For Iterator block to this
value. This field appears only if you selected internal for the
Source of number of iterations field.

Set next i (iteration variable) externally
This option can be selected only if you select the Show iteration
variable option. If you select this option, the For Iterator block
displays an additional input for connecting an external iteration
variable source. The value of the input at the current iteration is
used as the value of the iteration variable at the next iteration.

Show iteration variable
If you select this check box, the For Iterator block outputs its
iteration value.

Index mode
If you set this field to Zero-based, the iteration number starts
at zero. If you set this field to One-based, the iteration number
starts at one.

Iteration variable data type
Set the type for the iteration value output from the iteration
number port to double, int32, int16, or int8.

Characteristics pjrect Feedthrough No
Sample Time Inherited from driving blocks
Scalar Expansion No

2-289

For Iterator

2-290

Dimensionalized

No

Zero Crossing

For Iterator Subsystem

Purpose

Library

Description

In1

for{...} Outi

Represent subsystem that executes repeatedly during simulation time
step

Ports & Subsystems

The For Iterator Subsystem block is a Subsystem block that is
preconfigured to serve as a starting point for creating a subsystem
that executes repeatedly during a simulation time step. For more
information, see the For Iterator block in the online Simulink block
reference and “Modeling Control Flow Logic” in the Using Simulink
documentation.

2-291

From

Purpose
Library

Description

Data Type
Support

2-292

Accept input from Goto block
Signal Routing

The From block accepts a signal from a corresponding Goto block, then
passes it as output. The data type of the output is the same as that of
the input from the Goto block. From and Goto blocks allow you to pass
a signal from one block to another without actually connecting them.
To associate a Goto block with a From block, enter the Goto block’s
tag in the Goto Tag parameter.

A From block can receive its signal from only one Goto block, although a
Goto block can pass its signal to more than one From block.

This figure shows that using a Goto block and a From block is equivalent
to connecting the blocks to which those blocks are connected. In the
model at the left, Blockl passes a signal to Block2. That model is
equivalent to the model at the right, which connects Block1 to the Goto
block, passes that signal to the From block, then on to Block2.

—b(A A
Tota

From Block?

k.

Blaock 1 Block? Blackl

The visibility of a Goto block tag determines the From blocks that
can receive its signal. For more information, see Goto and Goto Tag
Visibility. The block indicates the visibility of the Goto block tag:
® A local tag name is enclosed in brackets ([]).

* A scoped tag name is enclosed in braces ({}).

* A global tag name appears without additional characters.

The From block outputs real or complex signals of any data type
supported by Simulink, including fixed-point data types.

For a discussion on the data types supported by Simulink, see “Data
Types Supported by Simulink” in the Simulink documentation.

From

Parameters
and

Dialog

Box

5] source Block Parameters: From x|

—From

Feceive zignalzs from the Goto block with the specified tag. [f the tag is defined as
‘zooped’ in the Gaoto block, then a Gota T ag Visibility Block must be uzed o define
the wizibility of the tag. After 'Update Diagram', the block icon dizplays the zelected
tag name [local tags are enclosed in brackets, [], and zocoped tag names are
enclozed in braces, {1].

—Parameterz

[Hoto Tag:lﬁ ;I |Ipdate Tags |

Goto Source: moms
lcon Displa_l,l:l Tag LI

] Cancel | Help |

Goto Tag
The tag of the Goto block that forwards its signal to this From
block. To change the tag, select a new tag from this control’s
drop-down list. The drop-down list displays the Goto tags that the
From block can currently see. An item labeled <More Tags...>
appears at the end of the list the first time you display the list in
a Simulink session. Selecting this item causes the block to update
the tags list to include the tags of Goto blocks residing in library
subsystems referenced by the model containing this From block.
Simulink displays a progress bar while building the list of library
tags. Simulink saves the updated tags list for the duration of the
Simulink session or until the next time you select the adjacent
Update Tags button. You need to update the tags list again in
the current session only if the libraries referenced by the model
have changed since the last time you updated the list.

2-293

From

Update Tags
Updates the list of tags visible to this From block, including tags
residing in libraries referenced by the model containing this From
block.

Goto Source
Path of the Goto block connected to this From block. Clicking the
path displays and highlights the Goto block.

Icon Display
Specifies the text to display on the From block’s icon. The
options are the block’s tag, the name of the signal that the block
represents, or both the tag and the signal name.

Characteristics Sample Time Inherited from block driving the Goto
block
Dimensionalized Yes

2-294

From File

Purpose
Library

Description

untitled.mat

Read data from MAT file
Sources

The From File block outputs data read from a MAT file. Its icon displays
the pathname of the file supplying the data.

Note The From block can read data only from MAT files. It does not
support any other file format.

The MAT file must contain a matrix of two or more rows. The first
row must contain monotonically increasing time points. Other rows
contain data points that correspond to the time point in that column.
The matrix is expected to have this form.

t1 fa ...Ifinal
ull ulg ...ulﬁna:

H.ﬂll H.ﬂlg "'Hn;ﬁ'nﬂf

The width of the output depends on the number of rows in the MAT
file. The block uses the time data to determine its output, but does not
output the time values. This means that in a matrix containing m rows,
the block outputs a vector of length m-1, consisting of data from all but
the first row of the appropriate column.

If an output value is needed at a time that falls between two values in
the MAT file, the value is linearly interpolated between the appropriate
values. If the required time is less than the first time value or greater
than the last time value in the MAT file, Simulink extrapolates, using
the first two or last two points to compute a value.

2-295

From File

Data Type
Support

2-296

If the matrix includes two or more columns at the same time value, the
output is the data point for the first column encountered. For example,
for a matrix that has this data:

time values: 0
2

2
data points: 4

1 2
3 5
At time 2, the output is 4, the data point for the first column
encountered at that time value.

Simulink reads the MAT file into memory at the start of the simulation.
As a result, you cannot read data from the same MAT file named in a
To File block in the same model.

See Importing Data from the MATLAB Workspace for guidelines on
choosing time vectors for discrete systems.

Using Data Saved by a To File or a To Workspace Block

The From File block can read data written by a To File block without
any modifications.

To read data written by a To Workspace block and saved to a MAT file:

¢ The data must include the simulation times. The easiest way to
include time data in the simulation output is to specify a variable
for time on the Data Import/Export pane of the Configuration
Parameters dialog box. See The Data Import/Export Pane for more
information.

® Before saving the data from the To Workspace block, transpose it to
the form expected by the From File block.

The From File block outputs real signals of type double.

From File

Parameters
and

Dialog

Box

m Block Parameters: From File ' |

—From File

Read time and output values from the firzt matnx in the zpecifiied
MAT file. The matris must contain time walues in row one. Additional
roz correspond to output elements. Interpolates bebween columng.

—Parameterz

File name:

Sample time:
[

ok LCancel Help

Opening this dialog box causes a running simulation to pause.
See Changing Source Block Parameters in the online Simulink
documentation for details.

File name
The fully qualified pathname or file name of the MAT file that
contains the data used as input. On UNIX, the pathname can
start with a tilde (~) character signifying your home directory. The
default file name is untitled.mat. If you specify an unqualified
file name, Simulink assumes that the MAT file resides in the
MATLAB working directory. (To determine the working directory,
enter pwd at the MATLAB command line.) If Simulink cannot
find the specified file name in the working directory, it displays
an error message.

Sample time
The sample period and offset of the data read from the file. See
“Specifying Sample Time”in the online documentation for more
information.

2-297

From File

Characteristics gample Time

2-298

Specified in the Sample time
parameter

Scalar Expansion

No

Dimensionalized

1-D array only

Zero Crossing

No

From Workspace

Purpose

Library

Description
simin

Read data from workspace
Sources

The From Workspace block reads data from the MATLAB workspace.
The block’s Data parameter specifies the workspace data via a MATLAB
expression that evaluates to a matrix (2-D array), a structure containing
an array of signal values and time steps, or a time-series object (see
Simulink.Timeseries). The format of the matrix or structure is the
same as that used to load root-level input port data from the workspace
(see “Importing Data from the MATLAB Workspace”. The From
Workspace icon displays the expression in the Data parameter.

Note You must use the structure-with-time format or a time-series
object to load matrix (2-D) data from the workspace.

The From Workspace block’s Interpolate data parameter determines
the block’s output in the time interval for which workspace data is
supplied. If you select the Interpolate data option, the block uses
linear Lagrangian interpolation to compute data values for time steps
that occur between time steps for which the workspace supplies data.
In particular, the block linearly interpolates a missing data point from
the two known data points between which it falls. For example, suppose
the block reads the following time series from the workspace.

time: 1 2 3 4
signal: 253 254 ? 256

In this case, the block would output:

time: 1 2 3 4
signal: 253 254 255 256

If you do not select the Interpolate data option, the block uses the
most recent data value supplied from the workspace.

2-299

From Workspace

Note The data type of the workspace data can affect interpolated
values. See “How Data Types Affect Interpolation” on page 2-302 for
more information.

The block’s Form output after final data value by parameter
determines the block’s output after the last time step for which data
is available from the workspace. The following table summarizes the
output block based on the options that the parameter provides.

Form Output Interpolate | Block Output After Final

Option Option Data

Extrapolate On Extrapolated from final data
value

Extrapolate Off Error

SettingToZero On Zero

SettingToZero Off Zero

HoldingFinalValue On Final value from workspace

HoldingFinalValue Off Final value from workspace

CyclicRepetition On Error

CyclicRepetition Off Repeated from workspace.
This option is valid only
for workspace data in
structure-without-time format.

If the input array contains more than one entry for the same time step,
Simulink detects a zero crossing at this time step. For example, suppose
the input array has this data:

time: 0
2

1223
signal: 3456

2-300

From Workspace

At time 2, there is a zero crossing from input signal discontinuity.

If the interpolation option is on, the block uses the last two known data
points to extrapolates data points that occur after the last known point.
Consider the following example.

] XY Plot
1 _
0.5
]
2 0
-
7 -0.5
Ll [.-] -1 i i i
:[a i 5 10 14 20
o ™ X Axis

Chack Sine Wi

From Workepngs 1
Workspace k]
05
n
F 0
=
5
0 5 0 15 20

X Axis

In this example, the From Workspace block reads data from the
workspace consisting of the output of the Simulink Sine block sampled
at one-second intervals. The workspace contains the first 16 samples of
the output. The top and bottom X-Y plots display the output of the Sine
Wave and From Workspace blocks, respectively, from 0 to 20 seconds.
The straight line in the output of the From Workspace block reflects
the block’s linear extrapolation of missing data points at the end of
the simulation.

2-301

From Workspace

Data Type
Support

2-302

Note A From Workspace block can directly read the output of

a To Workspace block (see To Workspace) if the output is in
structure-with-time format (see “Importing Data from the MATLAB
Workspace” for a description of these formats).

See Importing Data from the MATLAB Workspace for guidelines on
choosing time vectors for discrete systems.

The From Workspace block accepts from the workspace and outputs
real or complex signals of any type supported by Simulink. Real signals
of type double can be in either structure or matrix format. Complex
signals and real signals of any type other than double must be in
structure format.

How Data Types Affect Interpolation

The data type of the data supplied by the workspace can affect
interpolation and extrapolation of missing values in the following cases.

Integer data

If the input data type is an integer type and an interpolated data point
exceeds the data type’s range, the block sets the missing data point to
be the maximum value that the data type can represent. Similarly, if
the interpolated or extrapolated value is less than the minimum value
that the data type can represent, the block sets the missing data point
to the minimum value that the data type can represent. For example,
suppose that the data type is uint8 and the value interpolated for a
missing data point is 256.

time: 1 2 3 4
signal: 253 254 255 ?

In this case, the block sets the value of the missing point to 255, the
largest value that can be represented by the uint8 data type:

time: 1 2 3 4

From Workspace

signal: 253 254 255 255

Boolean data

If the input data is boolean, the block uses the value of the nearest
workspace data point as the value of missing data point when
determining missing data points that fall between the first and last
known points. For example, suppose the workspace supplies values at
time steps 1 and 4 but not at 2 and 3:

time:

1
signal: 1

= N

3 4
20

In this case, the block would use the value of data point 1 as the value

of data point 2 and the value of data point 4 as the value of data point 3:

time:

1234
signal: 1100
The block uses the value of the last known data point as the value of
time steps that occur after the last known data point.

2-303

From Workspace

2-304

Parameters
and

Dialog

Box

m Source Block Parameters: From Workspace] x|
— From ‘Waorkspace

Fiead data walues specified in array or structure farmat from MATLAR's workspace.
Array [or matrix] farmat:

1-0 zignal:

var=[Timey alues Dataifalues)

For 2-0 zignal uze structure format
Structure format;

sear. ime=[T imet alues]

wear. gignalz. values=[D ataf aluez]

war. zighalz. dimensionz=[0imy alues]

Select interpolation ta interpolate or extrapolate at time steps for which data does not
exizt,

—Parameters

Sample hirme;
|0
[Interpolate data

v Enable zero crozsing detection

Farm autput after final data walue by: | Ex=trapalation ;I

2k, Cancel | Help

Data

An expression that evaluates to an array or a structure containing
an array of simulation times and corresponding signal values. For
example, suppose that the workspace contains a column vector of
times named T and a vector of corresponding signal values named
U. Entering the expression [T,U] for this parameter yields the
required input array. If the required signal-versus-time array or

From Workspace

structure already exists in the workspace, enter the name of the
structure or matrix in this field.

Sample time
Sample rate of data from the workspace. See “Specifying Sample
Time” in the online documentation for more information.

Interpolate data
This option causes the block to linearly interpolate at time steps
for which no corresponding workspace data exists. Otherwise,
the current output equals the output at the most recent time for
which data exists.

Enable zero crossing detection
Select to enable zero crossing detection. For more information, see
Zero Crossing Detection in the “How Simulink Works” chapter of
the Using Simulink documentation.

Form output after final data value by
Select method for generating output after the last time point for
which data is available from the workspace.

Characteristics Sample Time Specified in the Sample time
parameter
Scalar Expansion No
Dimensionalized Yes
Zero Crossing Yes

2-305

Function-Call Generator

Purpose

Library

Description

fp

Data Type
Support

2-306

Execute function-call subsystem specified number of times at specified
rate

Ports & Subsystems

The Function-Call Generator block executes a function-call subsystem
(for example, a Stateflow® state chart configured as a function-call
system) at the rate specified by the block’s Sample time parameter.
To execute multiple function-call subsystems in a prescribed order,
first connect a Function-Call Generator block to a Demux block that
has as many output ports as there are function-call subsystems to be
controlled. Then connect the output ports of the Demux block to the
systems to be controlled. The system connected to the first demux port
executes first, the system connected to the second demux port executes
second, and so on.

The Function-Call Generator block outputs a signal of type fcn_call.

Function-Call Generator

Parameters

d E! Block Parameters: Function-Call Generator EHE
an : :

N —Function-Call Generator [maszk] [link]

Dialog _ _ _ . . :

Box Thiz block implements an iterator operation. On each bime-ztep as defined by the

zample time field, thiz block will execute the funchion-call subsystemiz] that it drives for
the specified number of iterations.

Demus the block's output to execute multiple function-call subspztems in a prezcribed
arder. The suztern connected ta first demus part iz executed first, the spstem
cohnected to zecond demuy port iz erecuted zecond, and 2o on.

—Parameters
Sample time;
|1
Murnber of iterations:

|1

ok Cancel Help A

Sample time
The time interval between samples. See “Specifying Sample
Time”in the online documentation for more information.

Number of iterations
Number of times to execute the block per time step. The value of
this parameter may be a vector where each element of the vector
specifies a number of times to execute a function-call subsystem.
The total number of times that a function-call subsystem executes
per time step equals the sum of the values of the elements of the
generator signal entering its control port. For example, suppose
you specify the number of iterations to be [2 2] and connect
the output of this block to the control port of a function-call
subsystem. In this case, the function-call subsystem executes four
times at each time step.

2-307

Function-Call Generator

Characteristics pirect Feedthrough

2-308

No

Sample Time

Specified in the Sample time
parameter

Scalar Expansion No
Dimensionalized Yes
Zero Crossing No

Function-Call Subsystem

Purpose Represent subsystem that can be invoked as function by another block
Librclry Ports & Subsystems
Description The Function-Call Subsystem block is a Subsystem block that is
preconfigured to serve as a starting point for creating a function-call
fanetion(] subsystem. For more information, see “Function-Call Subsystems” in
Inl mtlf the “Creating a Model” chapter of the Using Simulink documentation.

2-309

Gain

Purpose
Library

Description

Data Type
Support

2-310

Multiply input by constant
Math Operations

The Gain block multiplies the input by a constant value (gain). The
input and the gain can each be a scalar, vector, or matrix.

You specify the value of the gain in the Gain parameter. The
Multiplication parameter lets you specify element-wise or matrix
multiplication. For matrix multiplication, this parameter also lets you
indicate the order of the multiplicands.

The gain is converted from doubles to the data specified in the block
mask offline using round-to-nearest and saturation. The input and gain
are then multiplied, and the result is converted to the output data type
using the specified rounding and overflow modes.

The Gain block accepts a real or complex scalar, vector, or matrix of
any data type supported by Simulink except Boolean. The Gain block
supports fixed-point data types. If the input of the Gain block is real
and the gain is complex, the output is complex.

For a discussion on the data types supported by Simulink, see “Data
Types Supported by Simulink” in the Simulink documentation.

Gain

Parameters
and

Dialog

Box

The Main pane of the Gain block dialog appears as follows:

E! Function Block Parameters: Gain ' x|

Gain
’7 Element-wize gain [y = K.*u] or matrix gain [y = K*u or p = u*K].

M ain ISignaIData Tuwpes | Parameter Data Types |
EETH
[

Multiplicatinn:l Element-wize(l. *u] ;l

Sample time [-1 for inkerited]:

[-1

(] Cancel Help Apply

Gain
Specify the value by which to multiply the input. The gain may be
a scalar, vector, or matrix. The gain may not be Boolean.
Multiplication

Specify the multiplication mode:

® Element-wise (K*u)—Each element of the input is multiplied by each
element of the gain. The block performs expansions, if necessary, so
that the input and gain have the same dimensions.

e Matrix(K*u)—The input and gain are matrix multiplied with the
input as the second operand.

e Matrix(u*K)—The input and gain are matrix multiplied with the
input as the first operand.

2-311

Gain

2-312

® Matrix(K*u) (u vector)—The input and gain are matrix multiplied
with the input as the second operand. The input and the output
are required to be vectors and their lengths are determined by the

dimensions of the gain.

Sample time (-1 for inherited)
Specify the time interval between samples. To inherit the sample
time, set this parameter to -1. See “Specifying Sample Time” in
the online documentation for more information.

The Signal Data Types pane of the Gain block dialog appears as
follows:

E! Function Block Parameters: Gain x|

[3ain
’7 Element-wize gain [y = E.*u] ar matrix gain (v = E*u ar v = °K]

M ain | Signal Data Types IParameterData Types |

Output data bype mu:u:le:l Specify via dialog ;I
Output data bwpe (.. fig16], wint[3], float'zingle']];

fsfix(15]

COutput szaling value [Slope, g, 2°-9 ar [Slope Biaz], e.q. [1.25 3]

|20

[~ Lock output scaling against changes by the autozcaling tool

Round integer calculations toward: | Floor j

[T Saturate an integer averflow

Cancel Help | Apply

Gain

Output data type mode
Set the data type and scaling of the output to be the same as that
of the input, or to be inherited via an internal rule or by back
propagation. Alternatively, choose to specify the data type and
scaling of the output through the Output data type and Output
scaling value parameters in the dialog.

If you select Inherit via internal rule for this parameter,
Simulink chooses a combination of output scaling and data

type that requires the smallest amount of memory consistent
with accommodating the output range and maintaining the
output precision of the block and with the word size of the
targeted hardware implementation specified for the model. If the
Device type parameter on the Hardware Implementation
configuration parameters pane is set to ASIC/FPGA, Simulink
chooses the output data type without regard to hardware
constraints. Otherwise, Simulink chooses the smallest available
hardware data type capable of meeting the range and precision
constraints. For example, if the block multiplies an input of type
int8 by a gain of int16 and ASIC/FPGA is specified as the targeted
hardware type, the output data type is sfix24. If Unspecified
(assume 32-bit Generic), i.e., a generic 32-bit microprocessor,
is specified as the target hardware, the output data type is int32.
If none of the word lengths provided by the target microprocessor
can accommodate the output range, Simulink displays an error
message in the Simulation Diagnostics Viewer.

Output data type
Set the output data type. This parameter is only visible if you
select Specify via dialog for the Output data type mode
parameter.

Output scaling value
Set the output scaling using either binary point-only or [Slope
Bias] scaling. This parameter is only visible if you select Specify
via dialog for the Output data type mode parameter.

2-313

Gain

Lock output scaling against changes by the autoscaling tool
Select to lock scaling of outputs. This parameter is only visible if
you select Specify via dialog for the Output data type mode
parameter.

Round integer calculations toward
Select the rounding mode for fixed-point operations.

Saturate on integer overflow
Select to have overflows saturate.

The Parameter Data Types pane of the Gain block dialog appears
as follows:

E! Function Block Parameters: Gain x|

[3ain
’7 Element-wize gain [y = E.*u] ar matrix gain (v = E*u ar v = °K]

I ain | Signal Data Types | Parameter [ata Types

Parameter data type mu:u:le:l Specify via dialog ;I
Parameter data tupe [e.q. sfix[16]. uint[S]. float('zingle]]:

fsfix(15]

FParameter szaling mu:u:lel |1ze zpecified zcaling ;I

Parameter zcaling [Slope or [Slope Bias], e.g. 27-9):
270

Cancel Help Apply

2-314

Gain

Parameter data type mode
Set the data type and scaling of the gain to be the same as that of
the input, or to be inherited via an internal rule. Alternatively,
choose to specify the data type and scaling of the gain through
the Parameter data type, Parameter scaling mode, and
Parameter scaling parameters in the dialog.

Parameter data type
Specifies the data type of the Gain parameter. This parameter is
visible only if you select Specify via dialog for the Parameter
data type mode parameter.

Parameter scaling mode
Set the mode to determine the scaling of the gain.

Use specified scaling—This mode allows you to set the
scaling of the gain in the Parameter scaling parameter.

Best Precision: Element-wise—This mode sets binary
points for the elements of the gain such that the precision of
each element is maximized.

Best Precision: Row-wise—This mode sets a common
binary point within each row of the gain such that the largest
element of each row has the best possible precision.

Best Precision: Column-wise—This mode sets a common
binary point within each column of the gain such that the
largest element of each column has the best possible precision.

Best Precision: Matrix-wise—This mode sets a common
binary point for all the elements of the gain such that the
largest element has the best possible precision.

Parameter scaling
Set the gain scaling using either binary point-only or [Slope Bias]
scaling. This parameter is only visible if you select Specify via
dialog for the Parameter data type mode parameter, and if
you select Use specified scaling for the Parameter scaling
mode parameter.

2-315

Gain

Characteristics pirect Feedthrough

2-316

Yes

Sample Time

Specified in the Sample time
parameter

Scalar Expansion

Yes, of input and Gain parameter for
Element-wise multiplication

Dimensionalized

Yes

Zero Crossing

No

Goto

Purpose
Library

Description

2]

Pass block input to From blocks
Signal Routing

The Goto block passes its input to its corresponding From blocks. The
input can be a real- or complex-valued signal or vector of any data
type. From and Goto blocks allow you to pass a signal from one block
to another without actually connecting them.

A Goto block can pass its input signal to more than one From block,
although a From block can receive a signal from only one Goto block.
The input to that Goto block is passed to the From blocks associated
with it as though the blocks were physically connected. Goto blocks and
From blocks are matched by the use of Goto tags, defined in the Tag
parameter.

The Tag Visibility parameter determines whether the location of From
blocks that access the signal is limited:

® local, the default, means that From and Goto blocks using the same
tag must be in the same subsystem. A local tag name is enclosed
in brackets ([]).

® scoped means that From and Goto blocks using the same tag must be
in the same subsystem or at any level in the model hierarchy below
the Goto Tag Visibility block that does not entail crossing a nonvirtual
subsystem boundary, i.e., the boundary of an atomic, conditionally
executed, or function-call subsystem or a model reference. A scoped
tag name is enclosed in braces ({}).

® global means that From and Goto blocks using the same tag can
be anywhere in the model except in locations that span nonvirtual
subsystem boundaries.

The rule that From-Goto block connections cannot cross nonvirtual
subsystem boundaries has the following exception. A Goto block
connected to a state port in one conditionally executed subsystem is
visible to a From block inside another conditionally executed subsystem.
For more information about conditionally executed subsystems, see

2-317

Goto

2-318

“Creating Conditionally Executed Subsystems” in the “Creating a
Model” chapter of the Using Simulink documentation.

Note A scoped Goto block in a masked system is visible only in that
subsystem and in the nonvirtual subsystems it contains. Simulink
generates an error if you run or update a diagram that has a Goto
Tag Visibility block at a higher level in the block diagram than the
corresponding scoped Goto block in the masked subsystem.

Use local tags when the Goto and From blocks using the same tag name
reside in the same subsystem. You must use global or scoped tags when
the Goto and From blocks using the same tag name reside in different
subsystems. When you define a tag as global, all uses of that tag access
the same signal. A tag defined as scoped can be used in more than one
place in the model. This example shows a model that uses two scoped
tags with the same name (A).

Goto

5uhsystem3
File Edit Simulation Format

Subsysteml !E m
File Edit Simulation Format
1A}
Goto Tag
Wisibility
- o
Subsystemz Fram Out

e

Goto Tag
Wisibility

© -
Out Subsyste md

From

Subsystemd - |O] =]

Subsystem?2 !E m
File Edit Simulation Faormat
™,
]
W
Sine Miave Goto
Data Type
Support

File Edit Simulation Format
™,
ot
W
Sine Miave Goto

The Goto block accepts real or complex signals of any data type
supported by Simulink, including fixed-point data types.

For a discussion on the data types supported by Simulink, see “Data
Types Supported by Simulink” in the Simulink documentation.

2-319

Goto

Parameters

d [Z1Block Parameters: Goto
CIE\ —Goto
Dialog . - e :
B Send signals to From blocks that have the specified tag. If tag visibility iz ‘scoped’,
ox then a Goto Tag Yisibility block muzt be uzed to define the wizibility of the tag. The
block icon displays the zelected tag name (local tags are enclozed in brackets, []. and
scoped tag names are enclosed in braces, {1,
—Parameters
Tag: Iﬁ T ag Yisikility: | local LI
Correzponding From blocks: refrezh
lcon Display: | Tag ;I
ak Cancel Help | Sy |
Tag

The Goto block identifier. This parameter identifies the Goto
block whose scope is defined in this block.

Tag Visibility
The scope of the Goto block tag: local, scoped, or global. The
default is local.

Corresponding From blocks
List of the From blocks connected to this Goto block.
Double-clicking any entry in this list displays and highlights the
corresponding From block.

2-320

Goto

Icon Display
Specifies the text to display on the block’s icon. The options are
the block’s tag, the name of the signal that the block represents,
or both the tag and the signal name.

Characteristics Sample Time Inherited from driving block

Dimensionalized Yes

2-321

Goto Tag Visibility

Purpose
Library

Description

A

Data Type
Support

Parameters
and

Dialog

Box

2-322

Define scope of Goto block tag
Signal Routing

The Goto Tag Visibility block defines the accessibility of Goto block
tags that have scoped visibility. The tag specified as the Goto tag
parameter is accessible by From blocks in the same subsystem that
contains the Goto Tag Visibility block and in subsystems below it in
the model hierarchy.

A Goto Tag Visibility block is required for Goto blocks whose Tag
Visibility parameter value is scoped. No Goto Tag Visibility block is
needed if the tag visibility is either local or global. The block shows
the tag name enclosed in braces ({}).

Not applicable.

—otaT aghizibility

Ized in conjunction with Goto and From blocks to define the wisibility of scoped tags.
For example, if thiz block residez in a subsyztem [or root system] called MYSY'S, then
the tag iz vizible to From blocks that regide in MY5SYS or in subsvstemns of M55,

—Parameters

Goto bag:
&

ok Cancel Help Apply

Goto Tag Visibility
|

Goto tag
The Goto block tag whose visibility is defined by the location of
this block.
Characteristics sample Time N/A
Dimensionalized N/A

2-323

Ground

Purpose
Library

Description

—]

Data Type
Support

2-324

Ground unconnected input port
Sources

The Ground block can be used to connect blocks whose input ports

are not connected to other blocks. If you run a simulation with blocks
having unconnected input ports, Simulink issues warning messages.
Using Ground blocks to ground those blocks avoids warning messages.
The Ground block outputs a signal with zero value. The data type of the
signal is the same as that of the port to which it is connected.

The Ground block outputs a signal of the same numeric type and data
type as the port to which it is connected. For example, consider the
following model.

S

intS)

Sonstant

In this example, the output of the Constant block determines the data
type (int8) of the port to which the Ground block is connected. That port
in turn determines the type of the signal output by the Ground block.

The Ground block supports all data types supported by Simulink,
including fixed-point data types.

Ground

Parameters) Block Parameters: Ground x|
and

R Ground
Dialog : S _
B I1zed to "ground" input zignalz. [Frevents warnings about

ox unconnected input portz.] Outputz zen.

...JK | Cancel Help
Characteristics Sample Time Inherited from driven block
Dimensionalized Yes

2-325

Hit Crossing

Purpose
Library

Description

Data Type
Support

2-326

Detect crossing point
Discontinuities

The Hit Crossing block detects when the input reaches the Hit crossing
offset parameter value in the direction specified by the Hit crossing
direction property.

The block accepts one input of type double. If you select the Show
output port check box, the block output indicates when the crossing
occurs. If the input signal is exactly the value of the offset value after
the hit crossing is detected, the block continues to output a value of 1. If
the input signals at two adjacent points bracket the offset value (but
neither value is exactly equal to the offset), the block outputs a value
of 1 at the second time step. If the Show output port check box is
not selected, the block ensures that the simulation finds the crossing
point but does not generate output. If the input signal is constant and
equal to the offset value, the block outputs 1 only if the Hit crossing
direction property is set to either.

When the block’s Hit crossing direction property is set to either,
the block serves as an "Almost Equal" block, useful in working around
limitations in finite mathematics and computer precision. Used for
these reasons, this block might be more convenient than adding logic to
your model to detect this condition.

The hardstop and sldemo_clutch demos illustrate the use of the
Hit Crossing block. In the hardstop demo, the Hit Crossing block
is in the Friction Model subsystem. In the sldemo_clutch demo, the
Hit Crossing block is in the Friction Mode Logic/Lockup Detection
subsystem.

The Hit Crossing block outputs a signal of type Boolean if Boolean logic
signals are enabled (see “Enabling Strict Boolean Type Checking”).
Otherwise, the block outputs a signal of type double.

Hit Crossing

Parameters
and

Dialog

Box

E! Function Block Parameters: Hit Crossing . x|

—Hit Crogzing

Detects when the input signal reaches the Hit crogsing offset parameter value in the
direction zpecified by the Hit crozzing direction parameter. [f the input zsignal crozzses
the affzet value in the specified direction, the block autputs 1 at the crozsing time. [f
the input zignal reaches the offzet walue in the zpecified direction and then remains at
the offzet value, the block outputs 1 from the hit time il the time when zignal leaves
the offzet walue. If the input zignal iz constant and equal to the offzet value, the block
autputs 1 anly if the direction iz either. Far wariable-step solvers, Simulink takes a time
ztep before and after the hit crozzing time.

—Parameters
Hit crozzing offzet:

Hit crogzing direction: I either ;